
Type Theory meets Effects

Greg Morrisett

A Famous Phrase:

“Well typed programs won’t go wrong.”

1. Describe abstract machine: M ::= <σ,c>
2. Give transition relation: M1 ⇒ M2

<σ, x:=42;c> ⇒ <σ{x→42}, c>
<σ, if true then c1 else c2> ⇒ <σ, c1>

3. Classify all terminal states as “bad” or “good”
 good: <σ, 42 + 10>, <σ, if true then 43 else 21>
 bad: <σ, if 42 then e1 else e2>, <σ, “Bob” / true>
4. Prove well-typed code never reaches bad states.

What’s “good” and “bad”?

•  I could say <σ, “Bob” / true> ⇒ <σ, 42>.

•  I could say <σ, exit(0)> is “bad”.

•  It’s up to you! (Or rather, it should be...)

•  But of course, for even simple safety policies,
statically proving a program (much less a
language) won’t “go wrong” is pretty
challenging.

Thus, we cheat:
•  For languages (Java, C#, Scheme…):

–  We add some artificial transitions:
<σ, 42 / 0> ⇒ <σ, throw(DivByZero)>

–  and then label some bad states as good:
<σ, throw(v))>

•  Other examples:
–  Null pointer dereference, array index out of bounds, bad

downcast, stack inspection error, file already closed,
deadlock, …

•  So the reality is that today, well-typed
programs don’t continue to go wrong.
–  Better than a code injection attack.
–  But little comfort when your airplane crashes.

Exceptions
•  The escape hatch for typing:
 throw : ∀α.exn → α
•  In languages such as ML & Haskell,

they don’t appear in interfaces:
– div : int → int → int
– sub : ∀α.array α → int → α

•  In Java & C# we have throws clauses:
– div : int → int → int

 throws DivByZero

Problems with Throws:
•  Need effect polymorphism:

– map: ∀α,β.(α→β)→ list α → list β	

– map div vs. map sub	

– map:∀α,β,σ.(α→β throws σ)→

 list α → list β throws σ	

•  Need flow/path sensitivity:
if (n != 0) avg := div(sum,n);
else avg := 0;

What We Really Want:
•  Refinements:

–  div : int → (y:int) → int requires y != 0
–  sub : ∀α.(x:array α) → (i:int) → α

 requires i >= 0 && i < size(x)
–  csub:∀α.(x:array α) → (i:int) → α

 throws BoundsError when
 i < 0 || i >= size(x)

•  And even:
–  printf : (x:string) -> (vs:list obj) -> unit
 requires (∃ts,parses(x,ts) &&
 have_types(vs,ts))

–  prove: (p:prop) -> (b:bool)
 ensures (b = true => p)
–  compile : (x:ast) → (y:x86)

 ensures (bisimilar(x,y))

Static EXtended Checking
ESC/Java, Spec#, Cyclone, Deputy, Sage, …
•  Take existing languages (Java, C#, C).
•  Aimed at eliminating language bugs:

–  null pointers, array bounds, downcasts, …

•  Augment types with pre/post-conditions.
•  Calculate refinements at each program point.

–  use weakest-pre or strongest-post-conditions
–  in conjunction with some abstract interpretation

techniques to generate loop invariants

•  Use SMT prover to check pre/post-conditions.

Tremendous Progress
•  Some key abstraction patterns

–  e.g., object invariants, ownership/confindement

•  Much improvement in provers:
–  SMT provers integrate decision procedures
–  Advances with SAT, BDDs, ILPs, …

•  Improved invariant finders:
–  e.g., polyhedral domains
–  counter-example guided refinement

For 70 Kloc in the Cyclone compiler, discharge
95% of the null & array bounds checks.

Reality: Static EXtended Checking
•  Still too many false positives:

–  Still have 1000 checks left in Cyclone compiler
–  And this is for shallow verification conditions
–  programmers will dismiss false positives

•  Many Culprits:
–  language of specifications is too weak
–  calculated invariants are too weak
–  theorem provers are too weak
–  memory, aliasing, framing (more on this later)

•  Seems hopeless, no?

Ynot:
Why not give programmers the ability to work

around short-comings of automation?
–  Magic is good as long as it doesn’t prevent you

from getting real work done…
–  Languages shouldn’t be designed around what we

can automate today, but rather, based on what
we want to say tomorrow.

So give programmers a way to build explicit
proofs within the language.
–  if automation can’t find proof, at least programmer

can try to construct one.

Not a new idea: this is the essence of type
theory!

How Does All This Scale?
X.Leroy [PoPL ‘06]: correct, optimizing compiler

from C to PowerPC:
•  Build interpreter for C code.
•  Build interpreter for PowerPC code.
•  compile: S → (T, Cinterp(S) ≈ PPCinterp(T))

–  compiler comparable to good ugrad class
•  CSE, constant prop, register allocation, trace scheduling …

–  decomposed into series of intermediate stages
–  as much certifying compiler as certified compiler

•  Coq extracts Ocaml code by erasing proofs
–  not just modeling code and proving model correct.

Bottom line: it’s feasible to build mechanically verified
software using this kind of approach.

Great Progress, but…
•  4,000 line compiler:

–  7,000 lines of lemmas and theorems
•  includes interpreters/models of C and PPC code
•  much is re-usable in other contexts

–  17,000 lines of proof scripts
•  Many research opportunities here:

–  Advances in SMT provers not yet adopted.
–  Can we maintain proofs when code changes?

•  Proof scripts (a la Coq) are unreadable though smaller &
less sensitive to change than explicit proofs.

•  Explicit proofs (a la Twelf) are bigger, but perhaps force
better abstraction, readability, & maintainability.

Another Big Problem:
Systems like Coq (and ACL2, Isabelle/HOL, etc.)

are limited to pure, total functions:
–  no hash tables, union-find, splay trees, …

•  So Xavier is forced to use functional data structures
•  Not a bad thing per se, but we should be able to get

good algorithmic complexity where needed (e.g.,
unification.)

–  no I/O, no exceptions, no diverging computations,
no concurrency, …

•  So building a server in Coq is out of the question.

Note: you can model these things in Coq.
–  but then you have the model/code disconnect.

Why Only Total Functions?
At all costs, there should be no (closed)

term of type False.
–  i.e., there should be no proof of False.
–  In ML: fun bot()=bot() : ∀α.unit→α
–  If we can code bot in Coq:

 bot(): False
– Note that other things, including state,

concurrency, continuations, can lead to the
same sort of problems.

A Solution: Monads
As in Haskell, distinguish purity with types:
•  e : int

–  e is equivalent to an integer value

•  e : ♦int
–  e is a delayed computation which when run in a

world w either diverges, or yields an int and some
new world w’.

–  Because computations are delayed, they are pure.
–  So we can safely manipulate them within types

and proofs.

•  e : ♦False
–  possible, but means e must diverge when run!

Reasoning with ♦:
By refining ♦ with predicates, we can

capture the effects of an imperative
computation within its type.

e : ♦{P}x:int{Q}
 When run in a world satisfying P, e either

– diverges, or else
–  terminates with an integer x and world

satisfying Q.
i.e., Hoare-logic meets Type Theory

The Rest of My Bit…
•  Building a (functional) type-inference

procedure for simply-typed lambda calculus.
–  uses dependent and refinement types in an

interesting way
–  emphasize the “Chlipala-style” for proof

development in Coq

•  Hoare Type Theory
–  the basic ST monad in Coq
–  separation logic and the STsep monad
–  building and verifying (mutable) ADTs
–  concurrency and separation (time permitting)

