Refining Effects with Relations

|

Refined Monads and Effect Systems

» Gifford and Lucassen (86,88). Expressions get both a type and an
effect — a safe, static overapproximation of possible side effects

e (CBV translation
AB:=int| A>B|T.A

CEM:o) =T |- M*:TSO'*

(c—>1) =c->T.7

'x:t-M:o

'-(x:zM).r>o

j*

' x:it FM:T.o

't M)t »>To

I Rval(Ax:7.M7):T(r ->To)

Effect system
o, 7:=Int|c—>71

I'-M:o,¢

I'x:t-M:o,¢

'-(xz.M).:r—>o0,0

Monads vs. Effect Systems

B Monads:

I'EN:T.o T, fir »>T.o,xit Ffx:T.o)

C'EM:T.(c >T.0) . - . : =
' f:z >5T.o Fletxe=Ninf x:T,. .o

*

I'Elet f =M in(let x<N"in f x):T o

cug'ue"

M Effect system:

I'-™m T—2 So,¢ I'-N:z,&"
I'-(M N):o,eugue"

Effect-Refined Monadic

Intermediate Languages

Tolmach 98
Wadler 98

B, Kennedy, Russell 98

— Implemented in MLJ Standard ML to Java bytecode
compiler

— Tracks reading, writing, allocating, exceptions, divergence

First go at (extensional) correctness in HOOTS’99
— Heavy operational techniques (Howe’s method)

— Based on sets of tests expressed in the language

— Worked, but pretty icky

Tracking exceptions

Framework

Base semantics
Base type system (sets and functions)

FEM:A ———= [TFM:A]
“erases to” “in diagonal of”

OFM:X == [OFM:X]

Refined type system Refined semantics

(effect .annotation, (partial equivalence relations
subtyping) over base semantics)

Store Effects

What does it actually mean to “read” or “write”? Let f be the denotation
of a command i.e.f € ZXZ—Z X /.

Suppose C does not write to the first location.
Extensionally: there is some g : ZxZ—Z such that f(x,y) = (x,g(x,y))

Suppose C does not read or write the first location.
Extensionally: there is some g : Z—7Z such that f(x,y) = (x,g(y))

Suppose C does not read from the first location.
Extensionally: there is some h : Z—B, g,,8, : Z—7 such that

fay) = (hy) 2 x :g,(y), £2v))

Observation

Move to a relational interpretation, and things look much slicker, if slightly

mysterious:
A = diagonal relation, X and — usual constructions on relations

f : R shorthand for (f,f) € R

C does not write to the first location:
VvV RCA.f: RxA— RxA.
C does not read or write the first location:
V R.f: RxA— RXA.

C does not read from the first location:
V RDA.f:RxA— RxA.

Framework

Base semantics
Base type system (sets and functions)

FEM:A ———= [TFM:A]
“erases to” “in diagonal of”

OFM:X == [OFM:X]

Refined type system Refined semantics

(effect .annotation, (partial equivalence relations
subtyping) over base semantics)

Base language

* Types
A,B := unit|int|bool | AxB|A—TB
I' .= x1:A,...,2,: A,
e Terms
VW = () |n|b| (VW) XX AM|V+W |mV ...
M,N = valV |letz<=MinN |V W

| if V then M else N |read/! | write({,V)

Standard typing rules

'-vi:A I'=V,:B I'-V:A X Ay
FI—(Vl,‘/Q)ZAXB F"WZVAZ

I''e: A-M:TB I'-=Vi:A—=TB TI'FVy;: A
I'Xx:AM:A—TB r-viVvs:THB

I'-v:A I'-M:TA TI''x: A-N:TB
I'FvalV : TA I'Fletx<<=M in N : TB

'V :bool I'HFM:TA T'EN:TA
I'-if V then M else N : TA

'V :int
'+ read({) : Tint ' write(4,V): Tunit

Base semantics in Set

S = Locs—Z
[unit] = 1
l[int] = Z
[bool] = B
[AxB] = [A]x [B]
|[A—TB] = [A] — [TB]
[TA] = S — S x][A]

Refined types and subtyping

* Types
X,Y = wunit|int|bool | X XY | X —T.Y
© = x1:X41,...,2,: X,
e C U{I’g,Wg}
lteL
* Subtyping
X<Y Y<Z X<X Y<Y
X <X X<Z XxY <X xY
X' <X T.Y <T.Y' eCe X<X'

(X -T.Y)< (X' = T.Y") T.X <T.X'

Selected typing rules for refined types

O,x: XFM:TY OV X —>T.Y 60V, X
OFX:UX)M: X —>1T.Y OV TY
OFV:X OFM:T. X O,x:XFN:T1I.Y
OFvalV :TpX OFletz<<=Min N :T. .Y

OFV:bool OFM:T.X OFN:T.X
©Fif V then M else N :1.X

O F V :int
© I read(() : Tfy,(int) O F write(l,V) : Tgy, (unit)
OFV:X X<X = OFM:T.X T.X<T.X'

OFV: : X' OFM:T.X'

Semantics of refined types

[X]

[int]
[bool]
[unit]

[X x Y]
[X = T.Y]
[T X]

R

e

|

3

es R
R
Ry
R

2

[UX)] < [U(X)]

1M

||
B

| > [¥]
= [X] = [1:Y]

= () R— Rx[X]
ReR .

P(S x 5)

(1R

ece
{R|V(s,s') € R, st =35t}
{R|V(s,s') € R, Vn € Z.(s[l — n],s'[{ — n]) € R}

Results

* Soundness of subtyping: If X <Y then [X] C [Y].

Fundamental theorem:

HOFV:X, (pp)€[O]

then ([UO)FV :U(X)]p, [UBO)FV :UX)]p) € [X].
Meaning of top effect: [G(A)] = Apag-

Equivalences

o Effect-independent: congruence rules, 3, n rules,
commuting conversions

o Effect-dependent: dead computation, duplicated
computation, commuting computations, pure lambda
hoist

> Reasoning is quite intricate, involving construction of
specific effect-respecting relations.

Effect-dependent equivalences (1)

Dead Computation:

OFM:T.X OFN:T.Y

r & 0O,wrs(e) =100
OFletea=Min N=N:T.Y

Duplicated Computation:
OFM:T. X O,x:X,y: XFN:T.Y

rds(e) Nwrs(e) =0
letz<<=M inlety<=M in N

OF _ let x<=M in N|z/y]

P Teuer Y

Effect-dependent equivalences (2)

Commuting Computations:

OF M, :T.. X1 OF M, :T.,Xo ©,21:X1,20: Xo F N :Toy tds(en) Nwrs(es)
wrs(eq) Nrds(es)

e eue Y wrs(e1) Nwrs(ez) =

0
0
letx1 <=M inlet z9o<=Msin N 0

Chm
= letaxs<=Msyinletx1<=M;in N

Pure Lambda Hoist:
OFM:ThZz ©,x:X,y:ZFN:T.Y

val (Az : U(X).lety<M in N)
= lety<M inval (Az:U(X).N)

O : T{}(X — T€Y)

A language with dynamic allocation

e Axiomatic (abstract) treatment of state

equipped with dom, lookup, update and new
* Set of regions Regs, refined types include ref,
* €C{rd, wr,al | r€ Regs}

['(x) = int ['(r) =ref, I'(y)= int
' ref(r):ref,:{al,} T'F o=y :unit, {wr,}

I'Fe:A. e rdoesnotoccurinl or A
I'Ee:Ae\Awr,, rd,, al,}

Parametric Logical Relation

A parameter @ assigns every r€ Regs U {7} a finite
partial bijection on L (all disjoint)

State relation on L,L'C L is RCSXS st. SRS, s~ S, S'~
s,"” = s,Rs,’

If R state relation on dom(¢p), dom’(p) then

— Rrespects {rd .} at ¢ if sSRs’=s.|=s".I' V (I,I')€ o(r)

— Rrespects {wr,} at ¢ if SRS/, (I,I')€@(r), v€ Z = s[l— v]Rs[I’
> V]

— R respects {al } always

R.(0) = {Re StRel(dom(p),dom’(p)) st. V ece, R resp. e
at o}

[A], will be a QPER on [|A[]

— Relation R such that R;R"1::R=R

[A], = {(v,v) | v € [|A]]} when A € {int,bool,unit}
[ret], = (r)
[A x B], = [A]y x [B],
(A5 Bl, = {(7.7) |V ¢ > p¥(r.a') € [Al-

(f(x), f'(a") € (T:[B])y }
(T:Q)p = QPER({(f, [') | .5 E ¢ =
VRER.(p)s Rs =53 Rs| A
J).(P(r) D= rcals(c)) As1,s] Ep@UA
s1~y 51 A (V,07) € Qpay
where (s1,v)=f s and (s},0")=f" s'})

Monotonicity: ¢’ > ¢ = [A]» 2 [Al,
Masking: If r notin A, [A], = [A], _. where ¢ -
r moves @(r) into the silent region 7
Fundamental theorem

Semantic equality, quantifying over
parameters, is PER and yields same equations
except duplicated computations requires no
allocations as well as disjoint reads and writes

Conclusion

Relational parametricity can give elegant, useful
extensional semantics to effect systems

Related

— Fancier system for exceptions
— Global higher order

— Abstract regions

Can be (should be) extended to regular effects or
other transition systems

Note emphasis on operations. In retrospect this is
what we were doing all along.

Extensional Semantics for Program Analyses and

Optimising Transformations
* Program analysis and optimising transformations ought to be a killer
app for semantics

— “An assignment [x := a]' may reach a certain program point if there is an
execution of the program where x was last assigned a value at | when the
program point is reached.”

— “..by the standard technique of proving preservation and progress”

— “denotational and operational methods seem ill-suited to validating

transformations that involve a program’s computational future or
computational past”

* This seems wrong

— Confusion of semantics of analysis results (true precondition for
transformation) with syntactic, approximate technique used to obtain them

— Original and transformed programs equal in standard, extensional semantics;
surely the reason why is expressible in those terms too

— Instrumented semantics both a cheat and a poor basis for equational reasoning
— Doesn’t go through abstraction levels (machine code programs don’t go wrong)

Relational Semantics for Traditional
Dataflow and Transformations

Type system mapping variables to the total relation, the diagonal or singleton {(n,n)},
interpreted as pre- and post-relations on stores, captures constant propagation, dead code

elimination, slicing and Smith/Volpano style secure information flow.

(if X = 3 then X:=7 else skip;Z:=X +1) P, X {3}, 4 :Tipe = €, X : Tipe, £ : {8}
~ (£ :=8)

Generalizes to “Relational Hoare Logic”, which can deal with code motion, available
expressions and other flow-sensitive analyses

while I<N do X = Y+1;
X = Y+1; ==> while I<N do
I := I+X; I := I+X;

at type ® = ® where ®is (1) =T(2)AN(1) = N2)AY (1) =Y (2)

Separation logic version of this idea used in establishing semantic type safety of a
compiler. Probabilistic version (CertiCrypt) by Barthe, Zanella et al used to
establish impressive results on correctness of crypto protocols

