
J. Symbolic Computation (1992) 14, 71-84

Constructing Type Systems over an Operational Semantics

ROBERT HARPER

Carnegie-Mellon University, Pittsburgh, PA 15213, USA

(Received November 1991)

Type theories in the sense of Martin-Lof and the NuPRL system are based on taking as
primitive a type-free programming language given by an operational semantics, and defining
types as partial equivalence relations on the set of closed terms . The construction of a type
system is based on a general form of inductive definition that may either be taken as acceptable
in its own right, or further explicated in terms of other patterns of induction . One such account,
based on a general theory of inductively-defined relations, was given by Allen. An alternative
account, based on an essentially set-theoretic argument, is presented .

1 . Introduction

Research in type theory may be classified into three broad categories :

1 . Proof theory . The emphasis here is on studying function calculi representing formal
proofs in systems of natural deduction . On the syntactic side, strong normalization results
are of particular interest (Tait, 1967 ; Girard, 1972; Martin-Lof, 1975 ; Coquand & Huet,
1985, 1988), particular since they entail the consistency of the type system as a constructive
logic. On the semantic side, the definition and construction of models has been important
(Troelstra, 1973; Martin-Lof, 1975; Donahue, 1979 ; McCracken, 1979; Bruce et al., 1987 ;
Hyland & Pitts, 1989) . Well-known examples of type theories that fall into the proof-
theoretic tradition are the simply typed A-calculus (Barendregt, 1984 ; Hindley & Seldin,
1986), the second-order A-calculus (Girard's System F) (Reynolds, 1974 ; Girard, 1972),
Martin-Lot's early (Martin-Lof, 1975) (and most recent) type theories, and the Calculus
of Constructions (Coquand & Huet, 1985 ; Coquand, 1986; Coquand & Huet, 1988) .

2. Type assignment. Here the principal concern is with typeability of untyped A-terms
in a variety of type disciplines . On the syntactic side, the emphasis is on isolating interesting
type disciplines (such as first- and second-order functional types (Hindley, 1969 ; Curry
et al., 1972 ; Mitchell, 1984), intersection types (Coppo & Dezani, 1978), type containment
(Mitchell, 1984)), on characterizing the typeable terms in a given discipline (Hindley,
1969; Milner, 1978; Damas & Milner, 1982 ; Damas, 1985 ; Coppo & Dezani, 1978 ; Coppo
et al., 1980; Coppo & Giovanetti, 1983 ; Mitchell, 1984 ; della Rocca, 1987 ; Giannini &
della Rocca, 1988), and on type inference algorithms (Hindley, 1969 ; Milner, 1978; Damas
& Milner, 1982; della Rocca, 1987 ; Giannini & della Rocca, 1988). On the semantic side,
the emphasis is on characterizing the theories of certain classes of models based on
untyped A-interpretations (Coppo et al., 1980; Coppo & Giovanetti, 1983 ; Hindley, 1983 ;
Barendregt et al., 1983; Mitchell, 1986) .

3. Realizability. Here the emphasis is on viewing types as predicates about a program-
ming language defined by an operational semantics . Of particular interest is the develop-
ment of type disciplines that are sufficiently rich to serve as specification languages for

0747-7171/92/070071+14 $03 .00/0

	

© 1992 Academic Press Limited

7 2

	

R. Harper

programs, and the development of formal systems in which to conduct proofs of correct-
ness. There is no clear proof theory/model theory distinction in these systems since the
assertions are interpreted as statements about a fixed operational semantics, rather than
as formal assertions subject to a variety of interpretations . The roots of this approach
may be traced back to the Brouwer/Heyting semantics of intuitionistic logic (Brouwer,
1975; Heyting, 1956 ; Dummett, 1977) and to Kleene's realizability semantics (Kleene,
1952) (and its many descendants (Beeson, 1985 ; Troelstra, 1973)) . Examples from contem-
porary computer science are Martin-LOf's type theory (Martin-Lof, 1982), the Goteborg
type theory (Nordstrom et al., 1988), and the NuPRL type theory (Constable et al., 1986) .

Such a broad categorization is necessarily an over-simplification . It serves, however, to
place the subject of this paper in context .

The purpose of this paper is to give a set-theoretic account of Martin-LOf's semantics
for a predicative type theory that includes dependent types and universes . Of course, the
use of a set-theoretic construction robs the approach of any foundational significance,
and would not be of any use to an intuitionist . However, if we ignore philosophical issues,
and concentrate on type theory as a programming logic, then a set-theoretic explanation
is less inappropriate, and provides a predagogically useful basis for introducing some of
the central ideas of Martin-Lot's type theory . Both Allen and Mendler at Cornell developed
a rigorous account of the inductive character of the definition (Allen, 1987a, b ; Mendler,
1987). Allen's approach is based on an intuitionistically acceptable theory of inductively-
defined relations, while Mendler's is a thoroughly set-theoretic account (essentially
equivalent to ours) . Allen's thesis provides an extremely elegant and careful analysis of
a number of issues in the semantics of type theory, paying careful attention to philosophical
as well as practical concerns . Mendler's account extends both Allen's and the present
account by considering inductive and co-inductive types .

Two closely-related constructions are Aczel's construction of a Frege structure from a
model of the untyped A-calculus (Aczel, 1980 ; Aczel, 1983) and Beeson's realizability
interpretation of type theory (Beeson, 1982 ; Beeson, 1985) . Aczel's construction, which
partly inspired the present approach, is based on a set-theoretic argument, but he
conjectures that it could be made intuitionistically acceptable (Allen's work may be
construed as bearing this out .) Beeson's is based on the (constructively unacceptable)
device of inductively defining both a relation and its formal complement, then proving
that they are complementary relations .

Responding to a similar impulse to cast the semantics of type theory in an independently-
acceptable setting, Smith provides an interpretation of type theory in a logical theory of
constructions (Smith, 1984) . Unlike our account, Smith does not present a type system
as an inductive definition, and may therefore be considered to be more faithful to the
"open-ended" character of type theory . More recently, Aczel and Mender have developed
these ideas further by considering a form of iterated inductive definition in LTC (Mendler
& Aczel, 1988; Aczel & Carlisle, 1990; Mendler, 1990) .

2. Preliminaries

The semantics for type theory that we shall develop is based on an inductive construction
of a system of relations between terms interpreted by an operational semantics . Since the
terminology and notation for the relations that we shall consider are not well-established,
we set down our definitions here .

Constructing Type Systems

	

73

A symmetric and transitive binary relation E on a set X is called a partial equivalence
relation (per) . The field of E is defined by IEI = {x E X I E(x, x)} . It is easy to see that a
per is an equivalence relation on its field. The equivalence class under E of an element
x E X, is defined by E[x] = { y E X I xEy} . Note that E[x] c IEI, and that if x .,~ IEI, then
E[x] =0. The quotient of X by E, X/E is defined to be the set of non-empty equivalence
classes of elements of X under E. If E is a per, then for every x, y, and z in IEI, if
x c: E[y], then y E E[x], and if x E E[y] and y E E[z], then x E E[z] . Conversely, E is
determined by specifying IEI and, for each xEIEJ, a set E[x]clEI satisfying these
conditions .

Let (X, c) be a partially-ordered set . A subset D c X is directed iff every pair of
elements in D has an upper bound in D; in particular, every chain (linearly-ordered
subset) is directed . The poset X is a complete pointed partial order, or cppo, iff it has a
least element I, and every non-empty directed subset D c X has a supremum, U D, in
X. A function f : X -> Y between cppos is monotone (or order preserving) iff f(x)c f(y)
whenever x c y. A monotone function is continuous if it preserves countable directed
suprema .

Every monotone map on a cppo X has a least fixed point . To see this, construct the
sequence (x,) of elements of X indexed by ordinals as follows : xo =1, x,+, = f(x.), and
x, = Uma« x. . It is easy to show by transfinite induction that at each stage a, the initial
segment of the sequence determined by a is directed, and so the required suprema exist .
Since X is a set, and each x a is an element of X, there must be a stage A at which
x,, + , = x,,, for otherwise there would be a bijection between ON and X, which is impossible .
Now xA is a fixed point off, since x A+, =f(xa) . Furthermore, if y is any fixed point off,
then x« c y for each a, and so xx c y, completing the proof. Note that for continuous
maps it is not necessary to appeal to a cardinality argument to establish the fixed-point
property since the sequence closes off at w.

Let S be a set (of sorts) . An S-sorted set X is a family of sets X=(XS)SEs indexed by
sorts. An S-sorted relation R between S-sorted sets X and Y is an S-indexed family of
relations R = (RS)SEs such that for each s c S, RS c XS x YS . An S-sorted partial function
f between S-sorted sets X and Y is an S-sorted relation between X and Y that is a
partial function at each sort. Relations between and operations on S-sorted sets are
defined "sort-wise," so that, for example, X c Y iff X, c YS for each s c S. If x is a
variable ranging over an S-sorted set X, then, by convention, x s ranges over XS , and the
subscripts are dropped whenever they are clear from context .

3 . Language

In this section we define the syntax of a small programming language that we shall
use as the basis for illustrating the construction of type systems . Since several of the
program forms are binding operators, it is convenient to present the language as a set of
expression constructors using the system of arities introduced by Martin-Lof.
An arity a is an n-tuple of arities, for n >_ 0. The terms of the arity calculus are similar

to those of the simple-typed A-calculus with only one base type . A closed term of arity
(a	a„) is to be thought of as a term with n "holes," with the ith hole awaiting a
term of arity a ; . A closed term of ground arity, (), or 0, is called a "saturated" or
"completed" term since it has no holes . The inspiration for this view of expressions comes
from Frege's conception of functions as arising from completed entities by striking out

74

	

R. Harper

Table 1 . Signature of a small language

a component, leaving an incomplete entity that may be "applied" by filling in the hole
with an entity of the appropriate kind (arity) .

Let X be a denumerable arity-sorted set of variables such that X n Xp = 0 whenever
a is distinct from /3 . Let x, y, and z range over X Let W be a denumerable arity-sorted
set of constants, disjoint from the variables . Let c and d range over 16. A signature cr is
a finite subset of W . The set of terms, f(o-), generated by a signature o- is the least
arity-sorted set f such that Xc f, o-c f, a(a l	a k) c f if a E fi g , -, ak i and, for
1!5 i<k,a;Efa ,, and x l , . . ,xk .aE if, for 1<-i<_k, x i EX, and aE 3-0 . The
metavariables a, b, c, f, g range over fl o-) .

The notions of free and bound variables, and capture-avoiding substitution are defined
in the usual way, provided that we take x 1 , . . . , Xk to be bound in a in x l	xk . a .
Write FV(a) for the set of free variables in a and [a/x]b for substitution of a for free
occurrences of x in b. If f is a set of terms, then the set of closed terms is the subset
f° s f consisting of those terms a such that FV(a) = 0. A closed term of ground arity
is said to be saturated ; let Y = Vo be the set of saturated terms .

Terms are identified up to the a, /3, and 77 conversion, defined as the smallest congruence
relation =- containing all instances of

1. xl, . . . , xk . a = y l , . . . , Yk . [Yl , . . . , Yk / xl	Xk] a,
2 . (xl, . . .,xk .a)(al, . . .,ak)=[al	ak/Xl, . . .,xk]a,and
3. X1, . . .,xk .a(Xl, . . .,Xk)=a.

In the sequel we work with a fixed language f generated by the signature appearing
in Table 1 . The table is divided into three columns, labelled by headings that suggest the
role of the term formation operators in the operational semantics (canonical/non-
canonical) and in the type system (type/object forms) . A canonical form is a saturated
term whose outermost constructor is labelled canonical in Table 1 .

4. Operational Semantics

A programming language is defined by a syntax of expressions, a distinguished set of
program expressions (usually closed terms, possibly with other restrictions), and an
operational semantics defining a partial function mapping program expressions to values .

Canonical
type forms

Canonical
object forms

Non-canonical
forms

Form Arity Form
- -------------

Arity Form Arity

U ; (iEw) 0
nat 0 0 0 rec (0, 0, (0, 0))

s (0)
I (0, 0, 0) ax 0
x (0,0) pair (0,0) split (01010))
+ (0,0) inl (0) case (0,(0),(0))

inr (0)
(010) A ((0)) ap (0,0)

n
1

AM)
(01(0))

In the present situation the expressions are the members of the set J defined in the
previous section, the program expressions are the members of the set 9 of saturated
terms, and values V (ranged over by v and w) are the saturated terms in canonical form .
The evaluation function is defined by an inductive definition of its graph, the relation
a = v, which is the smallest relation closed under the rules of Figure 1 . It is easy to see
that a = v is single-valued . We write a J, to mean that there exists v such that a =:> v,
and a = b to mean that a and b evaluate to the same value .

The evaluator defined by the rules of Figure 1 is Martin-Lof's weak head reduction
evaluator, for which the property of being a value is determined only by its outermost
form. For other evaluation strategies it may be more convenient to define the set of values

U i . U i

nat~nat

	

0=0

s(a) = s(a)

a =:> 0 b= c

	

a= s(a') f (a', rec(a', b, f)) = c
rec(a, b, f) = c

	

rec(a, b, f) =:~~ c

I(a, b, c) => I(a, b, c)

	

ax = ax

axb=axb

	

(a,b) =:> (a,b)

a	(a' a") f(a', a") => b
split(a, f) = b

a + b => a + b

	

inl(a) = inl(a)

inr(a) = inr(a)

a = inl(a') f(a') z b

	

a= inr(a') g(a') =~, b
case(a, f, g) = b

	

case(a, f, g) = b

a- b=a-*b

	

A(f) =~, A(f)

a = \(f) f(b) = c
ap(a,b) = c

11(a, f) = 11(a, f)

	

E(a, f) = E(a, f)

Figure 1 . Operational semantics .

Constructing Type Systems

	

75

7 6

	

R. Harper

as those terms that evaluate to themselves, rather than giving a separate definition as we
have done here (following Martin-Lof) . It seems plausible that the type system construction
described below goes through for an arbitrary evaluator, but this has not been investigated
in detail .

5. Partial Equivalence Relations on Saturated Terms

In Martin-Lof's type theory a type is determined by defining those values that are to
serve as elements and defining when two such values are to be equal . The presence of
dependent types, and the ability to define type-valued functions on a type, makes it
impossible to separate types from objects . The types themselves are therefore drawn from
the collection of values, and it is part of the definition of a type system to define when
two types are to be considered equal. Thus both the definition of the collection of types
and the elements of each type have both a "collecting" and a "quotienting" aspect which
is conveniently captured by using partial equivalence relations .

The pers that we shall consider are over the set 9' of saturated terms . It might seem at
first sight that we could first consider pers over the subset V c 97 of values, then extend
to all saturated terms "at the end ." But since the evaluator that we are considering is not
compositional, we are forced to "interleave" evaluation within the definition of the pers
representing type and member equality . One of the benefits of the construction to follow
is that it provides a compositional way to reason about the non-compositional evaluator .

Viewed as a programming logic, type theory is a logic of total correctness in that a
saturated term may serve as a type or a member of a type only if it has a value under
the operational semantics . In particular, we shall see that a term inhabits a function type
A-> B only if it carries elements of A to elements of B, and hence is a total function . (It
is possible to consider partial functions (and, more generally, partial objects) in this
setting (Constable & Smith, 1987, 1988) .) The formal realization of this aspect of type
theory is the notion of an "evaluation-respecting" per .

Let PER denote the set of partial equivalence relations on the set of saturated terms
9. (Hereafter, we use "per" to refer only to elements of PER .) A per E respects evaluation
iff

1. E relates only defined terms : if a c IE1, then a]. .
2. E respects Kleene equality : if a=a' and b=b', then E(a, b) iff E(a', b') .

Let VPER denote the set of all pers that respect evaluation .
Taken together, these conditions amount to requiring that E(a, b) hold iff a = v and

b = w and E(v, w) : an evaluation-respecting per ("vper") is determined by its behaviour
on values. Hence if E is a per on V, there is a unique extension of E to a vper E* on
90 obtained by defining E*(a, b) to hold iff there exists v and w such that a = v and
b ==> w and E(v, w) . (This is essentially Martin-Lof's method of defining a type in terms
of its canonical members .)
PER forms a cppo under the ordering EAE' iff ~EIc IE'1 and for all aEJEI, E[a]=

E'[a] . Note that this is strictly stronger than requiring E c E', which entails only that
E[a] c E'[a] for each a e JE l . It is easy to see that this defines a partial ordering, with
the empty relation as least element . Let _q be a directed set of pers . The supremum U 2
of 2 is given by the per D such that a E I D I iff a E IE) for some E E 2, in which case
D[a] is defined to be E[a] . This is well-defined since 2 is directed : if a c JE'J for some
other E' c= 2, then E [a] = E'[a] since they have an upper bound in 2. It is easy to see

Constructing Type Systems

	

77

that VPER is a sub-cppo of PER under the above ordering : we need only observe that
the supremum of a directed set of vpers is itself a vper .

The following operations on vpers, inspired by Plotkin's "logical relations" (Plotkin,
1980) are used in the construction of type systems :

N={(m, rn) I mEw}
E x F={((a, b), (a', b')) I E(a, a') A F(b, b')}
E+F={(inl(a),inl(a'))~E (a, a')}u{(inr(b),inr(b')) F(b,b')}
E - F = {(A(f), A(f')) IVa, a' . E (a, a') 7) F(f(a),f'(a'))}

I (a, b, E) _ {(ax, ax) I E(a, b)}
ME, ID)={(A(f), A(f')) JVa, a' . E(a, a')-1'(a)(f(a),f'(a'))}
Y- (E, 1) _ {((a, b), (a', b')) I E(a, a') A T(a)(b, b')}

In the definitions of I(E, (D) and II(E, (D), the choice of argument to t is immaterial,
provided that c respects E. We shall only be interested in these operations when this is
the case .

6. Type Systems

A type system may be thought of as a family of partial equivalence relations, one for
type membership and equality, and one for the membership and equality of each type .
More precisely, type system is a pair r = (E, (D), where E is a vper and (D : ./ E -+ VPER
is a function assigning a vper to each a E JE J in such a way that if E (a, b), then 4)(a) _ 4)(b) .
The relation E is called the type equality relation for r, and, for each a c IE1, the relation
(D(a) is called the member equality relation of type a in T. Let TS = Y.EEVPER WI E -* VPER)
be the set of type systems .

Type systems are constructed as fixed points of monotone operators on type systems .
We therefore need to consider a notion of approximation of one type system by another .
The ordering we consider here regards a type system T = (E, (D) to be an approximation
of T'= (E', V) iff every type in E is a type in E', and its equivalents in E are the same
as those in E', and, for every type a of E, the relation assigned to a by '' is the same
as assigned to a by 1'. Formally, the approximation ordering on type systems is given by

(E,(D)Q(E',c') <* EQE'AVaEI EI .I(a)=V(a).

It is easy to see that TS is partially ordered by this relation, with (0, 0) as least element .
Let -9=((E;,(D ;)) ;EI be a directed set of type systems . The supremum of -q is the type
system L 9 = (E, (D), where E = L ;EI E;, and, for each a c JEJ,'(a) is 4 ;(a) for any
i c I such that a c E;1 . Some such i must exist, by the definition of E, and any two choices
agree since 2 is directed . It remains to show that c respects the equality relation given
byE. But E (a, b) holds only if E,(a, b) for some i e I, in which case t(a) = (D,(a) = (D;(b) _
1(b), since each (E;, 4) ;) is a type system .

7. A Fragment of Martin-Lot's System

In this section we construct a type system for a fragment of Martin-Lof's type theory
without universes . The type system includes dependent product and sum types, and the
equality type, and hence illustrates some of the characteristic features of type theory .
Treatment of universes is deferred to the next section . This type system shall be obtained
as the least fixed point of a monotone operator on TS . The construction may be motivated

7 8

	

R. Harper

by considering the iterative construction of fixed points described in section 2 . Beginning
with the empty type system, we have, at each stage a, a "partial" type system T, = (E,,, (D .) .

A type is said to "exist" at stage a iff it is a member of the field of E . . Since Ta is a type
system, if a E IE J, then I (a) is defined. At successor stages, the set of types is extended
to include some set of "new" types constructed from the types existing at the previous
stage . For example, if a and b are types existing at stage a, then the type a x b exists at
stage a + 1 . At limit stages we simply collect together everything that has been constructed
at earlier stages .

To make these ideas precise, we define an operator T : TS -* TS by T(E, (D) = (E'*, (D*),
where

E'= {(nat, nat)}

{(a, x a2, a, x a2) I E(a, , a,) A E(a2, a2)}

u{(a,+a,, a,+az)I E(a1, a,) A E(az, a2)}

,-) {(a,-*a2, a,- a2) I E(a,, a,) A E(az, a2)}

u {(1(a,, a2, a3), I(a,, a2, a3)) I E(a3, a3) A b(a3)(a,, a,) A I (a3)(a2, a2)}

v {(II(b,f), II(b',f')) I E(b, b') A Va, a' . t(b)(a, a') E(f(a),f'(a'))}

u{(1(b,f),Y-(b',f'))I E(b, b') A Va, a' . t(b)(a, a') E(f(a),f'(a'))}

and

N

	

if a =- nat

t(a,)x I(a2) if a= a,xa 2 Aa,,a 2 EIEI

(D(a,)+I(az)

	

if a=a,+a2 A a,, a 2 EJEI

V(a) = I(a,)- (1(a 2)

	

if a==a,-*a 2 Aa,,a2 EIEJ

I(a, , a 2 , (D (a3))

	

if a =- I(a,, a2 , a 3) A a 3 E JE

II((D(b),4(f)) if a=-II(b,f)AbEIEJAVaEI4(b)l .f(a)EIE J

Y.(I (b), 4)(f))

	

if a =- I(b, f) A b E IE I A Va E 14)(b)I . f(a) E I EI

Here we define I(f)(a)=t(fa), for f of arity (0), and t*(a)=4(v) whenever a = v.

THEOREM 7 .1 .

1 . T maps type systems to type systems.
2. T is monotone.
3. T is not continuous.

PROOF.
1 . Suppose that r = (E, (D) is a type system . It is easy to see that E'* is a vper, and

that c'* assigns a vper to each a c: IE'*I . It remains to show that I * respects E'* . But
this follows easily from the fact that c respects E and from the definitions of the operations
on pers .

2. Let o- = (E, (D) and r = (F, V) be type systems, and suppose that o• E~ r. Let T(or) =

(E', (D')* and let T(-r) = (F', lk')*. We are to show that E'*=- F'*, and that c'* (a) Q;lI'*(a)
for each a E IE'*1 .

Suppose that a E IE'* I . Then there exists a unique v such that a = v and v E jE'I . By
definition of T, the value v must have one of seven possible forms ; we consider two cases
here. Suppose that v = a, x a 2 , with a, and a 2 elements of JE(. By supposition JE J c IFI,
so that both a, and a 2 are in IFI, and hence, by the definition of T, v = a, x a 2 E IF'I, and
hence a E IF'*I . To take another example, suppose that v = II(b, f), where b E JEI and for
every c E ID(b)IJ(c) E JEJ . Now by supposition IEJ c ~FI, and hence b c IFI, and b(b) =
11(b) . But then v = II(b, f) E jF'j, and therefore a E IF'*I . By similar reasoning the
equivalence class E'*[a] is equal to the equivalence class F'*[a] for each a E IE'*I .

Suppose that a E IE'l, so that a => v for some value v such that v E I E'l . We are to show
that c'(v)='4"(v), from which the result follows directly . We proceed by cases on the
possible form of v, based on the definition of T . Suppose that v = a, x a2 with a, E I E
and a2 EJEJ . Then a,EJFJ and a2 EIFI, and hence 4r(a,) = (D(a,) and ''P'(a2)=(D(a,) . But
then

"(v)=T'(a, x a2)

= 'k(a,) x'11(a2)

= c(a,) x (D (a2)

=(D'(a, x a2)

=(D'(v)

The other cases are handled similarly.
3 . Consider the term a=-II(N, x . rec(n ; N ; u, v . N x v)) . At each finite stage i, only

the i-fold product N x . . . x N exists, so that a exists only at the transfinite stage w .

Let ro be the least fixed point of T . As we shall see below, this type system is a model
for the inference rules of Martin-Lof's type theory, restricted to the type constructors
that we consider . We shall also use ro as the basis for the construction of a type system
with universes in the next section .

8. Adding Universes

One characteristic feature of Martin-Lof's type system is the cumulative hierarchy of
universes. A universe of types is a type whose members are types, whose equality relation
is the restriction of type equality to its members, and which is closed under the type
formation operators considered in the previous section . Since it is inconsistent to introduce
a universe of all types (which would include the universe itself), Martin-Lof instead
introduces a countable hierarchy of universe U ; (i E w) such that U i is included (in a
suitable sense) in U ;+ , and, for each j < i, U; contains U; as a base type . In this section
we construct a model for type theory with universes .

The idea is to construct the type system r0, as the limit of a countable sequence (Ti)i,_
of type systems, where r; is a type system with the first i universes as base types . The
first type system, To = (Eo, (D,,), was already constructed in the last section . The type system
r, is defined by taking U, as a base type equal only to itself and with E 0 as member
equality relation . The type system r, is a proper extension of ro in the sense that r o c T, .
Iterating this process we obtain a chain ro c r, • • . of type systems, and take r. to be its

Constructing Type Systems

	

79

8 0

	

R. Harper

supremum. It is important to realize that we do not extend the language of type theory
at each stage. On the contrary, the universe symbols, and terms involving them, are
available from the start, and types in ro may have members involving universe symbols .

These ideas may be made precise as follows . Call a type system v = (E,,, I„) a universe
system iff whenever a E JEV I , then a =* U ; for some i. We define the operator T, : TS - TS
similarly to the operator T of the last section, except that we take E'(a, b) whenever
E„(a, b), and V(a) =ct (a) whenever the latter is defined . In the construction v will be
a type system consisting of some initial segment of the universe hierarchy .

THEOREM 8 .1 . If v is a universe system, then T„ is a monotone operator on type systems .

PROOF. T„ is well-defined because v is a universe system, and universes are distinct from
other types. The proof that T„ is monotone is similar to that given for T in the last section .

Define the sequences (Pi) i ., and (T1) i€ . simultaneously as follows . At stage 0, take v„
to be the empty type system (which is trivially a universe system), and let 'To = (E, (D,,,)
be the least fixed point of T„ 0 . The required fixed point exists by the previous theorem,
and is the same as the type system To defined in the last section since T,) = T. At stage
i + 1, take vi , , to be the universe system (E,,,,, ~ ;,,) defined by

Ev;,, ={(U;, U,) I0<j <_ i+1}*

and

(D,,;,,(a)=Ej_, ifa= U; with0<j<_i+l .

Take Ti+, = (Ei+,, 4) i+ ,) to be the least fixed point of T,, + , .

THEOREM 8 .2 . For each i E to,

1 . vi is a universe system ;
2 . Ti exists ;
3 . Ti C Ti+,

PROOF. These follow easily from the definitions .

It follows that (Ti)i,(„ is a chain, and hence we may define r. =[J T; .

7. Judgements and Their Correctness

There are four forms of assertion, or judgement, in type theory : A type, A = B, a E A,
and a = b E A. The first two express typehood and type equality, and the second two
express membership and member equality for a type A. Let J range over the judgement
forms .

Constructing Type Systems

	

8 1

A basic judgement is a judgement involving only saturated terms (closed terms of
ground arity) . We define what it means for a basic judgement J to be correct in a type
system r = (E, (D), r ~-- J, by cases on the form of J as follows :

1 . T=A type iff AE JE 1 .
2. TSA=B iff E(A,B);
3. If T A type, then r= a E A iff a E I t (A) 1 ;

4. If T1 A type, then T a = b E A iff 1(A)(a, b) .

In the case of the membership judgements, the relation T J is defined only under the
indicated presuppositions of typehood . Here we adopt Martin-Lot's presuppositions, but
note that there are alternatives (see (Allen, 1987b) for a thorough discussion .)
A hypothetical judgement is used to express a judgement about open terms . Hypothetical

judgements have the form (x, E A	x„ E A„)J where the free variables occurring in
J are among the x,s . Roughly speaking, such a judgement expresses a kind of universal
validity of J over all terms of type A	An . However, the precise meaning is compli-
cated by the fact that hypothetical judgements also express functionality, which means
that not only must J be universally valid, but it must "respect equality" at each of the
domain types . The precise meaning of "respects equality" can be given only for each
individual judgement form, and hence definition of correctness for a hypothetical judge-
ment in a type system must be given by induction on n, with a case analysis on the form
of J. Furthermore, the definition is made only under presuppositions that express the
sequential functionality of each of the A;s in x,, . . . , x,, .

The precise definition of correctness of a hypothetical judgement in a type system may
be recovered from the following explanation for the case n = 1, and from Martin-Lof's
account (Martin-Lof, 1982) . Let T = (E, (D) be a type system, and let A be such that Tk-- A
type. Define r ~-- (x E A)J by cases on the form of J as follows :

1 . T = (x c= A)B(x) type iff for every a and b such that ct(A)(a, b), T ~-- B(a) = B(b) .
2 . If T = B type and T ~_- C type, then T ~= (x E A)B(x) = C(x) iff for every a and b such

that 4)(A)(a, b), T~= B(a) = C(b) .
3 . If T= (x c A)C(x) type, then r~= (x E A)c(x) E C(x) iff for every a and b such that

4(A)(a, b), T ~= c(a) = c(b) E C(a) .
4. If T=(xcA)c(x)EC(x) and T~--(xEA)d(x)E C(x), then T~_- (xEA)c(x)=d(x)E

C(x) iff for every a and b such that tI(A)(a, b), rk-- c(a) = c(b) E C(a) .

10. Proof Theory

We may now verify the soundness of some of the rules of Martin-Lot's type theory
with universes in the type system r. . We prove, in each case, that if

J, . . .Jn
J

is an inference rule, and for each I :s i <_ n, J; is correct in T,,,, then J is correct in T. as
well. When presented as a system of natural deduction, such an inference rule presents
only those hypotheses that are active in the inference, suppressing those that remain inert .
To avoid tedious details, we ignore these inactive hypotheses in the following verifications,
considering only closed rule instances . The verification for the general case follows the
same pattern, but is somewhat more complicated to present .

8 2

	

R. Harper

Consider the rule of substitutivity of equality :

A type a= b c A(x E A)B(x)type
B(a)=B(b)

Suppose that each of the premises is correct in r., so that we have

1 . E. (A, A) ;
2 . ' (A)(a, b) ;
3 . If cI (A)(a, b), then E.(B(a), B(b)) .

from which it immediately follows that the conclusion is correct in r, .
Consider the rule of cumulativity for universes :

a=bcUi
a=bEU;+ ,

If the premise is correct in T., then I (U 1)(a, b) . But then 4 (U i+ ,)(a, b) since (1.(U,
Ei g~ Ei+, =(Dw(Ui+,) .

Consider the rule of product introduction :

A type (x eA)B(x)type (x E A)a(x) EB(x)
A(a) E IT (A, B)

If the premises are correct in r ., then we have

1 . E. (A, A) ;
2 . If (Dw (A)(b, c), then E.(B(b), B(c)) ;
3 . If &,(A)(b, c), then 'I ,(B(b))(a(b), a(c)) .

It follows that II(A, B) c IE,„1 . To show that A(a) e 1ct (II(A, B)) I it suffices to show that
whenever t (A)(b, c), &,(B(b))(a(b), a(c)) . But this is precisely the third property
above .

Consider the rule of product elimination :

II(A,B)type bEII(A,B)aeA
ap(b, a) c B(a)

For the premises to be correct in r , means

1 . E.(II(A, B),11(A, B)) ;
2. ct (II(A, B))(b, b) ;
3 . cI (A)(a) .

It follows from the definition of r„ and the fact that t (II (A, B)) is evaluation-respecting,
that there is an f such that b' A(f), with A(f) e jI (II(A, B))I . Therefore f(a) E

j c1 (B(a))j . But ap(b, a) =f(a), and so ap(b, a) E kq)w(B(a))I, as desired .
The verification of the other rules follows a very similar pattern .

I am grateful to Peter Aczel, Stuart Allen, Robert Constable, Furio Honsell, John Mitchell, Nax
Mendler, and David Walker for their comments and suggestions . In particular, the general pattern
of the recursion was discovered in conversation with Honsell, and many of the technical details

Constructing Type Systems

	

83

were worked out in discussions with Mendler . I thank Robert Constable for suggesting that the
resulting account be given wider circulation .

References

Aczel, P ., Carlisle, D . P . The logical theory of constructions : A formal framework and its implementation . In :
(Huet, G ., Plotkin, G ., eds) Proceedings of The First Workshop on Logical Frameworks, Antibes, France
(to appear) .

Aczel, P. (1980) . Frege structures and the notions of truth, proposition, and set. In : Keisler, J ., Barwise, J.,
Kunen, K., eds) The Kleene Symposium, Studies in Logic and the Foundations of Mathematics, pp . 31-59 .
North-Holland.

Aczel, P. (1983) . Frege structures revisited . In : (Nordstrom, B ., Smith, J ., eds) Proceedings of the 1983 Marstrand
Workshop .

Allen, S . (1987a) . A non-type-theoretic definition of Martin-Lof's types . In : Second Symposium on Logic in
Computer Science, Ithaca, New York .

Allen, S . (1987b) . A Non-Type-Theoretic Semantics for Type-Theoretic Language . PhD thesis, Cornell University .
Barendregt, H . P. (1984) . The Lambda Calculus : Its Syntax and Semantics, volume 103 of Studies in Logic and

the Foundations of Mathematics. North-Holland .
Barendregt, H ., Coppo, M ., Dezani-Ciancaglini, M . (1983) . A filter lambda model and the completeness of

type assignment . Journal of Symbolic Logic 48(4) .
Beeson, M . (1982) . Recursive models for constructive set theories . Annals of Mathematical Logic 23, 127-178 .
Beeson, M . J . (1985) . Foundations of Constructive Mathematics, volume 6 of Ergebnisse der Mathematik and

ihrer Grenzgebiete . Springer-Verlag .
Brouwer, L . E . J . (1975) . Collected Works, Vol . 1 . (Troelstra, A . S ., ed .) North-Holland .
Bruce K., Meyer, A ., Mitchell, J . C . (to appear) . The semantics of second-order lambda calculus . Information

and Computation.
Constable, R. L., Smith, S . F . (1987) . Partial objects in constructive type theory . In : Second Symposium on Logic

in Computer Science, pp . 183-193 .
Constable, R. L., Smith, S . F. Computational foundations of basic recursive function theory . In : Third Symposium

on Logic in Computer Science, pp . 360-371 .
Constable, R. L . et al. (1986) . Implementing Mathematics with the NuPRL Proof Development System . Prentice-

Hall .
Coppo, M ., Dezani, M . (1978) . A new type assignment for lambda terms . Zeitschrift fur Mathematische Logik

and Grundlagen der Mathematik 19, 139-156 .
Coppo, M., Giovanetti, E . (1983) . Completeness results for a polymorphic type system . In : (Ausiello, G ., ed .)

Lecture Notes in Computer Science 159, 179-190 .
Coppo, M., Dezani-Ciancaglini, M ., Venneri, B . (1980) . Principal type schemes and lambda calculus semantics .

In : (Seldin, J . P., Hindley, J. R ., eds) To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and
Formalism, pp . 535-560 . Academic Press .

Coquand, T., Huet, G . (1985) . Constructions : A higher-order proof system for mechanizing mathematics . In :
(Buchberger, B ., ed.) EUROCAL'85: European Conference on Computer Algebra . Lecture Notes in Computer
Science 203, 151-184 .

Coquand, T., Huet, G . (1988) . The Calculus of Constructions . Information and Computation 76, 95-120 .
Coquand, T . (1986) . An analysis of Girard's paradox . In : Symposium on Logic in Computer Science, pp . 227-236,

Boston .
Curry, H . B ., Hindley, J . R., Seldin, J . P . (1972) . Combinatory Logic, Volume 2 . North-Holland .
Damas, L ., Milner, R . (1982) . Principal type schemes for functional programs . In : Ninth ACM Symposium on

Principles of Programming Languages, pp . 207-212 .
Damas, L . M. M . (1985) . Type Assignment in Programming Languages . PhD thesis, Edinburgh University .
della Rocca, S . R. (1987) . A unification semi-algorithm for intersection type schemes. In : (Ehrig, H ., Kowalski,

R., Levi, G., Montanari, U ., eds) TAPSOFT '87, pp . 37-51 .
Donahue, J . E . (1979) . On the semantics of data type . SIAM Journal on Computing 8, 546-560 .
Dummett, M . (1977) . Elements of Intuitionism . Oxford University Press .
Giannini, P., della Rocca, S . R . (1988) . Characterization of typings in polymorphic type discipline . In : Third

Symposium on Logic in Computer Science, pp. 61-71 .
Girard, J .-Y. (1972) . Interpretation Fonctionelle et Elimination des Coupures dans l'Arithmetique d'Ordre Super-

ieure. PhD thesis, University Paris VII .
Heyting, A. (1956) . Intuitionism : An Introduction. North-Holland .
Hindley, J . R ., Seldin, J . P. (1986) . Introduction to Combinators and A-Calculus, volume 1 of London Mathematical

Society Student Texts. Cambridge University Press .
Hindley, J . R . (1969) . The principal type scheme of an object in combinatory logic . Transactions of the American

Mathematical Society 146, 29-40 .
Hindley, J. R . (1983) . The completeness theorem for typing k terms . Theoretical Computer Science 22, 127-134 .

8 4

	

R. Harper

Hyland, J . M . E ., Pitts, A. M. (1989) . The Theory of Constructions : Categorical semantics and topos-theoretic
models. In : (Gray, J . W., Scedrov, A ., eds) Categories in Computer Science and Logic, volume 92 of
Contemporary Mathematics . American Mathematical Society.

Kleene, S . C . (1952). Introduction to Metamathematics. van Nostrand .
Martin-1,6f, P . (1975) . An intuitionistic theory if types : Predicative part. In : (Rose, H . E., Shepherdson, J . C .,

eds) Logic Colloquium '73, volume 80 of Studies in Logic and the Foundations of Mathematics, pp . 73-118 .
North-Holland .

Martin-Lof, P. (1982) . Constructive mathematics and computer programming . In : Sixth International Congress
for Logic, Methodology, and Philosophy of Science, pp . 153-175. North-Holland .

McCracken, N . (1979) . An Investigation of a Programming Language with a Polymorphic Type Structure . PhD
thesis, Syracuse University, Syracuse, New York .

Mendler, P . F., Aczel, P. (1988) . The notion of a framework and a framework for LTC . In : Third Symposium
on Logic in Computer Science, pp . 392-401, Edinburgh .

Mendler, P. (1987) . Recursive Definition in Type Theory. PhD thesis, Cornell University .
Mendler, N . (1990) . A series of type theories and their interpretation in the logical theory of constructions . In :

(Huet, G., Plotkin, G ., eds) Proceedings of the First Workshop on Logical Frameworks, Antibes, France (to
appear) .

Milner, R. (1978) . A theory of type polymorphism in programming languages . Journal of Computer and System
Sciences 17, 348-375.

Mitchell, J. C . (1984) . Type inference and type containment . In : (Kahn, G ., MacQueen, D ., Plotkin, G ., eds)
Semantics of Data Types . Lecture Notes in Computer Science 173, 257-278 .

Mitchell, J . C . (1986) . A type-inference approach to reduction properties and semantics of polymorphic
expressions . In : 1986 Symposium on LISP and Functional Programming, pp . 308-319 .

Nordstrom, B ., Petersson, K., Smith, J . (1988) . Programming in Martin-Lbf's Type Theory. University of Goteborg,
Goteborg, Sweden, Preprint .

Plotkin, G. (1980) . Lambda-definability in the full type hierarchy . In : (Seldin, J . P., Hindley, J . R., eds) To
H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pp . 363-373. Academic Press .

Reynolds, J. C . (1974). Towards a theory of type structure . In: Colloq. sur la Programmation . Lecture Notes in
Computer Science 19, 408-423 .

Smith, J. (1984) . An interpretation of Martin-Lof's type theory in a type-free theory of propositions . Journal
of Symbolic Logic 49, 730-753 .

Tait, W. W . (1967) . Intensional interpretation of functionals of finite type . Journal of Symbolic Logic 32, 187-199 .
Troelstra, A. S . (ed .) (1973) . Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture

Notes in Mathematics 344 .

