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ABSTRACT
We present the λµµ̃-calculus, a syntax for λ-calculus + con-
trol operators exhibiting symmetries such as program/con-
text and call-by-name/call-by-value. This calculus is derived
from implicational Gentzen’s sequent calculus LK, a key
classical logical system in proof theory. Under the Curry-
Howard correspondence between proofs and programs, we
can see LK, or more precisely a formulation called LKµµ̃,
as a syntax-directed system of simple types for λµµ̃-calculus.
For λµµ̃-calculus, choosing a call-by-name or call-by-value
discipline for reduction amounts to choosing one of the two
possible symmetric orientations of a critical pair. Our anal-
ysis leads us to revisit the question of what is a natural
syntax for call-by-value functional computation. We define
a translation of λµ-calculus into λµµ̃-calculus and two dual
translations back to λ-calculus, and we recover known CPS
translations by composing these translations.

1. INTRODUCTION

Programming languages present implicit symmetries such
as input/output, or program/context. Less obviously – as
shown recently by Selinger in a categorical setting [23] –, the
picture can be extended to evaluation mechanisms: there ex-
ists a symmetry between call-by-name and call-by-value (an
earlier attempt in this direction can be found in Filinski [8]).

On the logical side, the best fit for evidencing symme-
tries is sequent calculus (based on left and right introduc-
tion rules). But the correspondence between programs and
proofs is traditionally explained through natural deduction
(based on right introduction and right elimination rules),
implication elimination (also called Modus Ponens) corre-
sponding to procedure application. We believe that this tra-
dition is in good part misleading. In this paper, we present
a sequent calculus style syntax that exhibits the above sym-
metries in a precise, (and – we believe – compelling) way.

A key step in this program was already accomplished in
[13, 12], where it was shown that simply-typed λ-terms (or
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λµ-terms) in (call-by-name) normal form are in bijective
correspondence with cut-free sequent calculus proofs in a
suitable restriction of Gentzen’s LJ (or LK) [9]. Danos,
Joinet, and Schellinx identified the same restriction of LK
– and called it LKT – as part of a thorough investigation
of linear logic encodings of classical proofs [5, 6]. Hav-
ing gained through this correspondence the “naturalness”
that was making the natural deduction usually preferred
in practice, there was no reason any longer not to system-
atically study λ-calculus through sequent calculus rather
than through the traditional Curry-Howard correspondence
with natural deduction. Sequent calculus is far more well-
behaved than natural deduction: it enjoys the subformula
property, and destruction rules – cuts – are well character-
ized in contrast with the elimination rules of natural deduc-
tion which superimpose both a construction and a destruc-
tion operation: the application is a constructor in a term
xM , but is destructive in a term (λx.M)N .

The leading goal at the root of the present work was
to conceive a “sequent calculus” version of call-by-value λ-
calculus and λµ-calculus. Our starting point was the ob-
servation that the call-by-value discipline manipulates in-
put much in the same way as (the classical extension of)
λ-calculus manipulates output. Computing MN in call-by-
value can be viewed as filling the hole (hence an input) of
the context M [ ] with the result of the evaluation of N .
So the focus is on contexts waiting for values – a situation
that sounds dual to that of (output) values being passed to
continuations.

This leads us to a syntax with three different syntactic cat-
egories: contexts, terms, and commands1. Commands are
pairs consisting of a term and a context, they represent a
closed system containing both the program and its environ-
ment. Correspondingly, we type these different categories
with three kinds of sequents. The usual sequents Γ ` ∆
type commands, while the sequents typing terms (contexts)
are of the form Γ ` A |∆ (Γ |A ` ∆). The symbol “|”
serves to single out a distinguished conclusion/output (hy-
pothesis/input), which stands for “where the computation
will continue” (“where it happened before”).

In the rest of this introduction, we offer as a prologue
a simple justification of the relevance of sequent calculus
to the computational study of the λ-calculus. Call-by-name

1Danos has also recognized the relevance of these three cate-
gories in [4] where he extends the work of Ogata [18] on the
relation between LKQ and call-by-value CPS-translations
(LKQ is the other natural restriction of LK considered in
[5, 6]).



evaluation in the λ-calculus can be specified by the following
inference rule:

M →∗ λx.P

MN → P [x← N ] .

This recursive specification may be implemented using a
stack as follows (M · S is the result of pushing M on top
of S):

(MN , S) → (M , N · S)
(λx.P , N · S) → (P [x← N ] , S)

This simple device is called Krivine abstract machine. It
can be rephrased using contexts instead of stacks:

(MN , E) → (M , E[[ ]N ])
(λx.P , E[[ ]N ]) → (P [x← N ] , E)

(Recall that a context is a λ-term with a hole, denoted [ ],
which can be filled with a term, or another context: e.g.,
E[[ ]N ] is the context obtained by filling the hole of E with
the context [ ]N .) Consider the evolution of the types of the
holes in the contexts during the execution of the rules. If
N has type A and if the hole of E has type B, then the
hole of E[[ ]N ] has type A → B. This corresponds to a
left introduction of implication (note that holes in contexts
correspond to inputs). Then the second rule of Krivine ab-
stract machine reads as a cut between an implication which
has been introduced on the right and an implication which
has been introduced on the left. We are here in the world
of sequent calculi, not of natural deduction.

In section 2, we recall the second author’s sequent calcu-
lus analysis of (call-by-name) λµ-calculus. In section 3, we
discuss how to add call-by-value to the picture. This leads
us in section 4 to λµµ̃-calculus and its typing system LKµµ̃,
a logical system for classical logic (limited to the implica-
tion connective) with the three kinds of sequents introduced
above. In particular, we exhibit the symmetry between the
call-by-name and call-by-value disciplines, by means of dual
orientations of a single critical pair. In section 5, we an-
alyze two subsyntaxes: the λµµ̃T -calculus and the λµµ̃Q-
calculus, and the corresponding sequent calculi LKTµµ̃ and
LKQµµ̃. These calculi correspond to LKT and LKQ; their
relation with linear logic is explained in appendix B. Our
translation of the λµ-calculus arrives in the intersection of
these subsyntaxes, and the target reduction stays in λµµ̃T -
calculus (λµµ̃Q-calculus) in the call-by-name (call-by-value)
discipline.

Section 6 is a “reverse engineering” exercise. Guided by
the goal of translating call-by-value normal forms into λµµ̃Q
normal forms, we revisit source call-by-value evaluation and
syntax: we work on an extension of the λ-calculus with a
let construct, and then on a restriction of this extension
which in our opinion is the call-by-value counterpart of the
λ-calculus.

In section 7, we complete the duality by adding the con-
nective “-” (the difference). This allows us to exhibit fully
the duality between terms and contexts. In section 8, we
link our analysis to both the classical and the more recent
works on continuation semantics. Finally, in section 9, we
complete the description of cut-elimination in LKµµ̃. We
conclude in section 10.

2. CALL-BY-NAME λµ-CALCULUS IN SE-
QUENT CALCULUS STYLE

In this section we present (a variant of) the λµ-calculus of
[13]. This calculus is to sequent calculus what λµ-calculus
is to natural deduction. (The syntax and the typing rules of
simply-typed λµ-calculus are recalled in appendix A.) The
syntax (as well as those of the subsequent sections) embodies
the three syntactic categories discussed in the introduction:

Commands c ::= 〈v|E〉
Contexts E ::= α || v · E
Terms v ::= x || µβ.c || λx.v

Its typing system is a sequent calculus based on judgements
of the following form:

c : (Γ ` ∆) Γ |E : A ` ∆ Γ ` v : A |∆

and typing rules are given below:

Γ |α : A ` α : A,∆

Γ, x : A ` x : A |∆

Γ ` v : A |∆ Γ |E : B ` ∆

Γ | (v · E) : A→ B ` ∆

c : (Γ ` β : B , ∆)

Γ ` µβ.c : B |∆

Γ, x : A ` v : B |∆

Γ ` λx.v : A→ B |∆

Γ ` v : A |∆ Γ |E : A ` ∆

〈v|E〉 : (Γ ` ∆)

The notations 〈v|E〉 can be read as some context E[ ] filled
with v; when E = α, it becomes just another notation for
the naming construction [α]v in λµ-calculus.

Terms can be reduced by the following reductions rules:

(→) 〈λx.v1|(v2 · E)〉 → 〈v1[x← v2]|E〉
(µ) 〈µβ.c|E〉 → c[β ← E]

Normal forms are those terms where either v = x or (E = α
and v 6= µβ.c) in subexpressions of the form 〈v|E〉.

Remark 2.1. Our treatment of λµ-calculus does not any
longer follow totally the “cut=redex” paradigm of sequent
calculus as in [13]. Another treatment could have been to
add the two (contraction) rules

Γ, x : A |E : A ` ∆

〈x|E〉 : (Γ, x : A ` ∆)

Γ ` V : A |α : A , ∆ (V = x or V = λx.v)

〈V |α〉 : (Γ ` α : A , ∆)



and restrict the cut rule to the other combinations of v,E.
Then we have the “cut=redex” paradigm of sequent calculus,
but another annoying phenomenon shows up: there are two
derivations of 〈x|α〉. This can in turn be solved by removing
the introduction rule for x but then 〈v|E〉 does not any longer
include the 〈x|E〉 construction which must be added explicitly
in the grammar. No perfect world.

Until section 9, we ignore the explicit process of substitution,
i.e., as in natural deduction, we consider that the replace-
ment is actually carried out completely in a single step. This
makes it easier to convey our main observations and results.

We note that any normal λµ-term v has the following
form:

v ::= x || µβ.c || λx.v
c ::= 〈λx.v|α〉 || 〈x|v1 · . . . vn · α〉

We now define two translations N and > of λµ-calculus into
the λµ-calculus. The translation N preserves normal forms,
while the translation > is compositional, i.e., preserves the
structure of (applicative) terms.

The translation N involves a parameterization by a con-
text (a trick that goes back to Plotkin’s so-called colon trans-
lation [20]):

xN = x
(λx.M)N = λx.MN

(MN)N = µα.(MN)Nα for α fresh
(µβ.c)N = µβ.cN

([α]M)N = MNα

(MN)NE = MNNN ·E
V NE = 〈V N |E〉 where V = x || λx.M || µα.M

Proposition 2.2. The translation N maps normal terms
to normal terms.

Proof. A λµ-normal form is either a variable x, or an
abstraction λx.M (µβ.c) where M (c)is normal, or an ex-
pression [α]M where M is normal and not a µ abstraction,
or an expression xM1 . . .Mn. The latter two cases corre-
spond to the two situations in which a “cut” 〈v|E〉 is not a
redex.

Notice that µβ.[α](. . . (xM1) . . .Mk) and its translation
µβ.〈x|(MN1 · (. . . (MNk · α) . . .))〉 are essentially the same
terms, up to a rearrangement. In the translation N , ap-
plicative terms are turned the other way round: a variable
applied to a first argument, then to a second, and so on,
becomes (an encoding of) a variable applied to a list of ar-
guments.

With simple adjustments (consisting in restricting inessen-
tially the syntax of the λµ-calculus and in atomizing the (µ)-
rule), the statement of proposition 2.2 can be improved: it
is essentially an isomorphism, i.e., a bijection that preserves
reduction step by step both ways. Consider the following
restriction of the syntax of the λµ-calculus that disallows
applications in contexts of the form λx.[ ] and M [ ] (this is
no real restriction since any application MN can be replaced
by an expansion µα.[α](MN), cf. appendix A):

v ::= x || λx.v || µβ.c
c ::= [α]a
a ::= v || av

As for reduction, we decompose the (µ) rule of λµ-calculus
in smaller steps according to the form of the context:

(µapp) 〈µβ.c|v · E〉 → 〈µβ.(c[β ← v · β])|E〉
(µvar) 〈µβ.c|α〉 → c[β ← α]

With these adjustments, proposition 2.2 can be restated as:

The translation N is an isomorphism: it is bijec-
tive, maps normal forms to normal forms, and
preserves reductions step by step.

The translation > which we define now is compositional but
does not preserve normal forms. This sort of translation
is quite well known, since it amounts to translate natural
deduction into sequent calculus.

x> = x
(λx.M)> = λx.M>

(MN)> = µα.〈M>|N> · α〉
(µβ.c)> = µβ.c>

([α]M)> = 〈M>|α〉

The translation > maps a normal form to its image by the
previous translation modulo the use of the rule (µ) only
(“administrative redexes”). The translation simulates the
reduction rule of λµ-calculus up to (µ) expansion (an expan-
sion 〈v|v′ · α〉 → 〈µβ.〈v|v′ · β〉|α〉 is needed for simulating
the rule (µβ.c)M → µα.c[β ← (α,M)]).

Proposition 2.3. The translation > is a homomorphism
from λµ-terms to λµ-terms for (call-by-name) reduction, up
to (µ) expansion. Moreover, for any λµ-term M , M> re-
duces by repeated applications of the rule (µ) to MN .

Proof. Preservation of reduction up to the rule (µ) is
trivial. The second part of the statement is an easy conse-
quence of the following:

(µβ.[α](xM1 . . .Mk))> →?

µβ.〈x|(M>
1 · . . . (M>

k · α) . . .))〉 (k (µ) steps)

Remark 2.4. Without logical or computational loss, one
may force the body of a λ-abstraction to have the form µα.c
(expanding λx.v as λx.µα.〈v|α〉 when necessary). This ob-
servation leads to a variant of the λµ-calculus where the λ-
abstraction is replaced by a double abstraction λ(x, α).c, with
the following typing rule:

c : (Γ, x : A ` β : B,∆)

Γ ` λ(x, β).c : A→ B |∆

.

3. CALL-BY-VALUE: INTRODUCING µ̃

Traditionally, one explains how to encode call-by-name in
call-by-value by introducing explicit operators that freeze
the evaluation of arguments. The same idea can be applied
to encode call-by-value on top of call-by-name, now freezing
the function until its argument is evaluated. The familiar
construct let x = N in P can be understood in this way.
Suppose that we want to compute an application MN in
a call-by-value discipline. A first step may consist in writ-
ing (let x = N in Mx), with the intention that N should



be evaluated before being passed to Mx, or equivalently
that the application of M should be delayed until the ar-
gument N is evaluated. The expression can also be writ-
ten as E[N ], where E = (let x = [ ] in Mx). In order to
encode such contexts, we introduce a new binding opera-
tor µ̃, which will turn out to be dual to µ. We encode
(let x = [ ] in P ), evaluated in a context E0, as µ̃x.〈P |E0〉.
The µ̃-abstraction allows us to turn (or freeze) the expres-
sion P into a context waiting for the value of its hole. If
P = Mx, we get µ̃x.〈µα′.〈M |x · α′〉|E0〉, which reduces by
(µ) to µ̃x.〈M |x · E0〉.

What is the typing rule for µ̃? First, if c is a command,
then µ̃x.c is a context (which is dual to µβ.c). The typing
rule is as follows:

c : (Γ, x : B ` ∆)

Γ | µ̃x.c : B ` ∆

One adds the following cut-elimination rule:

(µ̃) 〈v|µ̃x.c〉 → c[x← v]

which forms a critical pair with the (µ)-rule, in any com-
mand of the form 〈µβ.c1|µ̃x.c2〉. We impose that the (µ)-
rule has priority in such a redex, yielding c1[β ← µ̃x.c2].
The (compositional) interpretation of the λµ-calculus is now
redefined as follows:

x< = x
(λx.M)< = λx.M<

(MN)< = µα.〈N<|µ̃x.〈M<|x · α〉〉
(µβ.c)< = µβ.c<

([α]M)< = 〈M<|α〉

We next show how the call-by-value reduction is simulated
through this translation:

((λx.M)N)< = µα.〈N<|µ̃x.〈λx.M<|x · α〉〉
→(→) µα.〈N<|µ̃x.〈M<|α〉〉
→(µ̃) µα.〈M<[x← N<]|α〉

(N = x or λy.P )

The last unfreezing step is conditioned by the form of N<:
if N is a value in the sense of [20], i.e., is an abstraction
or a variable, then the (µ̃)-reduction can be applied. Oth-
erwise, N< begins with a µ, which prevents an immediate
application of (µ̃) and forces the evaluation of N<.

A final remark before we can start to capitalize our anal-
ysis of call-by-name and call-by-value is that the translation
we just defined for call-by-value works as well as it stands
for call-by-name, provided one changes the priorities in the
reduction system. If one now applies µ̃ as early as possi-
ble, then M< reduces by repeated use of the µ̃ rule to M>.
We define the call-by-name (call-by-value) discipline as the
application of the three rewrite rules (→), (µ), and (µ̃) giv-
ing priority to (µ̃) (to (µ)). Then, in call-by-name, M> is
just an optimized version of the translation M<. Therefore,
proposition 2.3 can now be rephrased as follows:

The translation < is a homomorphism for call-by-
name reduction up to (µ) and (µ̃) expansions.
Moreover, for any λµ-term M , M< reduces by
repeated applications of the rules (µ̃) and (µ) to
MN .

This suggests to consider a call-by-value counterpart V to
translation N and to proposition 2.2. But this raises the

question of what should actually be considered as call-by-
value normal forms in the λ-calculus. We defer this analysis
until section 6.

Another approach to the switch between call-by-name and
call-by-value is to refine rule (→) into

(→′) 〈λx.v1|v2 · e〉 → 〈v2|µ̃x.〈v1|e〉〉

If the (µ̃)-rule has the priority, then we recover previous
rule (→) by a (µ̃) step, whether v2 is a value or not (call-by-
name discipline). Otherwise, if the (µ)-rule has the priority,
we need to evaluate v2 first and we get the call-by-value
discipline. We exploit this approach in the next section.

4. THE λµµ̃-CALCULUS

Collecting together the ingredients of the last two sections,
we arrive at the λµµ̃-calculus whose syntax is

c ::= 〈v|e〉
v ::= x || µβ.c || λx.v
e ::= α || µ̃x.c || v · e

and evaluation rules are:

(→′) 〈λx.v1|v2 · e〉 → 〈v2|µ̃x.〈v1|e〉〉
(µ) 〈µβ.c|e〉 → c[β ← e]
(µ̃) 〈v|µ̃x.c〉 → c[x← v]

Observe we have not supposed yet any commitments for
call-by-name or call-by-value reduction. This depends on
the order of the last two rules:

Call-by-value consists in giving priority to the
(µ)-redexes (which serve to encode the terms,
say, of the form MN), while call-by-name gives
priority to the (µ̃)-redexes.

The two disciplines are hereafter referred to as CBN reduc-
tion and CBV reduction, respectively.

At the typing level, we obtain LKµµ̃ whose typing judge-
ments are:

c : (Γ ` ∆)
Γ ` v : A |∆
Γ | e : A ` ∆

and whose typing rules are:

Γ ` v : A |∆ Γ | e : A ` ∆

〈v|e〉 : (Γ ` ∆)

Γ |α : A ` α : A,∆

Γ, x : A ` x : A |∆

c : (Γ ` β : B,∆)

Γ ` µβ.c : B |∆

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆



Γ ` v : A |∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆

Γ, x : A ` v : B |∆

Γ ` λx.v : A→ B |∆
We recall the two ways to translate a λµ-term into a λµµ̃-

term. The first injection is:

x< = x
(λx.M)< = λx.M<

(MN)< = µα.〈N<|µ̃x.〈M<|x · α〉〉
(µβ.c)< = µβ.c<

([α]M)< = 〈M<|α〉

and a judgement Γ ` M : A |∆ of the λµ-calculus is trans-

lated into a LKµµ̃ judgement Γ ` M< : A |∆. The second
injection is:

x> = x
(λx.M)> = λx.M>

(MN)> = µα.〈M>|N> · α〉
(µβ.c)> = µβ.c>

([α]M)> = 〈M>|α〉

and a judgement Γ ` M : A |∆ of the λµ-calculus is trans-

lated into a LKµµ̃ judgement Γ `M> : A |∆.
Thanks to the rule (→′), both translations < and > are

compatible with call-by-value discipline. It happens that <

provides us with a right-to-left call-by-value discipline while
> yields a left-to-right call-by-value discipline (whence the
notations for these translations). The translation > relates
call-by-value λµ-calculus (see e.g. Ong-Stewart [17]) and
λµµ̃-calculus in call-by-value discipline, if both considered
at an extended equational level. With rule (→) instead,
only translation < remains correct w.r.t. call-by-value (con-
sider µβ.[β]((λx.z)(µα.[β]y)) which should reduce to µβ.[β]y
under call-by-value).

On the other hand, both translations collapse under the
call-by-name discipline (see rephrasing of proposition 2.3 in
section 3). Actually rule (→′) presents some redundancy
with the translation <. The previous rule (→) works as well
as the new one as far as call-by-name is concerned.

Besides forcing a right-to-left evaluation, the translation <

has another property: only variables (therefore values) occur
in position of argument. Then its image (unlike that of >)
lies in the intersection of two natural subsystems of λµµ̃-
calculus for which (→) is valid in any reduction discipline.
This is the purpose of the next section.

Remark 4.1. We give some hints on a possible way to
relate LKµµ̃ and LK. Consider the version of implicational
LK with weakening moved in axiom rules and contraction
associated to introduction rules and give a name to all for-
mulas. Then proofs of LK map to the following subset of
λµµ̃-calculus

c ::= 〈x|α〉 || 〈y|µα.c · µ̃x.c〉 || 〈λx.µα.c|β〉 || 〈µα.c|µ̃x.c〉

(the constructions respectively correspond to axiom, left in-
troduction, right introduction and cut) which can be seen as
λµµ̃-calculus normalized (in all configurations but 〈x|E〉 and
〈V |α〉) w.r.t. the (non logical) rules

E → µ̃x.〈x|E〉 x fresh
V → µα.〈V |α〉 α fresh

which echo to the last rule discussed in appendix A for λµ-
calculus (see also remarks 6.2 and 6.3).

5. TWO WELL-BEHAVED SUBSYNTAXES

In this section, we define subcalculi of λµµ̃-calculus that
we call λµµ̃T -calculus and λµµ̃Q-calculus because their sys-
tems of simple types correspond to the systems LKt and
LKq, where LKt (rest LKq) is LKtq from Danos et al [5,
6] where all formulas are colored t (resp q).

Their definition is guided by the requirement of stabil-
ity under call-by-name and call-by-value evaluation, respec-
tively (propositions 5.1 and 5.3).

Syntax of λµµ̃T Judgements of LKTµµ̃

c ::= 〈v|e〉
v ::= x || µβ.c || λx.v
E ::= α || v · E
e ::= µ̃x.c || E

c : (Γ ` ∆)
Γ ` v : A |∆
Γ ; E : A ` ∆
Γ | e : A ` ∆

The contexts E are called applicative contexts. The typing
rules are the same as those of LKµµ̃ for 〈v|e〉, µβ.c, µ̃x.c, x,
and λx.v. The other rules are as follows:

Γ ; α : A ` α : A,∆

Γ ` v : A |∆ Γ ; E : B ` ∆

Γ ; (v · E) : A→ B ` ∆

Γ ; E : A ` ∆

Γ |E : A ` ∆

In the judgement Γ ; E : A ` ∆, the sign “;” not only de-
lineates a distinguished hypothesis, but also puts linearity
constraints on this hypothesis: it is a stoup, in the termi-
nology of Girard [10]. Notice that implicit contractions are
present in the left implication rule. On the other hand, the
µ̃ mechanism is the only way to switch from a distinguished
hypothesis to another hypothesis. The syntactic restrictions
on LKTµµ̃ say that this can be done only at the price of
turning the “;” into a “|”. Putting these observations to-
gether, we see that the rules of LKTµµ̃ guarantee that a
formula in the stoup is never subject to a contraction rule.
For the same reasons, it cannot be subject to a weakening
rule (weakening outside the stoup is implicit in the typing
rule for α).

Proposition 5.1. For any λµ-term M , M< and any of
its CBN reducts in λµµ̃-calculus lies in λµµ̃T -calculus.

Remark 5.2. The typing system considered in section 2
lives within LKTµµ̃. Therefore, we shall call it LKTµ. In
retrospect, in that section, we should have written Γ ; E :
A ` ∆ as judgement instead of Γ |E : A ` ∆. Notice also
that with > or N instead of <, one has a sharpening: the
reducts of the translation lie all in the λµ-calculus, in either
case.

We now turn to the call-by-value restriction.



Syntax of λµµ̃Q Judgements of LKQµµ̃

c ::= 〈v|e〉
V ::= x || λx.v
v ::= µβ.c || V
e ::= α || µ̃x.c || V · e

c : (Γ ` ∆)
Γ ` V : A ; ∆
Γ ` v : A |∆
Γ | e : A ` ∆

The terms V are called values. The typing rules are the
same as in LKµµ̃ for 〈v|e〉, µβ.c, µ̃x.c, α, and λx.v. The
other rules are as follows:

Γ, x : A ` x : A ; ∆

Γ ` V : A ; ∆ Γ | e : B ` ∆

Γ | (V · e) : A→ B ` ∆

Γ, x : A ` v : B |∆

Γ ` λx.v : A → B ; ∆

Γ ` V : A ; ∆

Γ ` V : A |∆

Proposition 5.3. For any λµ-term M , M< and any of
its CBV reducts in λµµ̃-calculus lies in λµµ̃Q-calculus.

Hence, for any λµ-term M , M< stands in the intersection
of λµµ̃T -calculus and λµµ̃Q-calculus (it uses only V ’s and
E’s, in our notation), and its reducts stay in the relevant
subsyntax once an evaluation discipline has been fixed.

The systems λµµ̃T -calculus and λµµ̃Q-calculus are also
well-behaved without reference to the λµ-calculus. It is easy
to check that λµµ̃T -calculus (λµµ̃Q-calculus) is stable under
CBN (CBV) reduction and that normal commands lies in
λµ-calculus (λµ̃-calculus, defined in next section).

6. WHAT IS CBV λ-CALCULUS?
In section 2, we arrived at a perfect correspondence be-

tween call-by-name λµ-normal forms and (call-by-name) λµ-
normal forms. We wish to reach the same goal for call-by-
value normal forms. Moreover, for the purposes of duality,
we wish to eliminate the need of the µ-operation to encode
call-by-value computation, since we did not need the µ̃ oper-
ator to encode call-by-name computation. Recall Plotkin’s
definition of call-by-value reduction:

(βV ) (λx.M)V → M [x← V ]
(V variable or abstraction) .

A typical (βV ) normal form is thus (λx.M)(yN), whose
translation

µα.〈µβ.〈N<|µ̃z.〈y|z · β〉〉|µ̃t.〈λx.M<|t · α〉〉

contains a (→) redex. A simple way out is to extend the
syntax of the λ-calculus with a let construct:

M ::= x || λx.M ||MN || let x = N in M

and to replace (βV ) by the following reduction rules:

(let) (λx.M)N → (let x = N in M)
(letβ) (let x = V in M) → M [x← V ]

(V variable or abstraction)

Then we extend the translation in the following way:

(let x = N in M)< = µα.〈N<|µ̃x.〈M<|α〉〉 .

But consider now a term of the form (λxx′.M)(yN)V , which
is normal for βV , and whose (let) + (letβ) normal form is
(let x = yN in λx′.M)V . We have:

((let x = yN in λx′.M)V )<

=
µα.〈V <|µ̃z.〈µα′.〈(yN)<|µ̃x.〈λx′.M<|α′〉〉|z · α〉〉

↓(µ̃)

µα.〈µα′.〈(yN)<|µ̃x.〈λx′.M<|α′〉〉|V < · α〉
↓(µ)

µα.〈(yN)<|µ̃x.〈λx′.M<|V < · α〉〉
↓(→)

µα.〈(yN)<|µ̃x.〈M<[x′ ← V <]|α〉〉
=

(let x = yN in M [x′ ← V ])<

Hence the translation is able to reduce the “hidden” redex
(λx′.M)V . To avoid this mismatch, we introduce a further
rule in the source language:

(letapp) (let x = a in M)N → (let x = a in (MN))
(x not free in N) .

This rule allows us to reduce (λxx′.M)(yN)V as follows:

(λxx′.M)(yN)V → (let x = yN in λx′.M)V
→ let x = yN in (λx′.M)V
→ let x = yN in M [x′ ← V ] .

Consider now a term of the form (λx.M)((λy.V )(zN)) (y
not free in M), which is normal for βV , and whose (let) +
(letβ) normal form is let x = (let y = zN in V ) in M . We
have:

(let x = (let y = zN in V ) in M)<

=
µα.〈µα′.〈(zN)<|µ̃y.〈V <|α′〉〉|µ̃x.〈M<|α〉〉

↓(µ)

µα.〈(zN)<|µ̃y.〈V <|µ̃x.〈M<|α〉〉〉
↓(µ̃)

µα.〈(zN)<|µ̃y.〈M<[x← V <]|α〉〉
=

(let y = zN in M [x← V ])<

Here again the translation manages to reduce the “hidden”
redex (let x = V in M). This leads us to introduce another
rule:

(let let) let x = (let y = N in M) in P
→ let y = N in (let x = M in P )

(y not free in P )

It is easily checked that the (let) + (letβ) + (letapp) + (let let)
normal forms are as follows:

M ::= x ||λx.M || let x = xMM1 . . .Mn in M ||xMM1 . . .Mn

It is possible at this stage to write a translation V from this
set of normal forms to λµµ̃-terms in call-by-value normal
form. But we would have to use µ in the translation, typi-
cally in a term like x(yM), for which one has to write

(x(yM))Vα = 〈x|µβ.〈y|MV · β〉 · α〉 .



In order to avoid placing applicative subterms in the con-
texts, and hence in order to achieve our second goal of “get-
ting rid of µ”, we introduce a last rule:

(letexp) Ma→ (let x = a in Mx)
(a application or let expression)

The (let)+(letβ)+(letapp)+(let let)+(letexp) normal forms
are as follows:

V ::= x || λx.M
M ::= V || let x = yV V1 . . . Vn in M || xV V1 . . . Vn

We are now ready for our call-by-value normal form to nor-
mal form translation, which is defined below. Notice the use
of the double abstraction (cf. remark 2.4 – the point is that
we need µ only under a λ):

xV = x
(λx.M)V = λ(x, α).MVα for α fresh

V Vα = 〈V V |α〉
(xV V1 . . . Vn)Vα = 〈x|V V · V V1 · . . . · V Vn · α〉
(let x = yV V1 . . . Vn in M)Vα

= 〈y|V V · V V1 · . . . · V Vn · µ̃x.MVα 〉

In this translation, there is no µ. This suggests to consider
a calculus symmetric to the λµ-calculus of section 2, which
we therefore call the λµ̃-calculus. At the typing level, we
call the system LKQµ̃, to stress that it is a subsystem of
LKQµµ̃ (just as LKTµ is a subsystem of LKTµµ̃, cf. remark
5.2).

Syntax of λµ (LKTµ) Syntax of λµ̃ (LKQµ̃)

c ::= 〈v|E〉
v ::= x || λ(x, α).c || µβ.c
E ::= α || v · E

c ::= 〈V |e〉
V ::= x || λ(x, α).c
e ::= α || µ̃x.c || V · e

The rewrite rules for LKQµ̃ are (µ̃) and the following new
incarnation of the rule (→):

〈λ(x, α).c|V · e〉 → c[x← V, α← e]

Reading this back in λ-calculus style, we arrive at the fol-
lowing syntax, which we call λµ̃-calculus:

c ::= [α](V V1 . . . Vn) || let x = V V1 . . . Vn in c
V ::= x || λ(x, α).c

where usual λx.V can be seen as a shortcut for λ(x, α).[α]V
(α not free in V ). We endow the λµ̃-calculus with the fol-
lowing reduction rules:

(β1
V ) let y = (λ(x, α).c1)V V1 . . . Vn in c2

→ c1[x← V ][ [α]a← let y = aV1 . . . Vn in c2]
(β2
V ) [β]((λ(x, α).c)V V1 . . . Vn)

→ c[x← V ][ [α]a← [β](aV1 . . . Vn)]
(letβ) let x = V in c → c[x← V ]

where c1[ [α]a ← c2] is the term obtained by replacing ev-
ery occurrence of [α](V V1 . . . Vn) in c1 by c2 where a is re-
placed by (V V1 . . . Vn). Remark that (βV ) derives directly
from (β2

V )(seeing λx.V as a shortcut for λ(x, α).[α]V ). The
translation V is straightforwardly adapted to λµ̃-terms, and

defines in fact a bijection between the two syntaxes:

xV = x
(λ(x, α).c)V = λ(x, α).cV

([α](V V1 . . . Vn))V = 〈V V |V V1 · . . . · V Vn · α〉
(let x = V V1 . . . Vn in c)V = 〈V V |V V1 · . . . · V Vn · µ̃x.cV〉

We can now state the CBV counterpart of proposition 2.2.

Proposition 6.1. The translation V is an isomorphism
from λµ̃-terms to λµ̃-terms.

Remark 6.2. In [21], Sabry and Felleisen characterized
the theory induced on λ-calculus by the call-by-value CPS
translation as the theory induced by the following two equa-
tions in addition to (βV ):

(βlift) E[(λx.M)Q] = (λx.E[M ])Q
(E ::= [ ] || EN || (λx.P )E)

(βflat) xV1V2 = (let y = xV1 in yV2)

Our rules (letapp) and (let let) correspond exactly to (βlift)
(cases EN and (λx.P )E, respectively). Notice that the other
(let) rules are transparent from the point of view of the λ-
calculus (without let). The rule (βflat), interpreted from right
to left, corresponds to the following η-like equation2:

µ̃x.〈x|E〉 = E (x not free in E)

Hence Sabry and Felleisen’s analysis of call-by-value λ-calcu-
lus agrees with ours.

Remark 6.3. If we restrict to “η-long” λµ̃-terms (ob-
tained by repeatedly applying expansions E → µ̃x.〈x|E〉),
then we arrive at a syntax isomorphic to (a classical exten-
sion of) one of the calculi (based on Moggi’s computational
λ-calculus) considered by Sabry and Wadler in [22], called
λc??:

c ::= [α]V || [α](V V1) || let x = V in c || let x = V V1 in c
V ::= x || λ(x, α).c

(See also [14].) Notice that in the restricted syntax, there
are no nested applications, or, equivalently, no expressions
of the form V1 · (V2 · (· · · (Vn · E) · · · )) with n ≥ 2. For
example, V1 · (V2 · E) expands to V1 · µ̃x.〈x|V2 · E〉.

7. COMPLETION OF THE DUALITY
In order to dualize terms and contexts, we introduce a

connective dual to implication: the difference connective,
denoted “-”. The syntax of λµµ̃-calculus is extended as
follows (we still call the extension λµµ̃-calculus):

c ::= 〈v|e〉
v ::= x || µβ.c || λx.v || e · v
e ::= α || µ̃x.c || v · e || βλ.e

We add the following computation rule:

(−′) 〈(e2 · v)|βλ.e1〉 → 〈µβ.〈v|e1〉|e2〉

and the following typing rules to LKµµ̃:

Γ | e : B ` β : A,∆

Γ |βλ.e : B −A ` ∆
2This equation is dual to the equation µα.[α]M = M (α not
free in M) in λµ-calculus (cf. appendix A).



Γ | e : A ` ∆ Γ ` v : B |∆

Γ ` (e · v) : B −A |∆
We define a duality of λµµ̃-calculus into itself which works
as follows at the type level:

X◦ = X
(A→ B)◦ = B◦ −A◦
(B −A)◦ = A◦ → B◦

The translations c◦, v◦, and e◦ of commands, terms, and
contexts are defined by recursively applying the following
table of duality:

x α µβ µ̃x 〈v|e〉 e · v v · e λx βλ
α x µ̃x µβ 〈e|v〉 v · e e · v βλ λx

Proposition 7.1. In LKµµ̃, we have:

c : (Γ ` ∆)
Γ ` v : A |∆
Γ | e : A ` ∆

⇔
 c◦ : (∆◦ ` Γ◦)

∆◦ | v◦ : A◦ ` Γ◦

∆◦ ` e◦ : A◦ |Γ◦

One can extend the definition of λµµ̃T -calculus and λµµ̃Q-
calculus in such a way that the above proposition restricts
and refines to a duality between these calculi. We just give
the extended syntax of λµµ̃T -calculus and λµµ̃Q-calculus
and leave the rest to the reader:

λµµ̃T -calculus λµµ̃Q-calculus

c ::= 〈v|e〉
v ::= x || µβ.c || λx.v || E · v
E ::= α || v · E || βλ.e
e ::= µ̃x.c || E

c ::= 〈v|e〉
V ::= x || λx.c || e · V
v ::= µβ.c || V
e ::= α || µ̃x.c || V · e || βλ.e

8. CPS TRANSLATIONS
In this section, R stands for a fixed (arbitrary) type con-

stant. We define a translation of LKµµ̃ types into intuition-
istic types (i.e., the types of the simply-typed λ-calculus,
written using the mathematical notation where BA means
the space of functions from A to B) as follows:

X/ = X

(A→ B)/ = RA
/×RB

/

= R(A−B)/

(B −A)/ = B/ ×RA
/

Notice that if we read R as “false”, then the image of the
translation of A → B (resp. B − A) reads as classically
equivalent to A → B (resp. B − A). We next define a
translation of λµµ̃-terms to λ-terms as follows:

〈v|e〉/ = v/e/

α/ = α
x/ = λk.kx
(µβ.c)/ = λβ.c/

(µ̃x.c)/ = λx.c/

(λx.v)/ = λk.k(λ(x, β).v/β)
(v · e)/ = λk.v/(λx.k(x, e/))
(βλ.e)/ = λ(y, β).e/y
(e · v)/ = λk.v/(λy.k(y, e/))

Proposition 8.1.

c : (Γ
LKµµ̃

` ∆)

Γ
LKµµ̃

` v : A |∆

Γ | e : A
LKµµ̃

` ∆

 =⇒


Γ/, R∆/

λ

` c/ : R

Γ/, R∆/
λ

` v/ : RR
A/

Γ/, R∆/
λ

` e/ : RA
/

Moreover, the translation validates the CBV discipline.

Remark 8.2. When restricted to LKQµµ̃, proposition 8.1
can be sharpened in such a way that the following additional
implication holds:

Γ ` V : A ; ∆ =⇒ Γ/, R∆/
λ

` V / : A/

provided one translates x as x, λx.V as λ(x, β).V /β and V
as λk.kV / when considered as a v.

Notice that the disymmetry of the λ-calculus forces the call-
by-value orientation of the (µ)− (µ̃) critical pair:

〈µβ.c1|µ̃x.c2〉/ = (λβ.c/1)(λx.c/2)
→ c/1[β ← λx.c/2] .

But the translation also takes care of the call-by-name dis-
cipline, via duality. We set . = / ◦ ◦. Then we have:

X. = X

(A→ B). = B. ×RA
.

(B −A). = R(B→A). = RA
.×RB

.

Notice that this time A. reads as classically equivalent to
¬A[X ← ¬X]. Notice also that . can alternatively be taken
as primitive and / defined as / = . ◦ ◦.

Proposition 8.3.

c : (Γ
LKµµ̃

` ∆)

Γ
LKµµ̃

` v : A |∆

Γ | e : A
LKµµ̃

` ∆

 =⇒


RΓ. ,∆.

λ

` c. : R

RΓ. ,∆.
λ

` v. : RA
.

RΓ. ,∆.
λ

` e. : RR
A.

Moreover, the translation validates the CBN discipline.

Combining . and / with the translation > from λµ-terms,
we obtain two CPS-translations to λ-terms:

(CBN) Γ
λµ

` M : A |∆ ⇒ ∆., RΓ.
λ

`M> . : RA
.

(CBV) Γ
λµ

` M : A |∆ ⇒ Γ/, R∆/
λ

`M> / : RR
A/

The two translations are known in the literature: > . is the
(call-by-name) Lafont-Hofmann-Streicher translation [15] ,
and > / is (the extension to call-by-value λµ-calculus of)
Plotkin’s call-by-value translation [20]. The following dic-
tionary is useful to recognize this:

CBN CBV

KA = A◦/

CA = RKA

VA = A/

KA = RVA

CA = RKA

CΓ,K∆

λ

`M>. : CA VΓ,K∆

λ

`M>/ : CA

KA→B
= (B◦ −A◦)/
= KB × CA

VA→B

= RVA×R
VB

∼= VA → CB

Here, the letters V , K, and C stand for values, continu-
ations, and computations, respectively. Lafont-Hofmann-
Streicher semantics maps computations to computations and
interprets a continuation of type A→ B as a pair of a com-
putation of type A and a continuation of type B (think of



the stack N · S of section 1). Plotkin’s call-by-value seman-
tics maps values to computations, and interprets a value of
type A→ B as a function from values to computations.

Remark 8.4. If we combine . and / with the transla-
tion < rather than with the translation >, the picture is as
follows: in CBN, M<. reduces to M>., while, in CBV, M</

provides a right-to-left variant of Plotkin’s translation. For
M = M1M2, we get respectively:

λk.M>/
1 (λm1.M

>/
2 (λm2.m1(m2, k)))

λk.M</
2 (λm2.M

</
1 (λm1.m1(m2, k))) .

9. HEAD REDUCTION IN AN ABSTRACT
MACHINE

In this section, we specify two kinds of (weak) head re-
duction machine.

The first machine is quite standard and based on environ-
ments. Instead of commands 〈v|e〉, we manipulate expres-
sions having the form 〈v{ρ1}|e{ρ2}〉, where ρ1 and ρ2 are
(explicit) environments, i.e., lists of bindings of the form
(x = v{ρ}) or (α = e{ρ}). Given ρ1 and x, we write
ρ1(x) = v{ρ2} if (x = v{ρ2}) is the first binding of x ap-
pearing in ρ1. The notation 〈v|e〉{ρ} is a shorthand for
〈v{ρ}|e{ρ}〉. To evaluate a command c, we start the ma-
chine with c{}.

〈(λx.v1){ρ1}|(v2 · e){ρ2}〉
→ 〈v1{(x = v2{ρ2}) · ρ1}|e{ρ2}〉

〈(µβ.c){ρ1}|e{ρ2}〉
→ c{(β = e{ρ2}) · ρ1}

〈v{ρ1}|(µ̃x.c){ρ2}〉
→ c{(x = v{ρ1}) · ρ2}

〈x{ρ1}|e{ρ2}〉
→ 〈ρ1(x)|e{ρ2}〉 (ρ1(x) is defined)

〈v{ρ1}|α{ρ2}〉
→ 〈v{ρ1}|ρ2(α)〉 (ρ2(α) is defined)

Remark that bindings of terms (contexts) have the re-
stricted form (x = V {ρ}) ((α = E{ρ})) when reducing CBV
(CBN).

The second machine exploits the idea of encoding envi-
ronments by means of indexes in a stack as in the Pointer
Abstract Machine from Danos-Regnier [7] (a restriction of
it was studied in a previous work of the authors [3]).

The stack is a sequence of bindings that bind either a term
or a context. The concrete syntax for bindings is:

(x
n
= v{p}) or (α

n
= e{p}) (n, p natural numbers) .

The expression v{p} is a closure: p is a pointer in the
stack to where the environment of v starts. Similarly for
e{p}. Any pointer to the stack defines an environment by
chaining the bindings with the pointer n.

A state of the machine is 〈v{p}|e{q}〉s. If s is a stack, we
denote its length by ‖ s ‖, and s|n is the stack restricted to
its n first elements (thus, ‖ s|n ‖= n). Pointers are relative
not to the top but from the bottom of the stack. To evaluate
〈v|e〉, we start from 〈v{0}|e{0}〉 (with 0 denoting the empty

environment). The rules of the machine are as follows:

〈(λx.v1){p}|(v2 · e){q}〉{s}
→ 〈v1{‖s‖}|e{q}〉{(x

p
= v2{q}) · s}

〈(µβ.〈v|e′〉){p}|e{q}〉{s}
→ 〈v{‖s‖}|e′{‖s‖}〉{(β p

= e{q}) · s}

〈v{p}|(µ̃x.〈v′|e〉){q}〉{s}
→ 〈v′{‖s‖}|e{‖s‖}〉{(x q

= v{p}) · s}

〈x{p}|e{q}〉{s}
→ 〈s|p(x)|e{q}〉 (s|p(x) is defined)

〈v{p}|α{q}〉{s}
→ 〈v{p}|s|q(α)〉 (s|q(α) is defined)

〈v{p}|e{q}〉{s}
→ 〈v{p}|e{q}〉{s|max(p,q)}

where

((x
n
= v{p}) · s)(x) = v{p}

((y
n
= v{p}) · s)(x) = s|n(x) x 6= y

((α
n
= e{q}) · s)(x) = s|n(x)

and similarly for s(α).

Remark 9.1. The last rule acts as a garbage collecting
rule: it removes the part of the stack which is used neither
by the term (the code) nor by its context. For instance, in
a functional language with flat atomic types (even with fix-
points, e.g. PCF), the application of the last rule guarantees
that a program of atomic type ends with an empty stack.

10. RELATED AND FUTURE WORKS

We end by miscellaneous remarks organized along hope-
fully helpful keywords.

• Symmetry. Altogether, we have defined six calculi:
the full λµµ̃ syntax in CBN and CBV discipline (section 4),
the subsyntaxes λµµ̃T -calculus / LKTµµ̃ and λµµ̃Q-calculus
/ LKQµµ̃ (section 5), and as further restrictions the λµ-
calculus (section 2) and the λµ̃-calculus (section 6). At all
these levels, the duality of call-by-name and call-by-value is
governed by the symmetry of the µ-terms and the µ̃-terms.
The situation is summarized in the following table. In the
table, ←↩ shows a source-to-target direction (cf. proposition
5.3), while↔ indicates stronger one-to-one correspondences
(cf. proposition 2.2 and 6.1). It would be interesting to com-
plete this picture by adding more strong correspondences
↔. One could in particular show that CBV λµ-calculus (for
which let arrives naturally) relates to CBV λµµ̃-calculus.
One could also consider call-by-name λ-calculus plus let,
which has CBN λµµ̃-calculus as a target. In such a calculus,
one could delay some substitutions, as in let x = yM1 in M2

(or µα.〈y|v1 · µ̃x.〈v2|α〉〉), i.e. we could force some sharing



of subcomputations.

Logic Syntax Evaluation Language

LKµµ̃ λµµ̃

 ND
CBN
CBV

LKTµµ̃ λµµ̃T CBN

LKQµµ̃ λµµ̃Q CBV ←↩ CBV λµ

LKTµ λµ CBN ↔ CBN λµ

LKQµ̃ λµ̃ CBV ↔ λµ̃

• Non-determinism. In [1] and [24], the non-determinism
of classical logic is encapsulated in critical pairs similar to
the (µ)− (µ̃) pair. But no explicit connection with call-by-
name / call-by-value appears in those works.

• Semantics. It is fairly clear that our syntax LKµµ̃ with
the CBN (CBV) machine can be interpreted in Selinger’s
control (co-control) categories: the categorical construction
interpreting → (−) is an exponent (a co-exponent), and −
(→) is a weak co-exponent (a weak exponent). It should be
interesting and useful to work out the details of this inter-
pretation.

• Dynamics. Laurent has investigated (CBN) proof-nets
for an extended polarized linear logic that closely corre-
sponds to λµ-calculus [16]. These proof-nets enjoy a simple
correctness criterion. This suggests that a proof-net repre-
sentation of LKµµ̃ is possible.

• Games. We intend to develop a game interpretation of
our calculi. A game-theoretic analysis of call-by-value has
been given by Honda and Yoshida [14]. One could hope to
sharpen the analysis so as to obtain a game-theoretic reading
of the duality of computation.

• Expressivity. We have used the difference connective
in a purely formal way. It would be interesting to study
this connective for its own sake and to get insights into its
computational meaning. Crolard has initiated this kind of
investigation [2]. One way of seeing the difference connective
is that it allows us to view contexts as values: v · e is both a
context whose hole has a function type A→ B (as explained
in the introduction) and a pair of values of type B − A
(viewed as a product type). Under the latter interpretation,
a cut of the form 〈λ(x, α).c|e〉 appears as a destructive let:
“evaluate e to a pair, and bind the two components of the
pair to x and α, respectively”.
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APPENDIX

A. THE λµ-CALCULUS
The λµ-calculus [19] is an extension of the λ-calculus that

deals with multiple conclusions and therefore allows us to
account for classical reasoning. Under the Curry-Howard
isomorphism, it can be seen as a λ-calculus with control
operators, and is indeed equivalent to, say, Felleisen’s λC-
calculus [11]. For the sake of consistency with our frame-
work, we consider two syntactic categories: the terms and
the commands, and, accordingly, two kinds of typing judge-
ments:
Syntax:

M ::= x ||MN || λx.M || µβ.c
c ::= [α]M

Typing judgements:

Γ `M : A |∆ c : (Γ ` ∆)

Typing rules:

Γ, x : A ` x : A |∆

Γ `M : A→ B |∆ Γ ` N : A |∆

Γ `MN : B |∆

Γ, x : A `M : B |∆

Γ ` λx.M : A→ B |∆

c : (Γ ` β : B,∆)

Γ ` µβ.c : B |∆

Γ `M : A |α : A,∆

[α]M : (Γ ` α : A,∆)

Reduction rules (in call-by-name):

(λx.M)N → M [x← N ]
(µβ.c)N → µα.c[β ← (α,N)]
[α](µβ.c) → c[β ← α]

where substitution is the usual (capture-avoiding) substitu-
tion in the first rule and the third rule, while in the second
rule one replaces every subterm of c of the form [β]M by
[α](MN). There is an additional rule, similar in some sense
to the η-reduction, which we do not include as a reduction
rule (rather, we treat it implicitly as an expansion rule):

µα.[α]M = M (α not free in M)

B. LINEAR DECORATION OF LKTµµ̃ AND
LKQµµ̃

In this section, we complete the work of section 5 by pro-
viding translations of LKTµµ̃ and LKQµµ̃ into linear logic.
Arrow types are translated as in [5].

The translation of LKTµµ̃ into linear logic is defined as
follows on formulas:

XT = X (A→ B)T = !?AT (?BT .

Such a translation which consists only in inserting modalities
at some places without any other modification is called a
linear decoration.

Proposition B.1.

Γ
LKTµµ̃

` ∆

Γ
LKTµµ̃

` A |∆

Γ ; A
LKTµµ̃

` ∆

Γ |A
LKTµµ̃

` ∆


=⇒



!?ΓT
LL

` ?∆T

!?ΓT
LL

` ?AT , ?∆T

!?ΓT , AT
LL

` ?∆T

!?ΓT , !?AT
LL

` ?∆T

The linear decoration for LKQµµ̃ is defined as follows:

XQ = X (A→ B)Q = !AQ (?!BQ .

Proposition B.2.

Γ
LKQµµ̃

` ∆

Γ
LKQµµ̃

` A ; ∆

Γ
LKQµµ̃

` A |∆

Γ |A
LKQµµ̃

` ∆


=⇒



!ΓQ
LL

` ?!∆Q

!ΓQ
LL

` AQ, ?!∆Q

!ΓQ
LL

` ?!AQ, ?!∆Q

!ΓQ, !AQ
LL

` ?!∆Q


