

Type Theory meets Effects

Greg Morrisett

A Famous Phrase:

"Well typed programs won't go wrong."

- 1. Describe abstract machine: $M ::= \langle \sigma, c \rangle$
- 2. Give transition relation: $M_1 \Rightarrow M_2$ $<\sigma$, x:=42;c> $\Rightarrow <\sigma{x \rightarrow 42}$, c>

 $<\sigma$, if true then c_1 else $c_2 > \Rightarrow <\sigma$, $c_1 > \Rightarrow$

- 3. Classify all terminal states as "bad" or "good" good: $<\sigma$, 42 + 10>, $<\sigma$, if true then 43 else 21> bad: $<\sigma$, if 42 then e_1 else e_2 >, $<\sigma$, "Bob" / true>
- 4. Prove well-typed code never reaches bad states.

What's "good" and "bad"?

- I could say $<\sigma$, "Bob" / true> $\Rightarrow <\sigma$, 42>.
- I could say $<\sigma$, exit(0)> is "bad".
- It's up to you! (Or rather, it should be...)
- But of course, for even simple safety policies, statically proving a program (much less a language) won't "go wrong" is pretty challenging.

Thus, we cheat:

- For languages (Java, C#, Scheme...):
 - We add some artificial transitions:
 - $<\sigma$, 42 / 0> \Rightarrow $<\sigma$, throw(DivByZero)>
 - and then label some bad states as good:
 <o, throw(v)>
- Other examples:
 - Null pointer dereference, array index out of bounds, bad downcast, stack inspection error, file already closed, deadlock, ...
- So the reality is that today, well-typed programs don't *continue* to go wrong.
 - Better than a code injection attack.
 - But little comfort when your airplane crashes.

Exceptions

- The escape hatch for typing: throw: $\forall \alpha.exn \rightarrow \alpha$
- In languages such as ML & Haskell, they don't appear in interfaces:
 - $-\operatorname{div}:\operatorname{int} \rightarrow \operatorname{int} \rightarrow \operatorname{int}$
 - sub : $\forall \alpha$.array $\alpha \rightarrow \text{int} \rightarrow \alpha$
- In Java & C# we have throws clauses:

-div:int → int → int throws DivByZero

Problems with Throws:

• Need effect polymorphism:

- map: $\forall \alpha, \beta$. ($\alpha \rightarrow \beta$) \rightarrow list $\alpha \rightarrow$ list β

- map div VS. map sub

 $-\operatorname{map}: \forall \alpha, \beta, \sigma. (\alpha \rightarrow \beta \ throws \ \sigma) \rightarrow$

 $list \alpha \rightarrow list \beta \ throws \sigma$

• Need flow/path sensitivity:

if (n != 0) avg := div(sum,n);
else avg := 0;

What We Really Want:

- Refinements:
 - div:int \rightarrow (y:int) \rightarrow int requires y != 0
 - sub: $\forall \alpha$.(x:array α) → (i:int) → α

```
requires i >= 0 && i < size(x)</pre>
```

- $\operatorname{csub}: \forall \alpha. (x: \operatorname{array} \alpha) \rightarrow (i: \operatorname{int}) \rightarrow \alpha$ throws BoundsError when $i < 0 \mid \mid i \geq \operatorname{size}(x)$
- And even:

Static EXtended Checking

ESC/Java, Spec#, Cyclone, Deputy, Sage, ...

- Take existing languages (Java, C#, C).
- Aimed at eliminating language bugs:

null pointers, array bounds, downcasts, ...

- Augment types with pre/post-conditions.
- Calculate refinements at each program point.
 - use weakest-pre or strongest-post-conditions
 - in conjunction with some abstract interpretation techniques to generate loop invariants
- Use SMT prover to check pre/post-conditions.

Tremendous Progress

- Some key abstraction patterns
 - e.g., object invariants, ownership/confindement
- Much improvement in provers:
 - SMT provers integrate decision procedures
 - Advances with SAT, BDDs, ILPs, ...
- Improved invariant finders:
 - *e.g*., polyhedral domains
 - counter-example guided refinement

For 70 Kloc in the Cyclone compiler, discharge 95% of the null & array bounds checks.

Reality: Static EXtended Checking

- Still too many false positives:
 - Still have 1000 checks left in Cyclone compiler
 - And this is for *shallow* verification conditions
 - programmers will dismiss false positives
- Many Culprits:
 - language of specifications is too weak
 - calculated invariants are too weak
 - theorem provers are too weak
 - memory, aliasing, framing (more on this later)
- Seems hopeless, no?

Ynot:

Why not give programmers the ability to work around short-comings of automation?

- Magic is good as long as it doesn't prevent you from getting real work done...
- Languages shouldn't be designed around what we can automate today, but rather, based on what we *want* to say tomorrow.
- So give programmers a way to build explicit proofs within the language.
 - if automation can't find proof, at least programmer can try to construct one.
- Not a new idea: this is the essence of type theory!

How Does All This Scale?

- X.Leroy [PoPL '06]: correct, optimizing compiler from C to PowerPC:
- Build interpreter for C code.
- Build interpreter for PowerPC code.
- compile: $S \rightarrow (T, Cinterp(S) \approx PPCinterp(T))$
 - compiler comparable to good ugrad class
 - CSE, constant prop, register allocation, trace scheduling ...
 - decomposed into series of intermediate stages
 - as much certifying compiler as certified compiler
- Coq extracts Ocaml code by erasing proofs
 - not just modeling code and proving model correct.
- Bottom line: it's feasible to build *mechanically* verified software using this kind of approach.

Great Progress, but...

- 4,000 line compiler:
 - 7,000 lines of lemmas and theorems
 - includes interpreters/models of C and PPC code
 - much is re-usable in other contexts
 - 17,000 lines of proof scripts
- Many research opportunities here:
 - Advances in SMT provers not yet adopted.
 - Can we maintain proofs when code changes?
 - Proof scripts (a la Coq) are unreadable though smaller & less sensitive to change than explicit proofs.
 - Explicit proofs (a la Twelf) are bigger, but perhaps force better abstraction, readability, & maintainability.

Another Big Problem:

- Systems like Coq (and ACL2, Isabelle/HOL, etc.) are limited to pure, total functions:
 - no hash tables, union-find, splay trees, ...
 - So Xavier is forced to use functional data structures
 - Not a bad thing per se, but we should be able to get good algorithmic complexity where needed (e.g., unification.)
 - no I/O, no exceptions, no diverging computations, no concurrency, ...
 - So building a server in Coq is out of the question.

Note: you can *model* these things in Coq.

but then you have the model/code disconnect.

Why Only Total Functions?

At all costs, there should be no (closed) term of type False.

- -i.e., there should be no proof of False.
- -In ML: fun bot()=bot() : $\forall \alpha$.unit $\rightarrow \alpha$
- If we can code bot in Coq:
 bot(): False
- Note that other things, including state, concurrency, continuations, can lead to the same sort of problems.

A Solution: Monads

As in Haskell, distinguish purity with types:

- e : int
 - **e** is equivalent to an integer *value*
- e : **\int**
 - e is a *delayed computation* which when run in a world w either diverges, or yields an int and some new world w'.
 - Because computations are delayed, they are pure.
 - So we can safely manipulate them within types and proofs.
- e : **•**False
 - possible, but means e must diverge when run!

Reasoning with ****:

By *refining* ♦ with predicates, we can capture the effects of an imperative computation within its type.

e : $\{P\}x:int\{Q\}$

When run in a world satisfying **P**, **e** either

- diverges, or else
- terminates with an integer \mathbf{x} and world satisfying \mathbf{Q} .
- *i.e.*, Hoare-logic meets Type Theory

The Rest of My Bit...

- Building a (functional) type-*inference* procedure for simply-typed lambda calculus.
 - uses dependent and refinement types in an interesting way
 - emphasize the "Chlipala-style" for proof development in Coq
- Hoare Type Theory
 - the basic ST monad in Coq
 - separation logic and the STsep monad
 - building and verifying (mutable) ADTs
 - concurrency and separation (time permitting)