
Lecture Notes on
Deductive Inference

Course on Linear Logic
Oregon Programming Languages Summer School 2013

Frank Pfenning

Lecture 1
July 23, 2013

According to Wikipedia, the ultimate authority on everything:

Logic [. . .] is the formal systematic study of the principles of
valid inference and correct reasoning.

We therefore begin the course with the study of deductive inference. This
starting point requires surprisingly little machinery and is sufficient to un-
derstand the central idea behind linear logic. We aim to develop all other
concepts and properties of linear logic systematically from this seed.

Our approach is quite different from that of Girard [Gir87], whose dis-
covery of linear logic originated from semantic considerations in the theory
of programming languages. We arrive at almost the same spot. The conver-
gence of multiple explanations of the same phenomena is further evidence
for the fundamental importance of linear logic. At some point in the course
we will explicitly talk about the relationship between Girard’s linear logic
and our reconstruction of it.

1 Example: Reasoning about Graphs

As a first example we consider graphs. We represent the nodes (vertices) as
constants (a, b, . . .) and the edges with a binary predicate edge relating con-

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.2

nected nodes.

a

b c

d

The sample graph above could be represented by the propositions

edge(a, b), edge(b, c), edge(a, c), edge(a, d)

One mismatch one may notice immediately is that the edges in the picture
seem to be undirected, while the representation of the edges is not symmet-
ric (for example, edge(b, a) is not there). We can repair this inadequacy by
providing a rule of inference postulating that the edge relation is symmetric.

edge(x, y)

edge(y, x)
sym

We can apply this rule of inference to the fact edge(a, b) to deduce edge(b, a).
In this application we instantiated the schematic variables x and y with a
and b. We will typeset schematic variables in italics to distinguish them
from constants. The propositions above the horizontal line are called the
premises of the rule, the propositions below the line are called conclusions.
This example rule has only one premise and one conclusion. sym is the
name or label of the rule. We often omit rule names if there is no specific
need to refer to the rules.

From this single rule and the facts describing the initial graph, we can
now deduce the following additional facts:

edge(b, a), edge(c, b), edge(c, a), edge(d, a)

At this point we cannot quite go back-and-forth between a graph and its
logical representation, because a disconnected node will not show up in
the edge relation. Therefore, we should have a second predicate node(x),
which holds for every node in the graph.

node(a), node(b), node(c), node(d)

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.3

Having devised a logical representation for graphs, we now define a re-
lation over graphs. We write path(x, y) if there is a path through the graph
from x to y. As is common with graphs, we do not want to consider the
trivial, zero-length path from a node to itself. If we did, it would be the fol-
lowing rule (written in brackets as an indicator that it is only hypothetical):

�
node(x)

path(x, x)
refl

�

If we had omitted the premise, then the rule would have been problem-
atic because it could be used for objects x which are not even nodes in the
graph, leading to nonsensical conclusions.

The following two rules now define the notion of path. The first (e)
says that an edge represents a valid path, the second (trans) that paths can
be composed, making path a transitive relation.

edge(x, y)

path(x, y)
e

path(x, y) path(y, z)

path(x, z)
trans

From the representation of our example graph, when can then supply the
following proof that there is a path from c to d:

edge(a, c)

edge(c, a)
sym

path(c, a)
e

edge(a, d)

path(a, d)
e

path(c, d)
trans

We can examine the proof and see that it carries some information. It is not
just there to convince us that there is a path from c to d, but it tells us the
path. The path goes from c to a and then from a to d. This is an example
of constructive content in a proof, and we will see many other examples. For
the system we have so far it will be true in general that we can read off a
path from a proof, and if we have a path in mind we can always construct
a proof. But with the rules we chose, some paths do not correspond to a
unique proof. Think about why before turning the page. . .

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.4

Actually, there is more than source of ambiguity. One is that we can go
from edge(c, a) back to edge(a, c) and back edge(c, a), and so on, producing
infinitely many proofs of edge(c, a). Another is that paths with more than
three nodes can be broken down into different subpaths, using transitivity
in different ways. The fact that different proofs have the same constructive
content does not invalidate their interpretation, but we should be aware of
it.

Since we ruled out reflexivity, under which circumstances can we still
prove path(x, x)? Because we consider undirected graphs, there is a path
from x to x exactly if there is at least one neighbor of x, as the following
proof shows:

edge(x, y)

path(x, y)
e

edge(x, y)

edge(y, x)
sym

path(y, x)
e

path(x, x)
trans

There are several interesting aspects of this proof. For example, it doesn’t
depend on what x and y are. In other words, it is schematic in x and y.
Another notable aspect is that it uses a premise edge(x, y) twice, which in-
tuitively makes sense: a general way to leave x and return to it is to go to
some arbitrary adjacent y and immediately return to x, reusing the same
edge. We can summarize the deduction above into a single derived rule of
inference:

edge(x, y)

path(x, x)

This inference rule is justified, because we can replace any particular in-
stance of it by an instance of the schematic proof we gave above. As we
will see in a later lecture, derived rules of inference play a very important
role in logic.

2 Example: Natural Numbers

As a second example, we consider natural numbers 0, 1, 2, . . .. A conve-
nient way to construct them is via iterated application of a successor func-
tion s to 0, written as

0, s(0), s(s(0)), . . .

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.5

We refer to s as a constructor. Now we can define a predicate nat that holds
exactly of the natural numbers, in effect defining a type.

nat(0)

nat(x)

nat(s(x))

We can also define the even and odd numbers through the following three
rules.

even(0)

even(x)

odd(s(x))

odd(x)

even(s(x))

As an example of a derived rule of inference, we can summarize the proof
on the left with the rule on the right:

even(x)

odd(s(x))

even(s(s(x)))

even(x)

even(s(s(x)))

The structure of proofs in these examples is not particularly interesting,
since proofs that number a number of n is even or odd just follow the struc-
ture of the number n.

3 Example: Coin Exchange

So far, deductive inference has always accumulated knowledge since propo-
sitions whose truth we are already aware of remain true. Linear logic arises
from a simple observation:

Truth is ephemeral.

For example, while giving this lecture “Frank is holding a piece of chalk” was
true, and right now it is (most likely) not. So truth changes over time, and
this phenomenon is studied with temporal logic. In linear logic we are instead
concerned with the change of truth with a change of state. We model this in a
very simple way: when an inference rule is applied we consume the propo-
sitions used as premises and produce the propositions in the conclusions,
thereby effecting an overall change in state.

As an example, we consider nickels (n) worth 5¢, dimes (d) worth 10¢,
and quarters (q) worth 25¢. We have the following rules for exchange be-
tween them

d d n

q

q

d d n

n n

d

d

n n

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.6

The second and fourth rules are the first rules we have seen with more than
one conclusion. Inference now changes state. For example, if we have three
dimes and a nickel, the state would be written as

d, d, d, n

Applying the first rule, we can turn two dimes and a nickel into a quarter
to get the state

d, q

Note that the total value of the coins (35¢) remains unchanged, which is the
point of a coin exchange. One way to write down the inference is to cross
out the propositions that are consumed and add the ones that are produced.
In the above example we would then write something like

d, d, d, n ❀ /d, /d, d, /n, q

In order to understand the meaning of proof, consider how to change three
dimes into a quarter and a nickel: first, we change one dime into two nick-
els, and then the other two dimes and one of the nickels into a quarter. As
two state transitions:

d, d, d ❀ d, d, /d, n, n ❀ /d, /d, /d, /n, q, n

Using inference rule notation, this deduction is shown on the left, and the
corresponding derived rule of inference on the right.

d d

d

n n

q

d d d

q n

To summarize: we can change the very nature of inference if we con-
sume the propositions used in the premise to produce the propositions in the
conclusions. This is the foundation of linear logic and we therefore call it
linear inference. The requisite pithy saying to remind ourselves of this:1

Linear inference can change the world.

1with apologies to Phil Wadler

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.7

4 Example: Graph Drawing

We proceed to a slightly more sophisticated example involving linear in-
ference. Before we used ordinary deductive inference to define the notion
of path. This time we want to model drawing a graph without lifting the
pen. This is the same as traversing the whole graph, going along each edge
exactly once. This second formulation suggest the following idea: as we go
along an edge we consume this edge so that we cannot follow it again. We
also have to keep track of where we are, so we introduce another predicate
at(x) which is true if we are at node x. The only rule of linear inference then
is

at(x) edge(x, y)

at(y)
step

We start with an initial state just as before, with an edge(x, y) for each edge
from x to y, the rule of symmetry (since have an undirected graph), and
a starting position at(x0). We can see that every time we take a step (by
applying the step rule shown above), we consume a fact at(x) and produce
another fact at(y), so there will always be exactly one fact of the form at(−)
in the state. Also, at every step we consume one edge(−) fact, so we can
take at most as many steps as there are edges in the graph initially. Of
course, if we are at a point x there may be many outgoing edges, and if we
pick the wrong one we may not be able to complete the drawing, but at
least the number of steps we can try is limited at each point. We succeed,
that is, we have found a way to draw the graph witout lifting the pen if we
reach a state without an edge(−) fact and some final position at(xn).

The following example graph is from a German children’s rhyme2 and
can be drawn in one stroke if we start at b or c, but not if we start at a, d, or

2“Das ist das Haus vom Ni-ko-laus.”

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.8

e.

a

b c

d

e

We leave it to the reader to construct a solution and then translate it to a
proof. Also, if we remove node e and its edges to a and d, no solution is
possible.

Let’s make the meaning of proofs explicit again. Because we have only
one inference rule concerned with a move, a proof in general will have the
following shape:

at(x0) edge(x0, x1)

. . .
step

edge(xn−2, xn−1)

at(xn−1)
step

edge(xn−1, xn)

at(xn)
step

This proof represents the path x0, x1, . . . , xn−1, xn. Of course, some of these
nodes may be the same, as can be seen by examining the example, but
no edge can be used twice. If we need to traverse an edge in the opposite
direction from its initial specification, we need to use symmetry, which will
consume the edge and produce its inverse. We can then use the inverse
to make a step. Being able to continually flip the direction of edges is a
potential source of nontermination in the inference process. This does not
invalidate the observation that a path along non-repeating edges can be
written as a proof, and from a proof we can read off a path of non-repeating
edges. This path represents a solution if the initial and final states are as
described above.

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.9

5 Example: Graph Traversal

If we just want to traverse the graph rather than draw it, we should not
destroy the edges as we move. A standard way to accomplish this is to
explicitly recreate edges as we move:

at(x) edge(x, y)

at(y) edge(x, y)
step

Another way is to distinguish ephemeral propositions from persistent proposi-
tions. Ephemeral propositions are consumed during inference, while per-
sistent propositions are never consumed. This allows us to have a uniform
framework encompassing both the ordinary logical inference where we just
add the conclusions to our store of knowledge, and linear logical inference.

We indicate the disposition of propositions that are known to be true by
writing A eph and A pers . Here, A stands for a proposition and A eph and
A pers are called judgments. Distinguishing judgments from propositions is
one of the cornerstones of Per Martin-Löf’s approach to the foundation of
logic and programming languages [ML83]. From now on we will follow the
idea that the subjects of inference rules are judgments about propositions,
not the propositions themselves. Mostly, they express that propositions are
true, but in a variety of ways: ephemerally true, persistently true, true at
time t, etc. There are a number of different terms that have been used for
the particular distinction we are making here:

A ephemeral A persistent
A linear A unrestricted
A true A valid
A contingently true A necessarily true

Our high-level message is:

Truth is ephemeral; validity is forever.

In the example, we can use this by declaring edges to be persistent, in
which case the premise and conclusion of the symmetry rule should also
be persistent. We abbreviate ephemeral by eph , and persistent by pers .

at(x) eph edge(x, y) pers

at(y) eph
step

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.10

As an even more compact notation, we underline persistent propositions; if
they are not underlined, they should be considered ephemeral. For exam-
ple, there would appear to be little reason for the properties of being even
or odd to be ephemeral, since they should be considered intrinsic properties
of the natural numbers. We therefore write

even(0)

even(x)

odd(s(x))

odd(x)

even(s(x))

The first rule here is an inference rule with no premise. Persistent conclu-
sions of such rules are sometimes called axioms in the sense that they are
persistently true.

6 Example: Blocks World
3

Next we consider blocks world, which is a venerable example in the history
of artificial intelligence. We have blocks (a, b, . . .) stacked on a table (t). We
also have a robot hand which may pick blocks that are not obstructed and
put them down on the table or some other block. We assume that the hand
can hold just one block.

t
c a
b

We represent the state in linear logic using the following predicates

on(x, y) Block x is on top of y
empty Hand is empty
holds(x) Hand holds block x

For example, the state above would be represented by

empty, on(c, t), on(b, c), on(a, t)

3not covered in lecture
3not covered in lecture

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.11

The two preconditions for picking up a block x are that the hand is empty,
and that nothing is on top x. In (ordinary) logic, we might try to express
this last condition as ¬∃y. on(y, x). However, negation is somewhat prob-
lematic in linear logic. For example, it is true in the above state the ¬on(b, t).
However, after two moves (picking up b and then putting b on the table) it
could become true, and we would have created a contradiction!

A common technique to avoid such paradoxes is to introduce additional
predicates that describe properties of the state. Such predicates are main-
tained by the rules in order to keep the description of the state consistent.
Before reading on, you might consider how you can define a new predi-
cate, add appropriate initial facts, and then write rules for picking up and
putting down blocks.

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.12

Here is one possibility. We use a new predicate clear(x) to express that
there is no other block on top of x. In addition to the propositions above
describing the initial state, we would also have

clear(b), clear(a)

but not clear(c). If we assume there are sufficiently many places on the table
to place all blocks, we would also have

clear(t)

The table is persistently clear, that is, always available for putting down a
block.

Then we only need two rules, one for picking up a block and one for
putting one down:

empty clear(x) on(x, y)

holds(x) clear(y)
pickup

holds(x) clear(y)

empty clear(x) on(x, y)
putdown

The two rules are inverses of each other, which makes sense since picking
up or putting down a block are reversible actions.

One interesting question that arises here is whether we can use persis-
tent facts to instantiate ephemeral premises of rules. This is the intention
here: clear(t) can be used as a premise of the putdown rule in order to put
a block on the table. This is justified since a fact we can use as often as we
want should certainly be usable this once. We just have to be careful not to
consume clear(t) so that it remains available for future inferences.

Alternatively, we could have a general rule

A pers

A eph
copy

that allows us to make an ephemeral copy of a persistently known fact.
Depending on how we eventually formalize inference, one or the other so-
lution will turn out to be more convenient.

As before, we should examine the meaning of proofs in this example.
Given some initial state, a proof describes a sequence of moves that leads
to a final state. Therefore, the process of planning, when given particular
goal and final states, becomes a process of proof search.

Another important aspect of problem representations in linear logic are
state invariants that are necessary so that inference has the desired meaning.

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.13

For example, there should always be exactly one of empty and holds(x) in w
state, otherwise it would not conform to our problem domain and infer-
ence is potentially meaningless. Similarly, there shouldn’t be cycles such
as on(a, b), on(b, a), which does not correspond to any physically possible
situation. When showing that our representations in linear logic capture
what we intend, we should make such state invariants explicit and verify
that they are preserved under the possible inferences. In our example, any
rule application replaces empty by holds(x) for some x, or holds(x) by empty.
So if the state invariant holds initially, it must hold after any inference.

7 Example: Representing Linked Lists

Using the idea of constructors as for natural numbers, it is easy to define
lists of natural numbers. We call the constructors nil and cons.

list(nil)

nat(n) list(l)

list(cons(n, l))

In an imperative language such as C, lists are usually represented as linked
lists. For example, the list

cons(3, cons(4, cons(5, nil)))

might be layed out in memory as

a0 : (3, a1)
a1 : (4, a2)
a2 : (5, null)
null :

where a0, a1, a2 are distict memory addresses, and null is a special address,
usually 0, at which nothing can be stored. We have taken the liberty of
abbreviating the successor-based representation numbers here by numerals
(for example, s(s(s(0))) by 3).

In order to avoid dealing with the special address null, we use lists seg-
ments identified by their beginning and ending address. For example, the
list above would be represented as the segment (a0, a3)

a0 : (3, a1)
a1 : (4, a2)
a2 : (5, a3)

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.14

where all the addresses ai are different. What’s actually stored at a3 is irrel-
evant.

We represent this in logic with two forms of proposition, seg(b, e) (we
have a list segment starting with address b and ending with address e) and
elem(a, n, a�) (we have an element n stored at address a with the next ele-
ment of the list at a�). Returning to the example, we obtain the representa-
tion

seg(a0, a3),
elem(a0, 3, a1),
elem(a1, 4, a2),
elem(a2, 3, a3)

Next let’s write some inference rules that tell us how to load a list into
memory, starting at a given address a0. We start with propositions4

load(l), seg(b, b)

where nothing is stored at b and would like to write some inference rule
that can transform this to the linked list representation

seg(b, e), . . .

for some e and “. . .” contains the appropriately linked elem propositions.
The rules are based on the analysis of l in load(l). If l is nil, we are done

and all the elements of the initial list have been loaded.
load(nil) seg(b, e)

seg(b, e)

If the initial list is empty, the seg(b, b) is its representation, which is the
correct segment representing the empty linked list.

Second, we have to treat the case that the list contains some element n.
In that case, we need to “allocate” new memory. At the level of abstraction
of our representation here, this just means that we need to obtain a new
address. But a new address is just a new name, in logic sometimes called a
parameter. In general, we annotate the inference rules itself with [a1, . . . , an]
to indicate that a1, . . . , an in the conclusions of the rule are freshly chosen
distinct names. By “freshly chosen” we mean that the names are distinct
from all the names we have been using so far.

load(cons(n, l)) seg(b, e)

load(l) elem(e, n, e�) seg(b, e�)
[e�]

4During lecture, we wrote list(l) here instead of load(l), which is an unfortunate over-
loading of the name “list”.

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.15

Here, the freshly chosen name is e�. Because it is new, nothing is stored
there yet, that is, there is no elem(e�,−,−).

We suggest that you simulate this algorithm on the example list to see
that the result comes out correctly.

As one more example of working with linked lists, we can write a very
short program (a single rule!) to sort a linked list “in place” (without allo-
cating any new elements). For this we need a predicate gt(x, y) which holds
when x is greater than y. This is easy to define by inference rules:

gt(s(x), 0)
gt 0

gt(x, y)

gt(s(x), s(y))
gt s

These rules, like nat(n) or list(l) are not suitable for inference from the
premises to the conclusion because they will never saturate. Therefore we
think of these propositions as being proved on demand, by constructing (or
failing to construct) a proof of gt(x, y) when we know what x and y are.5

Now a kind of bubble sort just switches adjacent element when they are
out of order.

elem(a, x, b) elem(b, y, c) gt(x, y)

elem(a, y, b) elem(b, x, c)
exch

When this rule reaches quiescence, we know that the linked list must be
sorted. Moreover, it doesn’t matter in which order we apply various in-
stances of the rule that might fire: we always end up with the same sorted
lists. In this way, this rule represents a kind of opportunistically parallel
bubble sort. It is easy to see here that firing of a rule must be atomic: we
must match the premises and then is a single step replace the elements in
the premise with the elements in the conclusion.

The exercises will give you additional opportunities to write inference
rules manipulating linked lists in interesting ways.

5From the proof-theoretic perspective we declare gt to be negative, while other proposi-
tions involved in inference are declared to be positive. We might explain this in detail in a
future lecture.

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.16

8 Example: King Richard III
6

As a first example from literature, consider the following quote:

My kingdom for a horse! — King Richard in Richard III by William
Shakespeare

How do we represent this in linear logic? Let’s fix a vocabulary:

richard King Richard III
owns(x, y) x owns y
horse(x) x is a horse
kingdom(x) x is a kingdom

The offer corresponds to a change of ownership: Richard “owns” a king-
dom before (which we know to be England, but which is not part of his
utterance), and another person p owns a horse, and after the swap Richard
owns the horse while p owns the kingdom.

owns(richard, k) kingdom(k) owns(p, h) horse(h)

owns(richard, h) owns(p, k)

As is commonly the case, we model an intrinsic attribute of an object (such
as h being a horse or k being a kingdom) with a persistent predicate, while
ownership changes and is therefore ephemeral.

It is implied in the exclamation that the rule can only be used once,
because there is only one k that qualifies as “my kingdom”. Otherwise, he
would have said “One of my kingdoms for a horse!”. Another way to capture
this aspect of the offer would be to consider the inference rule itself to be
ephemeral and hence can only be used once. We do not have a good informal
notation for such rules, but they will play a role again in the next lecture.
If the rule above were persistent, it would more properly correspond to the
offer “My kingdoms for horses!”.

9 Example: Opportunity

A common proverb states:

Opportunity doesn’t knock twice. — Anonymous
6not covered in lecture

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.17

Again, let’s fix the vocabulary:

opportunity opportunity
knocks(x) x knocks

Then the preceding saying is just

knocks(opportunity) eph

where we have written out the judgment ephemeral for emphasis.
Clearly, when this fact is used it cannot be used again. If it is never

used, we do not consider opportunity to having ever knocked, so the judg-
ment above captures the idea that opportunity knocks at most once (and
therefore not twice).

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.18

Exercises

Exercise 1 Write out proof for the example graph from Section 4 that demon-
strates that the figure can be drawn in one stroke.

Exercise 2 Consider the representation of undirected graphs from Section 1,
with predicates node(x) and edge(x, y).

A Hamiltonian cycle is a path through a graph that visits each vertex ex-
actly once and also returns to the starting vertex. Define any additional
predicates you need and give inference rules such that inference corre-
sponds to traversing the graph, and there is a simple condition that can be
checked at the end to see if the traversal constituted a Hamiltonian cycle.

Exercise 3 Consider the representation of undirected graph from Section 1,
with predicates node(x) and edge(x, y). We add a new predicate color(x) to
express the color of node x. A valid coloring is one where no two adjacent
nodes (that is, two nodes connected by an edge) have the same color.

(i) Give inference rules that can deduce invalid(x, y) if and only if there
are adjacent nodes x and y with the same color.

(ii) Give inference rules where proofs from an initial state to a final state
satisfying an easily checkable condition correspond to valid color-
ings. Carefully describe your initial state and the property of the final
state.

Exercise 4 Consider the game Peg Solitaire. We have a layout of holes (shown
as hollow circles), all but one of which are filled with pegs (shown as filled
circles). We move by taking one peg, jumping over an adjacent one into an
empty hole behind it, removing the peg in the process. The situation after
one of the four possible initial moves is shown in the second diagram. The
third diagram shows the desired target position.

initial position after one move target position

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.19

Define a vocabulary and give inference rules in a representation of peg soli-
taire so that linear inference corresponds to making legal jumps. Explain
how you represent the initial position, and how to test if you have reached
the target position and thereby won the solitaire game.

Exercise 5 We consider the blocks world example from Section 6. As for
graphs where we had the node predicate, it is convenient to add a new
ephemeral predicate block(x) which is true for every block in the configu-
ration.

Write a set of rules such that they can consume all ephemeral facts in the
state (leaving only the persistent clear(t)) if and only if all of the following
conditions are satisfied:

(i) the configuration of blocks is a collection of simple stacks,

(ii) the top of each stack is known to be clear, and

(iii) either the hand is empty or holds a block x, but not both.

If you believe it cannot be done, solve as many of the conditions as you can,
explain why not all of them can be checked, and explore alternatives. Note
linear inference allows rules with no premises or no conclusions.

Exercise 6 Assume the representation of lists of natural numbers used in
lecture with constructors nil and cons. Further assume two new predi-
cates, orig(l) and perm(l) for lists l. Write a simple program such that
orig(l) ❀ perm(l�) if and only if l� is a permutation of l and the final
state (which consists just of perm(l�)) is quiescent. You may introduce aux-
iliary predicates as needed. Your program should work correctly assuming
don’t-care nondeterminism.

Exercise 7 Assume the representation of lists of natural numbers used in
lecture with predicates seg(b, e) and elem(a, x, a�). Write the following pro-
grams:

(i) Write a program that reaches quiescence at collected(l), where l is the
list represented by the segment.

(ii) Assuming the list is sorted in ascending order and a new initial propo-
sition insert(x), create a new list where x has been inserted so as to
maintain sortedness.

(iii) Reverse the list without allocating new addresses.

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.20

(iv) Append two segments without allocating new addresses.

Exercise 8 Now we use lists segments of bits 0 and 1 instead of segments of
arbitrary natural numbers. A segment of bits naturally represents a number
in binary notation, using predicates seg(h, l) (where h is the address of the
highest bit and l the address of the lowest bit) and elem(a�, x, a) where xx
is a bit (0 or 1). Write a program to increment the number represented by a
bit segment.

Exercise 9 Render the following statement by an American president as an
inference rule in linear logic:

If you can’t stand the heat, get out of the kitchen. — Harry S. Truman

Use the following vocabulary:

toohot(x) x cannot stand the heat
in(x, y) x is in y
kitchen the kitchen

Exercise 10 Render the following statement in linear logic (without the use
of any logical connectives):

Truth is ephemeral; validity is forever. — Frank Pfenning, page 9

Use the vocabulary
truth truth
validity validity

LECTURE NOTES JULY 23, 2013



Deductive Inference L1.21

References

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[ML83] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given
in Siena, Italy. Published in Nordic Journal of Philosophical Logic,
1(1):11-60, 1996, April 1983.

LECTURE NOTES JULY 23, 2013


	Example: Reasoning about Graphs
	Example: Natural Numbers
	Example: Coin Exchange
	Example: Graph Drawing
	Example: Graph Traversal
	Example: Blocks World
	Example: Representing Linked Lists
	Example: King Richard III
	Example: Opportunity
	Exercises
	References

