Series Title: Proofs as Processes

Robert L. Constable

Cornell University
Department of Computer
Science

What is this lecture series about?

1. Present two new results:
-- a bit of new theory: completeness of iFOL,

-- a bit of new theory and practice: synthesized
protocols, e.g. “proofs as processes” and the logic of
events.

2. Look toward what might come next in type theory.

Reflecting a bit on History

We will briefly note some related history as befits
the international Turing celebrations.

For example, I'll mention the role of Turing and
Church in type theory. For the constructive aspects,
we need to mention Brouwer’s work.

Here we see three major figures, one from computer
science, one from logic, and one from mathematics
creating the genome of constructive type theory.

Amazing Times

Consider the broad international uptake of Coq!

Four Color Theorem of Gonthier

MSR investing in Gonthier’s unit proving Feit-Thompson
Fundamental Theorem of Algebra

The CompCert CLight compiler of Leroy

Fields medalist Voevodsky’s Homotopy Theory
Software Foundations textbook by Pierce et al

DARPA heavily using proof assistants, mainly Coq
Several key industrial applications (Java card, Air Bus,...)
Many thousands of Coq users — over 10K used it?

And more ...

Imagine what Coqg programmers know

Expert programmers dig deeply into their languages.
Imagine what expert Coq programmers learn, the kind of
logic and mathematics that is part of what they routinely

use.

mathematical types, including inductive types
formal logic with higher-order quantifiers
proof rules and their realizers (extracts)
formal semantics

classical versus constructive logic

all in a unified theory

Imagine what programmers learn

In the United States, the Common Core Mathematics
curriculum teaches algorithms, before middle school.

School students now learn sets in mathematics and
types and computable functions in programming.

What will happen when they learn Cog-like
programming in school as well, as they might?

Unified Theory Idea is Plausible

Coq, Nuprl, and MetaPRL are closely related siblings,
they share the theory of inductive types based on

Nax Mendler’s LICS papers, also for co-inductive
types.

They share the ITT predicative universe hierarchy
and realizability semantics.
They share the LCF tactic mechanism from 1979.

They even share code written by Chetan Murthy.

Unified Computing Theory Idea

The constructive type theories of Coq and Nuprl
taken together span a large part of computing theory
with Coq especially strong in programming languages
(PL) and advanced mathematics and Nuprl strong in
distributed protocols and constructive domain
theory (partial types).

We'll see some of the protocol work in the “third half
of the lecture series” as they say on Car Talk here in
America, and I'll do one example on partial types.

What Turing foresaw

In the April issue of Science, Andrew Hodges said this
about Turing:

His universal machine would compute with formulas
as well as numbers.

Hodges says: "It (the universal machine) put logic,
not arithmetic, in the driving seat."

What else Turing foresaw

Turing and his PhD student Robin Gandy worked on
type theory, and Turing wrote

Practical Forms of Type Theory, JSL, 1948.

His idea was that type theory was the natural
language for “working mathematics” and that
Church’s simple type theory was a good model — HOL
users agree.

What OPLSS contributes

Constructive type theories and their proof assistants are
the joint creation of computer science (informatics),
logic, and mathematics — ITT, CTT, CIC are examples.

OPLSS is one of the schools that brings the players from
these disciplines together, nurtures work in type theory —
its basic concepts and important applications.

| believe that the PL community will continue to play a
nurturing role and understands that the subject is far
from finished and that it plays a unifying role in
computing theory as well as in programming languages.

What Remains to be Done?

Consider one of the most basic concepts in
constructive type theory -- realizability semantics for
logic -- under a variety of different names:

propositions as types, proofs as terms (PAT)
proofs-as-programs (programs-from-proofs)
evidence semantics

Curry-Howard isomorphism
Brouwer/Heyting/Kolmogorov (BHK) semantics

A Poll

Id like to think that propositions-as-types
realizability is one of those ideas familiar to many
OPLSS participants and that it will eventually be
known by all computer scientists — the way sets,
open sets, continuous functions, vector spaces,
etc. are known to all mathematicians.

How many people here could teach this idea to a
computer science 2"9 year student?

Brief Review: Propositional Evidence

Suppose that we have evidence types for the atomic
propositions, A,B,C, Here is how evidence is
defined for compound propositions.

A & B] ==[A] x [B] Cartesian product

Av B] ==[A] + [B] disjoint union

A =>B]==[A] 2 [B] function space

-A] == [A] = void functions to empty type

Brief Review: Propositional Evidence

Suppose that we have evidence types for the atomic
propositions A,B,C,... Here is how to define evidence for
compound formulas using types (or sets).

[A&B[==[A]x[B]
|AvB[==[A]®[B
[A= B]

[-A]

Evidence for Quantified Formulas

[Ex.B(x)] == x:D x [B(x)] dependent product
[Allx.B(x)] == x:D =2 [B(x)] dependent functions

The existential quantifier is also regarded as a >
type, a disjoint sum of a family of evidence types.

Evidence for Quantified Statements

[3x: AB, |=x:[A]x| B,

[vx:AB,]|=x:[A]—[B,]

The existential quantifier is also regarded as a >
type, a disjoint sum of a family of evidence types.

Simple Example

Consider the meaning of this proposition in the
realizability semantics:

(A&B =>C) => (A => (B => (C))

Its realizer in CTT is this untyped applied A-term
Af.AXAy. f(<x,y>) or

A f.x,y. f(<x,y>)

Simple Example

Consider the meaning of this proposition in the
realizability semantics:

(A&B =>C) => (A => (B => (C))
Here is the typing judgment a la CTT
f: (A&B) =>C, x:A, y:B |- f(<x,y>) € C

This is the specification for the Currying task.

Un-Currying Task

(A =>(B=>C))=>(A&B => ()
the untyped realizer is

AL Ap. f(p.,)(p.,)
p., and p., project from the pair,
e.g.p.,€A andp., €B

the typing judgment is
f: (A => (B =>C)), p: A&B |- f(p.,)(p.,) €C

Here is a challenge

Our colleagues finally understand that constructive
logic is natural and easy to understand, directly tied
to specifying programming problems and all that.

They learn some logic, get excited and want to know
the consistency and completeness theorems for this

idea in pure first-order logic — FOL.
We give them proof rules and consistency, then ...

We give them back Kripke semantics -- and possibly
a classical completeness proof as well!! And then we
give them excuses.

Lecture Plan

1. Look at a constructive completeness proof for
intuitionistic first-order logic (iFOL) with respect to
its intended realizability semantics.

2. Inject discussion of type theory design issues and
possible future directions, and follow up in
subsequent lectures as appropriate and suited your
Interests.

Narrative about Completeness

First-Order Logic (FOL) is a central notion in logic
(math, philosophy, computer science, linguistics). It’s
taught in basically all logic books.

Gddel’s completeness theorem ties together proof
and validity -- central to classical FOL study liking
proof theory and model theory.

There was no constructive theorem of this kind for
intuitionistic first-order logic (iFOL) using the
intended realizability semantics (BHK).
Completeness only for Beth and Kripke semantics.

Godel’s PhD Thesis was Completeness
of FOL

On July 6, 1929 Go6del’s PhD dissertation was
approved by his advisor Hans Hahn. It was titled: On
the completeness of the calculus of logic.

In 1930 it was published as: The completeness of the
axioms of the functional calculus of logic. He used
the axioms of Principia Mathematica.

Another Poll

How many of you have seen a proof of this theorem?
How many of you could teach the proof?

| think the simplest and clearest proof is from
Smullyan’s First-Order Logic, Springer 1968, Dover
1993, using tableaux, pp 57-61.

Godel’s Completeness Theorem

This theorem says that there is a set of inference
rules and axioms such that every formula of FOL
that is true in every model (valid) is provable
using these rules.

These are the complete set of rules.

This theorem sets us up for Godel’s more famous
incompleteness theorem for arithmetic.

Classical Models and Truth

There are many ways to prove this theorem, we
don’t teach Godel’s original proof since there are
now much better ones. Also we now sometimes
refer the models as Tarksi structures. These
structures have a domain of discourse D, assumed to
be non-empty, and for every relation R" of the logic,
we assign a propositional function R": D = Bool. So
we get <D,R,, R,, ..., R..>as a structure or model.

Each R, has an arity n,, R.: D" = Bool.

Classical Method of Proof

The usual classical proof assumes that a formula
G is valid (true in all structures), and then a
systematic method of searching for a proof is
devised based on the proof rules.

We then show that if the systematic procedure
fails to find a proof, it will generate a structure M
in which the formula is not true, contradicting its
validity. Running on forever creates such a
structure as well by Konig’s Lemma.

Need for a new proof method

This classical proof method for FOL fails for iFOL, and
we need to change the formulation.

First, the domain D must be a type. Second, the
relations are not maps into Bool, they must be maps
into Prop, the propositions on D. Third, the
semantics is not based on Tarski but on Brouwer, on
realizability. Fourth, we must be able to find the
proof, not show that the proof finding procedure
must fail, we must know that it will halt.

Narrative Theme continued

The intended semantics is closely tied to proofs, the
computational content of proofs provides the
realizers.

Results by Godel, Kreisel, etc. since Beth 1947
suggest that there is no constructively valid
completeness theorem with respect to BHK
semantics and intuitionistic validity. | will mention
these results next.

Narrative Theme continued

The negative results are for intuitionistic validity, say
as given in Troelstra and van Dalen (TvD88). There is
a vagueness and lack of “canonicality” there, but
some results:

Kreisel based on Godel showed that given Church’s
Thesis (CT) the valid formulas of iFOL are not r.e.
Moreover, completeness implies Markov’s Principle.

Intuitionistic Validity

The validity semantics carries over the classical
notion of a model and uses BHK semantics for the
logical operators on propositions and types for the
domain of discourse, e.g. D is a type in the first
universe, Type;.

We say that formula G is valid iff it is realizable in all
models of the domain and the atomic propositions.
So modern constructive type theories like CIC, ITT,
and CTT make this semantics precise. That is a big
step since 1988.

Narrative Theme continued

CTT implemented by Nuprl also provides a closely
related notion, uniform validity, by using intersection
types and polymorphic terms.

That concept is not in CIC nor ITT. (It could easily be
added to ITT82.)

Narrative Theme continued

The punch line is that uniform validity provides a
strong completeness result, and the right one, since
it captures precisely the observation that iFOL proofs
provide uniform realizers, also called polymorphic
realizers, as their computational content.

Here is how | plan to provide the details for this
narrative.

Proof Outline Plan

1. Mention briefly Constructive Type Theory (CTT02),
concepts since 2002 needed for the completeness
theorem.

2. Sketch a formal semantics for intuitionistic first-

order logic (iFOL) and minimal first-order logic
(mFOL).

3. State and illustrate the new completeness
theorem, proved with Mark Bickford in 2011.

Some Unifying Basic Concepts from
Type Theory

Computability, e.g. partial computable functions in
all types (Turing complete)

Polymorphism and intersection types

Uniform validity and constructive completeness

Realizers for Inference Rules

Rules for Implication
Implication Introduction (=>R)

u:H |- A=>B by A(x.slot)
O:H, X:A |- B by b(X) ~-----mm- A

The realizer or proof term is Au,x.b(x)

Sample Refinement Proof

|- A=>(B=>A) by A(x.)
X:A |- (B=>A) by Aly.) ---~A
X:A, y:B |[-Abyx ------- A (axiom)

The untyped realizeris: Ax. Ay. x. Notice that
this is polymorphic, i.e. uniform in A, B.

Grounded in computation

Constructive type theory derives its meaning
from an underlying computation system, usually
defined by reduction rules in the style of Plotkin’s
structured operational semantics.

For example, untyped lambda terms, A(x.b), are
considered irreducible values, and applications
ap(f;a) are evaluated by reducing f to a function
value, then applying the function value to the
argument a (either by “name” or “value”).

Untyped Reduction Relation

The ITT and CTT approach to computation
mediates a long standing debate in computer
science between those in the “no types camp”
who believe that computation should be
untyped, as in the untyped lambda calculus (Lisp,
Scheme), and those in the “types camp” who
believed it should be typed (Algol68, Java, F#).

In CTT and ITT the basic reduction relation
defining computability is untyped, but reasoning
is typed, this is fundamental to completeness.

Open-ended Computation System

In CTT, ITT, and CIC the computation system is left
open ended, it is not possible to prove unsolvability
by enumerating all possible computational forms. In
particular, Church’s Thesis (CT) is not postulated.

In building the Nuprl proof assistant for CTT84, we
anticipated extending the computational model to
concurrent systems and to physical devices. Thus CT
was not the appropriate notion.

A Computational Meta-theory

Edinburgh LCF showed the power of having a
computational meta-theory based on a clean
functional programming model as the basis for
automating reasoning. Agda, HOL, Coq, Nuprl, and
MetaPRL are all descendents of the LCF proof
assistant architecture.

Key to Milner’s LCF is the idea that programs are
polymorphic and the compiler attempts to infer the
type in context given some base types such as
integers and lists. The type checker was a small
proof assistant.

An Aside on Proof Structure

The structure of proofs as tactic-trees adopted in
Nuprl’s implementation of CTT arose from a
convergence of concerns:

programming by refinement (PRL)
top down problem solving (Al)
LCF tactics and tacticals

(tableaux style proofs)

€

A Picture of Proof Trees
pe

H1|—G1 H2 } G2

i/\

A

44

Proof Structure with Extracts

|—G by op(op1(It,md,rt); op2(It,rt))

H1 |—G1 by op1(It,nd,rt) Hz | G2 by op2(It,rt)

TlAl

A

45

46

Analyzing Proof Structure

key insights @

cleverstep Y%

filled in by machine
humans ignore
humans need A\

experts needed A\

routine A

learnersneed

obvious -

Trivial O

well known A

minor variant of pf

Some Unifying Basic Concepts

Polymorphism and computational semantics for
records, algebraic structures, and objects.

Uniform validity and constructive completeness.

Computability of partial functions, domains.

Influence of ML style polymorphism

The power of the ML organization of tactic-based
inference is well known.

| want to draw attention to the way in which
polymorphism also advanced propositions-as-types
as a computational semantics, illustrating the unity
and synergy among the new concepts.

Type Polymorphism

The term Ax.x is the identity function on all types,
i.e. Ax.x € A -> A for any type A.

The term Ax.Ay. pair(x;y)) denotes a pairing
function of type (A -> (B -> (A x B)) for any types
A and B. We also used Ax.Ay. <x,y> earlier.

We say that such terms are polymorphic.

Note, the functions computed by these terms are
“too big” to exist in Set Theories.

Intersection Types

The binary intersec’gion type was used as a logical
connective for propositional logic by Coppo and
Dezani in 1978.

AlB

These are the elements in both types A and B with
x=y in the intersection iff x=y in A & x=y in B.

Intersection Types over a Family

We can also intersect a family of types B_. Let

18

acA

denote the type of elements that belong to B, for
every a in Type. This intersection operator acts as a
uniform quantifier over A.

ﬂ A=>A contains exactly Ax.x.
AType

Aside on Dependent Records

In LICS 2003 A.Kopylov introduced dependent
intersection types that allowed him to define.

Dependent Records
XA XiAL(Xq); X3 AX,X,); v 53X PAL (X g, e X 1)}

functions r from Labels {x;,...,x,,} to values
where r(x,)e A, r(x,)eA,(r(x,)), etc.

This mechanism is widely used in all Nuprl
applications, and Kopylov PhD 2004 gave us a theory

of objects.

Cumulative Impact

Our work on intersection and union types revealed
the benefits of polymorphism and its explanatory
power in understanding algebraic structure, classes,
and objects. This led us to make these new type
constructors essential to CTT after 2003.

We began to systematically exploit these ideas and
apply them heavily in our practical work and in
looking at logical questions. | made an observation in
a 2010 class that fascinated me. Here it is.

Realizers from Proofs

We could see clearly from proof systems for iFOL,
that all of the realizers are uniformly valid in the
sense that they belong to the type of the axiom
regardless of the domain D and the atomic
propositions P, and relations R(xy,...,X,).

We will look at this fact for refinement style

presentation of the inference rules and explain the
realizers built from these rules.

Refinement Style Rules

Our rules resemble tableaux proofs in that they are
top down. From a proof goal, we generate subgoals.

The goals and subgoals are sequents:

ugAg, ., U A |-G

n N

more succinctly U:H |-G

Realizers for Inference Rules

Axioms
u;:A, ..., u:A |-A byu

Generally the A, are propositions, but we will also
have declarations d:D that d is in the domain of
discourse. They will justify the goal d in D.

Realizers for Inference Rules

Rules for Implication
Implication Introduction (=>R)

u:H |- A=>B by A(x.slot)
O:H, X:A |- B by b(X) - A

The realizer or proof term is Au,Ax.b(x)

Sample Refinement Proof

|- A=>(B=>A) by A(x.)
X:A |- (B=>A) by Aly.) ---~A
X:A, y:B |[-Abyx ------- A (axiom)

The realizeris: Ax. Ay. x. Notice that this is
polymorphic, i.e. uniform in A, B.

Realizers for Inference Rules

Rules for Implication
Implication Elimination(=>L)

U;: H,x: A=>B, 0,:H" |- G by ap(x; slot)
Ug:H,xxA=>B,0,;H [-Abya ------—--- A

u;: H, x: A=>B, y:B, u,:H" |- G by g(y) --—--—-- A

realizer AU,,x,0,.g(ap(x;a)/y)

Realizers for Inference Rules

Rules for &
Introduction (&R)
U:H |-- A& B by < slot-a, slot-b>
:H |- A by a(u) for slot-a --7
:H |- B by b(u) for slot-b ------- A

Cli

Cli

The realizer is Au. <a(u),b(t)> where a,b might
depend on the variables in 4, say u,,...,u,.

Realizers for Inference Rules

Rules for &
Elimination (&L)

U;: H,x: A&B, U,:H’ |- G by spread(x; u,v. slot)
0,: H, u:A, v:B,0,:H’ |- G by g(u,v) for slot ----*

realizer Aug,u,v,U,.spread(x;u,v.g(u,v))

On Notation

realizer Au,u,v,0,.spread(x;u,v.g(u,v))

The spread notation is from ITT82 and works
well as a proof term, telling us how to name
the hypotheses using labels “u” and “v”.

Given a pair p, u=p.1 and v =p.2. We can
also say “let p= u,vin g”, an ML like notation.

Realizers for Inference Rules

Rules for Existential Quantifier
Exists Intro (ExistsR)

u:H |- Ex.G(x) by <d, slot>

G(d) by g(d) -

u:H |-
u:H |- dinD

realizer AU.<d,g(d)>

Sample Proof: Currying
f: (A&B)=>C |-A=>(B=>C) by A(x.)

f: (A&B)=>C, x:A |- (B=>C) byA(y.)

f: (A&B)=>C, x:A, y:B |- C by ap(f;)

f: (A&B)=>C, x:A, y:B |- A&B by <x,y> -7

f: (A&B)=>C, x:A, y:B, v:C |- C by v = ap(f; <x,y>)

Af. Ax Ay. ap(f;<x,y>)
Af Ax,y. f(<x,y>)

Realizers for Inference Rules

Rules for Existential Quantifier
Exists Elimination (ExistsL)

U,:H, x: EX.R(x), U,:H’|- G by spread(x; u,v. slot)
U,:H, u:D, v:R(u),0,:H’ |- G by g(u,v) ------------ A

AU, u,v,U,.spread(x;u,v.g(u,v))

Realizers for Inference Rules

Rules for Universal Quantifier
Universal Intro (All-R)

u:H |- All x.G(x) by A(x.slot)
u:H, x:D |- G(x) by g(x) ------ A

AU Ax.g(x)

Realizers for Inference Rules

Rules for Universal Quantifier
Universal Elim (All-L)

U,:H, x: All x.R(x), 0,:H"|- G by ap(x;d)
u,:H, x: All x.R(x), y:R(d),0,:H"|- G by g(y)
U,:H, x: All x.R(x), 0,:H’[-d in D

realizer AU,,x,U,.g(ap(x;d)/y), i.e. substitute
ap(x;d) fory in g(y).

Realizers for Inference Rules

Rule for False
False Elim

u,: H, x: False, 0,:H’ |- G by any(x)
AU, x,0,.any(x)

This rule distinguishes iFOL from mFOL.

Realizers for Inference Rules

Classical Rule
Excluded Middle

H|-Pv-P by magic(P)

This realizer makes sense in a classical account of
oracle computability, given an oracle for P. This
realizer is not polymorphic.

Polymorphic Realizers

Notice that all of the realizers except for magic(P) are
polymorphic. Thus a notion of uniform validity will
rule out Excluded Middle.

More Examples
Here is another simple realizer.
(Ex.P(x) & Allx.(P(x) => Q(x))) => Ey.Q(y) by
Ah.spread(h;e,f. spread(e;d,p.<d,f(d)(p)>)).

Exercise: Build the proof from this realizer.

Exercises

Find the realizers for these formulas. In the
next lecture we will build a proof from them
using the proof procedure for completeness.

3.((P& Q)& (Pv~P) & (Qv~Q))=>~Pv~Q

4. Ex.(P(x) =>C)=>((Allx.P(x)) =>C) where C has no
free occurrences of x.

My colleague, Liron Cohen, and Robbert Krebbers
both students in the school will help you understand
the exercises.

End of First Lecture

Lecture 2 Plan

Questions about Lecture 17

We will look more closely at the completeness
theorem, its formulation and proof. | will use the
solution to exercise three as a motivator.

How many people got the solution?

If there is time, | will discuss other uses of the
intersection type in CTT, the type theory of Nuprl e.g.
its use in defining dependent records.

See additional exercises on the last slides.

Consistency Theorem

Notice that from our analysis of proofs and their
associated extracted realizers, we can see by a simple
induction on the proof structure that iFOL is
consistent, every provable formula is (uniformly)
valid.

We will also see that our completeness theorem
provides an alternative proof of cut elimination.

Constructive Model Theory

We can see these definitions and the subsequent
completeness theorems as an example of
constructive model theory.

Formulating a Completeness Theorem

We have this key observation, all the realizers from
the standard intuitionistic rules are polymorphic.

To get an “if and only if result”, we want to make
some claim like “given a polymorphic realizer we can
find a proof,”e.g. build one.

Formulating a Theorem continued

Can we make this idea precise? Does it make sense?

| knew it made sense from a result of Lauchli in 1970
where he tried to define some notion of “uniform
truth” by talking about permutations. But we need a
stronger notion.

Formulating a Theorem continued

We need to say, no matter what domain D we pick

and no matter what atomic relations R, the realizer is
the same.

Because of the work of Coppo and Dezani and the
work of Reynolds and Pierce, we knew how to say
this. We say that the evidence belongs to the
intersection of all the evidence we can find for any D
and R.. This was a new idea.

Completeness Theorems

Theorem: A formula G of mFOL is provable iff it is
uniformly valid.

Corollary: A formula G of iFOL is provable iff it is
uniformly valid.

Constable and Bickford 2010: Intuitionistic
completeness of first-order logic, arXiv 2011.

Intersection Types

The binary intersec’gion type was used as a logical
connective for propositional logic by Coppo and
Dezani in 1978.

AlB

These are the elements in both types A and B with
x=y in the intersection iff x=y in A & x=y in B.

Intersection Types over a Family

We can also intersect a family of types B_. Let

18

acA

denote the type of elements that belong to B, for
every a in Type. This intersection operator acts as a
uniform quantifier over A.

ﬂ A=>A contains exactly Ax.x.
AType

We have a conjecture

A formula G of iFOL is provable if and only if it is
uniformly true with respect to any domain D and
atomic relations R..

Let’s try it only some simple examples and see if it
holds up.

Try it on the exercise

What is evidence for

(*(P& Q)& (Pv~P)&(Qv~Q))=>~Pv~Q ?

A h. spread(h; na,dp,dq. decide(dp;
P. ...

np. Inl(np)))
What to do in the case p. ... ? Should we split on ng?

Trying on exercise

Is there something easier than one more case split on
Q? YES, how about this evidence for ~Q?

p.inr(Ag. na(<p,q>)

This is almost right, but it only proves False, we need
to prove ~Q. But from False anything! So we use

p.inr(Ag. any(na(<p,g>)))

Can we build a proof?

We set up the problem this way, we have a formula
G and a realizer evd and we want to construct a
proof

|=G, evd

In the case of |=G, =>G,, evd

we know that evd must reduce to Ah.g. our evidence
has this form, that is what it means in type theory for
evd to be evidence. So we can start building the

proof. This gives us a new evidence structure.

Evidence structures
h:(~(P&Q) & (Pv~P)&(Qv~Q)) |=~Pv~Q,
spread(h; na,dp,dq. decide(dp;

p.inr(Ag. any(na(<p,q>)));
np. Inl(np)))

Continuing

This tells us to create a new evidence structure:

na:~(P&Q), dp:(Pv~P),dq:(Qv~Q) |=~P v ~Q, decide(dp;
p.inr(Ag. any(na(<p,q>)));
np. inl(np)))

Continuing

na:~(P&Q), p:P,dg:(Qv~Q) |=~P v ~Q,
inr(Ag. any(na(<p,q>)))

na:~(P&Q), p:Pdqg:(Qv~Q) |= ~Q,
Aq. any(na(<p,q>))

na:~(P&Q), p:P,dq:(Qv~Q), g:Q |= ~Q, ap(na;<p,q>)

Looks promising so far

This example worked like a charm, but it was pretty
simple. You can try it on all the other exercises.
They are also easy, but | end this lecture with a

harder challenge.

A Nasty Case

What about this very simple case?
|= (False => A), Af.any(f)

It also works like a charm! But so does this!

|= (False => A), Af.17

This is disconcerting because once we have False as a
hypothesis, we loose all evidence.

Need Minimal Logic

If we use minimal logic, then we can avoid the case
of vacuous hypotheses, but then the theorem is less
Interesting.

Harvey Friedman to the rescue! Harvey showed how
to embed iFOL into mFOL using his famous A-
translation. (Tim Griffin and Chet Murthy made this
famous in the 1990’s solving an open problem using
Nuprl.)

Completeness for iFOL

Using Friedman’s embedding of iFOL into mFOL we
can get completeness for iFOL.

Given a formula G of iFOL, its embedding into mFOL,
is obtained by replacing all occurrences of False by A,
call this GA.

If G is uniformly valid in iFOL, then G* is uniformly
valid in mFOL, hence provable. By replacing A by
False it is provable in iFOL.

Cases for Minimal Logic

Consider how the right hand side, construction rules
work in evidence structures.

H|=G, evd

G, &G, <g.,8,>
G,vG, inl(g,), inr(g,)
G, =>G, AXx.g,(x)
Allx.G AX.g(x)

These cases are easy

H |= G1: 81
H |= Gz: 8-
H|=G, inl(g,)

The complexity of the problem decreases in these

cases, and we can keep decomposing the evidence
term until we reach the leaves.

A hard case

H,f: A=>B, H |=G, ap(f;a)

How do we justify the claim

H f:A=>BH |=A a ?

Finitary models

We justify this implication elimination case by
looking at a subset of the models that we call finitary.
On these models for A we can ensure that if f is given
an argument not in A, then it will diverge. Here we
depend on having partial types, which we denote as

A.

We say that a belongs to A if it belongs to A if it
converges.

Constant functions

It is also important in the case of functions f from

A => B that we make sure we return the same result
if we call the function f twice on the same argument.
We do this by noting that we can always assign
constant functions to these witnesses for A => B
because once we have any element of B, that
suffices.

Universal withesses

In the case of evidence functions for universally
quantified formulas f: Allx.G(x), we need to
remember the applications of the function and store
its graph on domain elements. The functions need to
be equal only on identical elements, d.

The really hard case

We have only been thinking about evidence that is
built from “logical bits”, but we need to imagine that
evd is given to us as any term in CTT that we know is
evidence. It might use number theory or graph
theory to show that G is realizable. How can we
cope with any possible kind of evidence?

Hard Exercise

Show that the following type theory term is evidence for
(((A&B) => (A&B)) => (CvD))=>(C=>E)=>E

Ah,f,g. let n = gcd(10,5) in
let m = last(factorization(111)) in
let |, = (AX.x)" in
let |, = (Ap.<p.1,p.2>)Min
(if isl(h(l,)) then f else g)

let x = h(l,) in if isl(x) then outl(x) else
outr(x))

The intuitionistic bit

Instead of using Konig’s Lemmma, our proof uses
an intuitionistic version called the Fan Theorem.
Kleene showed that this theorem is not
consistent with Church’s Thesis.

The theorem says that in any finitely branching
tree generated by a constructive process, if every
branch terminates, then there is a uniform bound
on the length of any path.

Main Narrative Continued

These theoretical results make constructive type
theory more appealing and “complete”. A practical
test of such theories is that we can use them as
practical programming languages that support
correct-by-construction programming.

We will consider these issues in the last lecture on
proofs as processes.

Partial Types

We will now examine some types used in the proof
that distinguish Nuprl’s CTT from Coq’s CIC and
reflect on the future of type theory. We also see a
significant difference from the set theory approach
to these ideas.

Computability in All Types

Here is how Computational Type Theory (CTT) defines
recursive functions. Consider the 3x+1 function with
natural number inputs.

f(x) = if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1)
fi
fi

Alternative Syntax

f = function(x. if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1))

Using Lambda Notation

f=A(x. if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1))

Here is a related term with function input f

A(f. A(x. if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1)))

The recursive function is computed using this term.

Defining Recursive Functions in CTT

fix(A(f. A(x. if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1)
fi
fi)))

Recursion in General

f(x) = F(f,x) is a recursive definition, also

f = AM(x.F(f,x)) is another expression of it, and the
CTT definition is:

fix(A(f. A(x. F(f,x)))
which reduces in one step to:
A(XF(fix(A(f. A(x. F(f,x)))),X))

by substituting the fix term for f in A(x.F(f,x)) .

Non-terminating Computations

CTT defines all partial recursive functions, and partial
elements of types hence non-terminating ones such
as this

fix(A(x.x))
which in one reduction step reduces to itself! So CTT
is a Turing complete programming language.

This system of computation is a simple functional
programming language. In CTT it is essentially the
programming language also used in the metatheory,

ML.

Partial Functions

The concept of a partial function is another example
of where type theory and set theory differ
substantially and where CTT differs from CIC. It is an
important difference because the halting problem
and related concepts are fundamentally about
whether computations converge, and in type theory
this is the essence of partiality. For example, we do
not know that the 3x+1 function belongs to the type

N -> N.

Partial Functions

We do however know that the 3x+1 function, call it f
in this slide, is a partial function from numbers to
numbers, thus for any n, f(n) is a number if it
converges (halts).

In CTT we say that a value a belongs to the bar type A
provided that it belongs to A if it converges. So f
belongs to A > A for A = N.

Unsolvable Problems

It is remarkable that we can prove that there is no
function in CTT that can solve the convergence
problem for elements of basic bar types.

We will show this for non empty type A with
element a that converges in A for basic types such
as Z, N, list(A), etc. We rely on the typing that if F
maps A to A, then fix(F) is in A.

Unsolvable Problems

Suppose there is a function h that decides halting, e.g.

h: A >Bool. Define the following element of A for a in
A:

d = fix(A(x. if h(x) then 1" else a fi))

where 1" is a diverging element, say fix(A(x.x)).
Note d is in by the typing rule for fix.

Now we ask for the value of h(d) and find a
contradiction as follows:

Generalized Halting Problem

Suppose that h(d) = t, then d converges, but
according to its definition, the result is the diverging

computation P because by computing the fix term
for one step, we reduce

d = fix(A(x. if h(x) then T else a fi))
to d=ifh(d)then T else a fi
by substituting the fix(...) for x in the body.

If hd(d) = f, then we see that d converges to 3, again
a contradiction to the meaning of h.

Why is this result noteworthy?

First notice that the result applies to any
purported halting function h. In classical
mathematics, there surely is a noncomputable
function to decide halting.

Moreover the standard way to present
unsolvability constructively is to model Turing
machines and prove that no Turing computable
function can solve the halting problem. But this
result says that no function can solve it.

Why is this result noteworthy?

Another reason to take note of this result is that
it is so simple, about the simplest unsolvability
result around -- no indexings, no reflection,
simple realistic computing model.

But the main reason to take note is that this
result contradicts classical mathematics and
shows that CTT with bar types is not consistent
with the law of excluded middle, as the rest of
the theory is.

END OF LECTURE TWO

Extra Reading on Type Theory

In the next few slides | present other results in CTT
type theory that are generally noteworthy for their
impact on the implementation and for their wide use
in Nuprl theories.

Records and structures

We will take a brief look at how we can define
algebraic structures as records, illustrating other
advantages of intersection types and polymorphism.
This work forms the basis of an account of objects in

CTT.

Subtyping and Polymorphism

There is a primitive subtyping relation in CTT.

AC B means that the elements of A are
elements of B and a=b in A implies a=b in B.
Here are some basic facts about subtyping:

{x:Z|x>0}CZ

(ACA&BLC B)= AxBLC A'xB’
(ACA'&BLCB)= A+BLC A'+B'
(ACA'&BCB)= A'>BLC A— B’

Applications of Polymorphism

Polymorphism allows an elegant formal treatment of
record types, objects, and inheritance. We will look
at records and provide a simple semantics for them
and a simple binary operation to build them.

This account also allows us to define dependent
records, a significant extension of the record

concept.

Dependent Records

XA X5t ALK) X3 A(X 1, X5)55 X H A (X e X 1) }

functions r from Labels {x,,...,x,} to values

where r(x,)e A,, r(x,)eA,(r(x,)), etc.

Record Types and Inheritance

We can define algebraic structures as records. For example,
a monoid on carrier S is a record type over S with two
components, an associative operator and an identity:

Monoid ={op:SxS->S; id: S}.

A group extends this record type on S by including an
inverse operation.

Group ={op:SxS->S;id:S; inv:S ->S}

A Group is a subtype of a Monoid as we show next.

Group C Monoid

Groups and Monoids as Records

The basic idea is that the elements of a record type
are functions from the field selectors names, e.g.
{op,id,inv} to elements of types assigned to them by
a mapping called a signature, Sig:{op,id,inv} -> Type.
Here are the mappings for a Group over the carrier S.

Sig(op)= SxS->S, Sig(id)=S, Sig(inv)=S->S
Monoid and Group are these dependent function
spaces, Group a subtype of Monoid.

i: {op,id,inv} =2Sig(i) C i:{op,id} =Sig(i)

Intersection and Top Types

We can build records using a binary intersection

of types, Aﬂ B

These are the elements in both types A and B with
x=y in the intersection iff x=y in A & x=y in B.

Top is the type of all closed terms with the trivial
equality, x=y for all x, y in Top. Note for any type

A, we have ACTop and Al JTop=A.

Building Records by Intersection

Record types can be built by intersecting singleton
records as follows. Let

ld ={x,y,z,...} and Sig: Id -> Type where
Sig(i)= Top as the default. Then

{x:A; y:B} if x2y

X:ATly:B=

{x:ANB} if x=y.

Axiomatizing Co-inductive Types

In 1988 before we added intersection types to CTT,
we axiomatized co-inductive types and implemented
them in Nuprl as primitive.

Now with intersection types and the Top type, we
can define them and introduce variants.

Defining Co-recursive Types in CTT

Let F be a function from types to types such as
F(T) =N xTor F(T) =St->1In->St xT. Define
objects of the co-recursive type corec(T. F(T))
as the intersection of the iterates of F applied

to Top. ﬂ F " (Top)
n:N

To build elements, we take the fixed point of a
function f in the following type.

(T ->FT)

T:Type

Elements of Co-inductive Types

For example to build elements of the co-
recursive type for the function F(T) given by

St->In->StxT
we use fix(A(t.A(s,i.<update(s,i),t>))).

It is easy to show by induction that this
belongs to the co-recursive type. If the
function F is continuous, the type is a fixed
point of F, F(corec(T.F(T)) = corec(T.F(T)).

Future Directions

| think we will continue to see constructive type
theory unify concepts from logic, mathematics, and
computer science. Homotopy type theory is a
current example as are game semantics.

We will see applied formal theories support
important deployed systems. These theories will be
as dynamic as the systemes.

Future Directions

A more internal and specialized development will
be the erosion of the barrier between
mathematics and metamathematics — as Brouwer
desired — “there is one mathematics.”

| already see Nuprl applied to itself to verify the
optimizations to the evaluators for distributed
protocols. These implemented theories and their
proof assistants are autocatalytic.

Exercises

1. (P=>Q)=>~Q=>"~P
where ~P means (P => False), “not P”.

In minimal logic, we take a special constant for
False, say Any. While (False => P) holds, in minimal
logic, (Any => P) does not hold for arbitrary P. Show

2.(P=>0Q)=>((Q=>Any)=>(P=>Any))

Exercises continued
3.(*(P&Q)&(PVv~P) & (Qv~Q))=>~Pv~Q.

4. Ex.(P(x) =>C)=>((Allx.P(x)) =>C) where C has no
free occurrences of x.

5. Ey.~Q(y) => Allx.(P(x) => Q(x)) => ~Allx.P(x).

6. (Ey.Allx.P(x,y) => Eu.Allv.Q(u,v)) =>
(Ally.(Allx.P(x,y) => Eu.Allv.Q(u,Vv)).

Hard Exercise

Recall the example:
((A&B) => (A&B)) => (CvD))=>(C=>E)=>E

Are these both correct realizers?
Ah.Af. Ag. decide(h(id,);c.f(c);d.g(d))
Ah.Af. Ag. ap(decide(h(id,);c’.f;d".g);ap(decide(h(id,);c.c;d.d))

where id; = Ax.x, id2 = Ax.spread(x;x,,X,.<X;,X,>)

For more information, articles, and
examples of verified code see
www.nurpl.org

THE END

Questions?

Also see www.nuprl.org

