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Haskell Core (the typed IL) 

Big Small 

Implicitly typed Explicitly typed 

Binders typically  
un-annotated 
  \x. x && y 

Every binder is  
type-annotated 
  \(x:Bool). x && y 

Type inference  
(complex, slow) 

Type checking  
(simple, fast) 

Complicated to specify 
just which programs will 
type-check 

Very simple to specify 
just which programs are 
type-correct 

Ad-hoc restrictions to 
make inference feasible 

Very expressive indeed; 
simple, uniform 



1. Small IL means that analysis, optimisation, and code 
generation, handle only a small language. 

2. Type checker (“Lint”) for Core is a very powerful 
internal consistency check on most of the compiler 
 Desugarer must produce well-typed Core 

 Optimisation passes must transform well-typed Core to 
well-typed Core 

3. Design of Core is a powerful sanity check on crazy 
type-system extensions to source language.  If you 
can desugar it into Core, it must be sound; if not, 
think again. 
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 Start with lambda calculus.  From “Lambda 
the Ultimate X” papers we know that lambda 
is super-powerful. 

 But we need a TYPED lambda calculus 

 Idea: 
 start with lambda calculus 
 sprinkle type annotations 

 But: 
 Don‟t want to be buried in type annotations 
 Types change as you optimise 

 



compose :: (b->c) -> (a->b) -> a -> c 

compose = f:b->c. g:a->b. x:a. 
    let tmp:b = g x 

    in f tmp 

 

 Idea: put type annotations on each binder 
(lambda, let), but nowhere else 

 But: where is „a‟ bound? 

 And: unstable under transformation... 



compose :: (b->c) -> (a->b) -> a -> c 

compose = f:b->c. g:a->b. x:a. 

      let tmp:b = g x 

      in f tmp 

 

 Now the type annotations are wrong 

 Solution: learn from Girard and Reynolds! 

compose isPos neg 

=   (inline compose: 

   f=isPos, g=neg) 

   x:a. let tmp:b = neg x 

      in isPos tmp 

 

neg :: Int -> Int 

isPos :: Int -> Bool 

 



compose :: abc. (b->c) -> (a->b) -> a -> c 

compose = abc. f:b->c. g:a->b. x:a. 
    let tmp:b = g x 

    in f tmp 

 

 Idea: an explicit (big) lambda binds type 
variables 



compose Int Int Bool isPos neg 

=   (inline compose: 

  a=Int, b=Int, c=Bool, f=isPos, g=neg) 

   x:Int. let tmp:Int = neg x 

         in isPos tmp 

 

compose :: abc. (b->c) -> (a->b) -> a -> c 

compose = abc. f:b->c. g:a->b. x:a. 
    let tmp:b = g x 

    in f tmp 

 

 Big lambdas are applied to types, 
just as little lambdas are applied to values 

 Now the types stay correct! 



 In GHC, the IL is like what we‟ve seen but 
we add: 
 Algebraic data type declarations 

 

 Data constructors in terms 

 

 Case expressions  

 

 Let expressions 

data Maybe a = Nothing | Just a 

x:Int. Just (Just x) 

case x of { Nothing -> 0; Just x -> x+1 } 

let x:Int = 4 in x+x 



data T a where 

  T1 :: a. b. b -> (b -> a) -> T a 

 

f :: T a -> a 

f = a. \(x:T a). 

    case x of  

      T1 (b:*) (y:b) (g:b->a) -> g y 

‘b’ is not mentioned in 
T1’s result type 

Pattern-matching on T1 
binds the type variable 
‘b’ as well as the term 

variables ‘y’ and ‘g’ 

 We say that „b‟ is an existential variable of T1  

 T1 :: ab. b -> (b -> a) -> T a 

      a. (b.(b, b->a)) -> T a 



e ::= x | k  
  | e1 e2  |  (x:).e 
  | e      |  (a:).e 
  | let bind in e 
  | case e of { alt1 .. altn } 

bind ::= x:=e 
     |   rec { x1:1=e1 .. xn:n=en } 

alt := C (x1:1).. (xn:n) -> e  |  DEFAULT -> e 



data Expr 

  = Var      Var 

  | Lit      Literal 

  | App      Expr Expr 

  | Lam      Var Expr  -- Both term and type lambda 

  | Let      Bind Expr 

  | Case     Expr Var Type [(AltCon, [Var], Expr)] 

  | Type     Type      -- Used for type application 

 

data Var = Id    Name Type  -- Term variable 

         | TyVar Name Kind  -- Type variable 

 

data Type = TyVarTy  Var 

   | LitTy    TyLit 

   | AppTy    Type Type 

   | TyConApp TyCon [Type] 

   | FunTy    Type Type   -- Not really necy 

   | ForAllTy Var Type 
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 In our presentation of System F, each variable 
occurrence is annotated with its type.  

 Hence every term has a unique type 

 

 

 

 exprType is pure; needs no “Gamma” argument 

 Sharing of the Var means that the apparent 
duplication is not real 

 

exprType :: Expr -> Type 

exprType (Var v)   = varType v 

exprType (Lam v a) = Arrow (varType v) (exprType a) 

...more equations... 



 Type checking (Lint) is fast and easy, 
because the rules are syntax-directed 

The syntax of a term 
encodes its typing derivation 

|- r:(Int->Bool). r 4 : (Int -> Bool) -> Bool 

r:Int->Bool |- r 4 : Bool  

r:Int->Bool |- r : Int -> Bool  r:Int->Bool |- 4 : Int  

(fabs) 

(fapp) 

(fvar) (fvar) 



 Robust  to transformations (ie if the term is 
well typed, then the transformed term is 
well typed): 
 beta reduction 

 inlining 

 floating lets outward or inward 

 case simplification 

 Simple, pure 

 Type checking (Lint) is easy and fast 

exprType :: Expr -> Type 





 

f :: T a -> a -> Bool 

f = a. (x:T a) (y:a). 

    let (v:Bool) = not y  

    in case x of  

      T1 (z:Bool) -> v && z 

      T2 -> False 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f :: T a -> a -> Bool 

f = a. (x:T a) (y:a). 

    case x of  

      T1 (z:Bool) -> let (v:Bool) = not y 

                     in v && z 

      T2 -> False 

Problem 1 
not :: Bool -> Bool 

but  
y::a 

Problem 2 
Floating the let seems 

well-scoped, but gives a 
bogus program 



data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f :: T a -> a -> Bool 

f = a. (x:T a) (y:a). 

    case x of  

      T1 (c:a~Bool) (z:Bool)  

           -> let (v:Bool) = not (y  c) 

              in v && z 

      T2 -> False 

Pattern matching on T1 
brings into scope some 

EVIDENCE that (a=Bool) 

We can USE the evidence to 
convert (y::a) to type Bool 

c is an EVIDENCE VARIABLE 

T1 :: a. (a~Bool) -> Bool -> T a 

If e: and c: ~, 
then (e  c) :  



 Any application of T1 must supply evidence 
   T1  e1 e2  
where e1 : (~Bool ), e2 : Bool 

 Here e1  is a value that denotes evidence  
that =Bool  

 And any pattern match on T1 gives access to 
evidence 
   case s  of { T1 (c:~Bool ) (y:Bool) -> ... } 
where  s  : T  

 

 

T1 :: a. (a~Bool) -> Bool -> T a 



e ::= x | k 
 | e1 e2  |  (x:).e 
 | e      |  (a:).e 
 | let bind in e 
 | case e of { alt1 .. altn } 
 | e      | (c:1~2).e 
 | e   

Coercion abstraction 
and application 

A coercion :1~2 
is evidence that  

t1 and t2 are 
equivalent 

Type-safe cast 

If e: and : ~, 
then (e  ) :  The syntax of a term (again) 

encodes its typing derivation 



data Expr 

  = Var      Var 

  | Lit      Literal 

  | App      Expr Expr 

  | Lam      Var Expr 

  | Let      Bind Expr 

  | Case     Expr Var Type [(AltCon, [Var], Expr)] 

  | Type     Type 

  | Coercion Coercion  -- Used for coercion apps 

  | Cast   Expr Coercion -- Type-safe cast 

 

data Var = Id    Name Type  -- Term variable 

         | TyVar Name Kind  -- Type variable 

         | CoVar Name Type Type  -- Coercion var 



 Consider the call:    
   T1 Bool <Bool> True  :  T Bool 

 Here <Bool> : Bool ~ Bool 

 

 Can I call   T1 Char  True  : T Char? 

 No: that would need ( : Char ~ Bool) and 
there are no such terms  

 

 

T1 :: a. (a~Bool) -> Bool -> T a 

 ::= <>  | ... 



 If    :  ~    then    sym  :  ~  

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

g :: T a -> Maybe a 

g = a. (x:T a). 

    case x of  

      T1 (c:a~Bool) (z:Bool)  

           -> Just a (z  sym c) 

      T2 -> Nothing 

Have evidence c:a~Bool 
Need evidence  
sym c : Bool~a 

 ::= <>  | sym  | ... 



 If   i : i ~i    
then    T 1 ... n : T 1 ... n ~ T 1 ... n 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

g :: T a -> Maybe a 

g = a. (x:T a). 

    case x of  

      T1 (c:a~Bool) (z:Bool)  

           -> (Just Bool z)  Maybe (sym c) 

      T2 -> Nothing 

Have evidence c:a~Bool 
Need evidence  

Maybe (sym c) : Maybe Bool ~ Maybe a 

 ::= <> | sym  | T 1 ... n | ...  





 Coercions are computationally irrelevant 

 Coercion abstractions, applications, and 
casts are erased at runtime 

 



 Just like type abstraction/application, 
evidence abstraction/application provides a 
simple, elegant, consistent way to 
 express programs that use local type equalities 

 in a way that is fully robust to program 
transformation 

 and can be typechecked in an absolutely 
straightforward way 

 Cost model: coercion abstractions, 
applications, and casts are erased at runtime 





 Haskell 

 

 

 No danger of confusing Age with Int 

 Type abstraction by limiting visibility of 
MkAge 

 Cost model: Age and Int are represented 
the same way 

newtype Age = MkAge Int 
 
bumpAge :: Age -> Int -> Age 
bumpAge (MkAge a) n = MkAge (a+n) 



 Newtype constructor/pattern matching turn 
into casts 

 (New) Top-level axiom for equivalence 
between Age and Int 

 Everything else as before 

newtype Age = MkAge Int 
 
bumpAge :: Age -> Int -> Age 
bumpAge (MkAge a) n = MkAge (a+n) 

axiom ageInt :: Age ~ Int 

 

bumpAge :: Age -> Int -> Age 

bumpAge = \(a:Age) (n:Int). 

          (a  ageInt + n)  sym ageInt 



 Axioms can be parameterised, of course 

 No problem with having a polytype in s~t 

type GenericQ r = GQ (forall a. Data a => a -> r) 

axiom axGQ r :: GenericQ r ~ a. Data a => a -> r  



 More about this on Saturday 

type family Add (a::Nat) (b::Nat) :: Nat 

 

type instance Add Z     b = b 

type instance Add (S a) b = S (Add a b) 

axiom axAdd1 b   :: Add Z b ~ b 

axiom axAdd2 a b :: Add (S a) b ~ S (Add a b) 





 We do not want casts to interfere with 
optimisation 

 And the very same issue comes up when 
proving the progress lemma 

axiom ageInt :: Age ~ Int 

((x:Int).x) 3  ==>  3 -- Beta reduction 

 

((x:Int).x)  g) (3  sym ageInt)  ==>  ??? 

   where g :: (Int->Int) ~ (Age->Int) 



 Push the cast out of the way 

 Something similar for (case (K e)  g of … ) 

 NB: consistency needed for progress lemma 

g :: (1 -> 2) ~ (1 –> 2) 

nth[1] g :: 1 ~ 1  

nth[2] g :: 2 ~ 2 

(e1  g) e2  

==>  

(e1 (e2  sym (nth[1] g))  nth[2] g 



 All this pushing around just makes the coercions 
bigger!  Compiler gets slower, debugging the 
compiler gets harder. 

 Solution: rewrite the coercions to simpler form 

axiom ageInt :: Age ~ Int 

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int> 

 

((x:Int).x)  g) (3  sym ageInt) 

==>  

((x:Int).x) ((3  sym ageInt)  sym (nth[1] g))  

    nth[2] g 

nth[1] g 

= nth[1] (sym ageInt -> <Int>) 

= sym ageInt 

A coercion 
built by 

composition 

Decomposition nth[2] g 

= <Int> 



 More simplifications 

axiom ageInt :: Age ~ Int 

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int> 

 

((x:Int).x) ((3  sym ageInt)  sym (nth[1] g))  

    nth[2] g 

==>  

((x:Int).x) ((3  sym ageInt)  sym (sym ageInt))  

    <Int> 

sym (sym g) = g 

 

e  g1  g2 = e  (g1;g2) 

e  <t> = e 



 More simplifications 

axiom ageInt :: Age ~ Int 

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int> 

 

((x:Int).x) ((3  sym ageInt)  sym (sym ageInt))  

    <Int> 

==>  

((x:Int).x) (3  (sym ageInt ; ageInt)) 

sym g ; g = <t>   -- g :: s ~ t 



 See paper in proceedings for a terminating 
(albeit not confluent) rewrite system to 
optimise coercions 

 Lack of confluence doesn‟t matter; it‟s just to 
keep the compiler from running out of 
space/time 

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int> 

 

((x:Int).x) (3  (sym ageInt ; ageInt)) 

==> 

((x:Int).x) 3   -- Hurrah 





 What if you have stupid top-level axioms? 

 

 

 Then “well typed programs don‟t go wrong” would be 
out of the window 

 Standard solution:  
insist that the 
axioms are  
consistent: 

 

 But how to guarantee consistency of axioms?  Hard to 
check, so instead guarantee by construction. 

axiom bogus :: Int ~ Bool 

Consistency 
If g : T1 1 ~ T2 2,  
where T1, T2 are data types,  
then T1=T2 



 Axioms in Core are not freely written by 
user; they are generated from Haskell 
source code 

 e.g. Newtypes: the axioms are never 
inconsistent 

 newtype Age = MkAge Int 

   axiom ageInt :: Age ~ Int 

  -- Age is not a data type 

Consistency 
If g : T1 1 ~ T2 2,  
where T1, T2 are data types,  
then T1=T2 



 What about type functions?  

 

 

 These generate axioms that would allow us to 
prove 
   Bool ~ F Int Int ~ Char 

 Obvious solution: prohibit overlap. 

 Two equations overlap if their LHSs unify. 

type instance F Int y = Bool 

type instance F x Int = Char 

Consistency 
If g : T1 1 ~ T2 2,  
where T1, T2 are data types,  
then T1=T2 



 What about type functions?  

 

 

 These generate axioms that would allow us to 
prove 
   Bool ~ F Int Int ~ Char 

 Obvious solution: prohibit overlap. 

 Two equations overlap if their LHSs unify. 

type instance F Int y = Bool 

type instance F x Int = Char 

Consistency 
If g : T1 1 ~ T2 2,  
where T1, T2 are data types,  
then T1=T2 

Wrong 



 The LHSs of the F equations don‟t unify 

 But 

 

 

 Eeek!   The combination of non-left-linear LHSs 
and non-termination type families is tricky.  
Very tricky.  Actually very tricky indeed.   

type instance Loop = [Loop]      -- (A)  

 

type instance F a a   = Bool     -- (B) 

type instance F b [b] = Char     -- (C) 

F Loop Loop ~ Bool    -- By (B) 

 

F Loop Loop 

~ F Loop [Loop]      -- By (A) 

~ Char                -- By (C)  



 All is well if replace “unify” by “unify”.  
Roughly, unify allowing infinite types in the 
solving substitution. 

 Then unify((a,a),(b,[b])) succeeds, and 
hence these two equations overlap, and are 
rejected 

 

 

 

 

type instance F a a   = Bool     -- (B) 

type instance F b [b] = Char     -- (C) 



 

 

 

 

 

 

Conjecture 
If all the LHSs of axioms don‟t 
overlap using unify, then the 

axioms are consistent. 

 We think it‟s true 

 GHC uses this criterion 

 But we have not been able to prove it 

 Obvious approach: treat axioms as left-to-right 
rewrite rules, and prove confluence 

 Alas: if rules are (a) non-left-linear and (b) non-
terminating, confluence doesn‟t hold! 

 



 
type instance A = C A 

type instance C x = D x (C x) 

type instance D x x = Int 

 

(1) A   C A  D A (C A)  D (C A) (C A)  Int 

(2) A   C A  C Int 

 

But C Int does not reduce to Int! 

 Notice that this counter-example depends on 

 non-linear left-hand sides 

 non-terminating rewrite rules  

 

 





data Maybe a = Nothing | Just a 

 

newtype Age = Int   -- axAge :: Age ~ Int 

f :: Maybe Age -> Maybe Int 

f Nothing  = Nothing 

f (Just x) = Just (x  axAge) 

f :: Maybe Age -> Maybe Int 

f xs = xs  Maybe axAge 

or 



newtype Age = Int      -- axAge :: Age ~ Int 

 

type family F a :: * 

type instance F Age = Bool  -- axF1 :: F Age ~ Bool 

type instance F Int = Char  -- asF2 :: F Int ~ Char 

 

data T a = MkT (F a) 

f :: T Age -> T Int 

f xs = xs  T axAge 



newtype Age = Int      -- axAge :: Age ~ Int 

 

type family F a :: * 

type instance F Age = Bool  -- axF1 :: F Age ~ Bool 

type instance F Int = Char  -- asF2 :: F Int ~ Char 

 

data T a = MkT (F a) 

f :: T Age -> T Int 

f xs = xs  T axAge 

bad :: Bool -> Char 

bad b = case y of { MkT fi -> fi  axF2 } 

  where 

    x :: T Age = MkT (b  sym axF1)) 

    y :: T Int = f x 



 Two different equalities:  
 representational equality (R) 

 nominal equality (N) 

 Nominal implies representational, but vice versa; 
nominal makes more distinctions 

 Cast (e  g)  takes a representational equality 

 

newtype Age = Int      -- axAge :: Age ~R Int 

 

type instance F Age = Bool  -- axF1 :: F Age ~N Bool 

type instance F Int = Char  -- asF2 :: F Int ~N Char 



 Three different argument “roles” for type constructors: 
 Maybe uses its argument parametrically (role R) 

 W dispatches on its argument (role N) 

 K ignores its argument (role P) 

 To get (T s ~N T t), we need (s ~N  t) 

 To get (T s ~R  T t), we need 
 s ~R t for T=Maybe 

 s ~N t for T=W 

 nothing for T=K 

 

data Maybe a = Nothing | Just a 

data W a = MkT (F a) 

data K a = MkP Int 





 Many more aspects not covered in this talk 
 “Closed” type families with non-linear patterns, 

and proving consistency thereof 

 

 

 

 Heterogeneous equalities; coercions at the type 
level 

 A more complicated and interesting design 
space than we had at first imagined 

type family Eq a b where 

  Eq a a = True 

  Eq a b = False POPL submission 



 Main “new” idea: programs manipulate evidence 
along with types and values 

 This single idea in Core explains multiple source-
language concepts: 
 GADTs 
 Newtypes 
 Type and data families (both open and closed) 

 Typed evidence-manipulating calculi perhaps 
worthy of more study 
 E.g. McBride/Gundry: lambda-cube-like idea applied to 

types/terms/evidence 
 Open problems of establishing consistent axiom sets 

(e.g. non-linear patterns + non-terminating functions… 
help!) 


