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A Famous Phrase: 

“Well typed programs won’t go wrong.” 

1. Describe abstract machine: M ::= <σ,c> 
2. Give transition relation:  M1 ⇒ M2 

<σ, x:=42;c> ⇒ <σ{x→42}, c> 
<σ, if true then c1 else c2> ⇒ <σ, c1> 

3. Classify all terminal states as “bad” or “good” 
    good: <σ, 42 + 10>, <σ, if true then 43 else 21> 
    bad:   <σ, if 42 then e1 else e2>, <σ, “Bob” / true> 
4. Prove well-typed code never reaches bad states. 



What’s “good” and “bad”? 

•  I could say <σ, “Bob” / true> ⇒ <σ, 42>.  

•  I could say <σ, exit(0)> is “bad”.  

•  It’s up to you!  (Or rather, it should be...) 

•  But of course, for even simple safety policies, 
statically proving a program (much less a 
language) won’t “go wrong” is pretty 
challenging. 



Thus, we cheat: 
•  For languages (Java, C#, Scheme…): 

–  We add some artificial transitions: 
<σ, 42 / 0> ⇒ <σ, throw(DivByZero)> 

–  and then label some bad states as good: 
<σ, throw(v))> 

•  Other examples: 
–  Null pointer dereference, array index out of bounds, bad 

downcast, stack inspection error, file already closed, 
deadlock, … 

•  So the reality is that today, well-typed 
programs don’t continue to go wrong. 
–  Better than a code injection attack. 
–  But little comfort when your airplane crashes. 



Exceptions 
•  The escape hatch for typing: 
    throw : ∀α.exn → α 
•  In languages such as ML & Haskell, 

they don’t appear in interfaces: 
– div : int → int → int  
– sub : ∀α.array α → int → α 

•  In Java & C# we have throws clauses: 
– div : int → int → int  

            throws DivByZero 



Problems with Throws: 
•  Need effect polymorphism: 

– map: ∀α,β.(α→β)→ list α → list β	

– map div vs. map sub	

– map:∀α,β,σ.(α→β throws σ)→  

                   list α → list β throws σ	


•  Need flow/path sensitivity: 
if (n != 0) avg := div(sum,n); 
else avg := 0; 



What We Really Want: 
•  Refinements: 

–  div : int → (y:int) → int  requires y != 0 
–  sub : ∀α.(x:array α) → (i:int) → α  

   requires i >= 0 && i < size(x) 
–  csub:∀α.(x:array α) → (i:int) → α  

   throws BoundsError when   
         i < 0 || i >= size(x) 

•  And even: 
–  printf : (x:string) -> (vs:list obj) -> unit 
         requires (∃ts,parses(x,ts) &&  
         have_types(vs,ts)) 

–  prove: (p:prop) -> (b:bool) 
             ensures (b = true => p) 
–  compile : (x:ast) → (y:x86) 

      ensures (bisimilar(x,y)) 



Static EXtended Checking 
ESC/Java, Spec#, Cyclone, Deputy, Sage, … 
•  Take existing languages (Java, C#, C). 
•  Aimed at eliminating language bugs: 

–  null pointers, array bounds, downcasts, … 

•  Augment types with pre/post-conditions. 
•  Calculate refinements at each program point. 

–  use weakest-pre or strongest-post-conditions 
–  in conjunction with some abstract interpretation 

techniques to generate loop invariants 

•  Use SMT prover to check pre/post-conditions.   



Tremendous Progress 
•  Some key abstraction patterns 

–  e.g., object invariants, ownership/confindement 

•  Much improvement in provers: 
–  SMT provers integrate decision procedures 
–  Advances with SAT, BDDs, ILPs, … 

•  Improved invariant finders: 
–  e.g., polyhedral domains 
–  counter-example guided refinement 

For 70 Kloc in the Cyclone compiler, discharge 
95% of the null & array bounds checks. 



Reality: Static EXtended Checking 
•  Still too many false positives:   

–  Still have 1000 checks left in Cyclone compiler 
–  And this is for shallow verification conditions 
–  programmers will dismiss false positives 

•  Many Culprits: 
–  language of specifications is too weak 
–  calculated invariants are too weak 
–  theorem provers are too weak 
–  memory, aliasing, framing (more on this later) 

•  Seems hopeless, no? 



Ynot: 
Why not give programmers the ability to work 

around short-comings of automation? 
–  Magic is good as long as it doesn’t prevent you 

from getting real work done… 
–  Languages shouldn’t be designed around what we 

can automate today, but rather, based on what 
we want to say tomorrow. 

So give programmers a way to build explicit 
proofs within the language. 
–  if automation can’t find proof, at least programmer 

can try to construct one. 

Not a new idea:  this is the essence of type 
theory! 



How Does All This Scale? 
X.Leroy [PoPL ‘06]: correct, optimizing compiler 

from C to PowerPC: 
•  Build interpreter for C code. 
•  Build interpreter for PowerPC code. 
•  compile: S → (T, Cinterp(S) ≈ PPCinterp(T)) 

–  compiler comparable to good ugrad class 
•  CSE, constant prop, register allocation, trace scheduling … 

–  decomposed into series of intermediate stages 
–  as much certifying compiler as certified compiler 

•  Coq extracts Ocaml code by erasing proofs 
–  not just modeling code and proving model correct. 

Bottom line:  it’s feasible to build mechanically verified 
software using this kind of approach. 



Great Progress, but… 
•  4,000 line compiler: 

–  7,000 lines of lemmas and theorems 
•  includes interpreters/models of C and PPC code 
•  much is re-usable in other contexts 

–  17,000 lines of proof scripts 
•  Many research opportunities here: 

–  Advances in SMT provers not yet adopted. 
–  Can we maintain proofs when code changes? 

•  Proof scripts (a la Coq) are unreadable though smaller & 
less sensitive to change than explicit proofs. 

•  Explicit proofs (a la Twelf) are bigger, but perhaps force 
better abstraction, readability, & maintainability. 



Another Big Problem: 
Systems like Coq (and ACL2, Isabelle/HOL, etc.) 

are limited to pure, total functions: 
–  no hash tables, union-find, splay trees, … 

•  So Xavier is forced to use functional data structures 
•  Not a bad thing per se, but we should be able to get 

good algorithmic complexity where needed (e.g., 
unification.)   

–  no I/O, no exceptions, no diverging computations, 
no concurrency, … 

•  So building a server in Coq is out of the question. 

Note: you can model these things in Coq. 
–  but then you have the model/code disconnect.  



Why Only Total Functions? 
At all costs, there should be no (closed) 

term of type False.   
–  i.e., there should be no proof of False. 
–  In ML: fun bot()=bot() : ∀α.unit→α 
–  If we can code bot in Coq: 

   bot(): False 
– Note that other things, including state, 

concurrency, continuations, can lead to the 
same sort of problems.  



A Solution: Monads 
As in Haskell, distinguish purity with types: 
•  e : int 

–  e is equivalent to an integer value 

•  e : ♦int 
–  e is a delayed computation which when run in a 

world w either diverges, or yields an int and some 
new world w’. 

–  Because computations are delayed, they are pure. 
–  So we can safely manipulate them within types 

and proofs. 

•  e : ♦False 
–  possible, but means e must diverge when run! 



Reasoning with ♦:   
By refining ♦ with predicates, we can 

capture the effects of an imperative 
computation within its type. 

e : ♦{P}x:int{Q} 
 When run in a world satisfying P, e either 

– diverges, or else 
–  terminates with an integer x and world 

satisfying Q. 
i.e., Hoare-logic meets Type Theory  



The Rest of My Bit… 
•  Building a (functional) type-inference 

procedure for simply-typed lambda calculus. 
–  uses dependent and refinement types in an 

interesting way 
–  emphasize the “Chlipala-style” for proof 

development in Coq 

•  Hoare Type Theory 
–  the basic ST monad in Coq 
–  separation logic and the STsep monad 
–  building and verifying (mutable) ADTs 
–  concurrency and separation (time permitting) 


