
Simon Peyton Jones

Microsoft Research
June 2013

GHC
Haskell

A rich
language

GHC Haskell
A very complicated and

ill-defined language, with
a long user manual, that

almost no one
understands completely

GHC
is

big
and
old

GHC
is

big
and
old

Haskell
Massive language

Hundreds of
pages of user

manual
Syntax has dozens

of data types
100+ constructors

Core
3 types,

15 constructors

Rest of GHC

Source language Typed intermediate
language

T
yp

e
ch

e
ck

D
e
su

ga
r

Haskell Core (the typed IL)

Big Small

Implicitly typed Explicitly typed

Binders typically
un-annotated
 \x. x && y

Every binder is
type-annotated
 \(x:Bool). x && y

Type inference
(complex, slow)

Type checking
(simple, fast)

Complicated to specify
just which programs will
type-check

Very simple to specify
just which programs are
type-correct

Ad-hoc restrictions to
make inference feasible

Very expressive indeed;
simple, uniform

1. Small IL means that analysis, optimisation, and code
generation, handle only a small language.

2. Type checker (“Lint”) for Core is a very powerful
internal consistency check on most of the compiler
 Desugarer must produce well-typed Core

 Optimisation passes must transform well-typed Core to
well-typed Core

3. Design of Core is a powerful sanity check on crazy
type-system extensions to source language. If you
can desugar it into Core, it must be sound; if not,
think again.

 Small IL means that analysis, optimisation, and code
generation, handle only a small language.

 Type checker (“Lint”) for Core is a very powerful
internal consistency check on most of the compiler
 Desugarer must produce well-typed Core

 Optimisation passes must transform well-typed Core to
well-typed Core

 Design of Core is a powerful sanity check on crazy
type-system extensions to source language. If you
can desugar it into Core, it must be sound; if not,
think again.

 Start with lambda calculus. From “Lambda
the Ultimate X” papers we know that lambda
is super-powerful.

 But we need a TYPED lambda calculus

 Idea:
 start with lambda calculus
 sprinkle type annotations

 But:
 Don‟t want to be buried in type annotations
 Types change as you optimise

compose :: (b->c) -> (a->b) -> a -> c

compose = f:b->c. g:a->b. x:a.
 let tmp:b = g x

 in f tmp

 Idea: put type annotations on each binder
(lambda, let), but nowhere else

 But: where is „a‟ bound?

 And: unstable under transformation...

compose :: (b->c) -> (a->b) -> a -> c

compose = f:b->c. g:a->b. x:a.

 let tmp:b = g x

 in f tmp

 Now the type annotations are wrong

 Solution: learn from Girard and Reynolds!

compose isPos neg

= (inline compose:

 f=isPos, g=neg)

 x:a. let tmp:b = neg x

 in isPos tmp

neg :: Int -> Int

isPos :: Int -> Bool

compose :: abc. (b->c) -> (a->b) -> a -> c

compose = abc. f:b->c. g:a->b. x:a.
 let tmp:b = g x

 in f tmp

 Idea: an explicit (big) lambda binds type
variables

compose Int Int Bool isPos neg

= (inline compose:

 a=Int, b=Int, c=Bool, f=isPos, g=neg)

 x:Int. let tmp:Int = neg x

 in isPos tmp

compose :: abc. (b->c) -> (a->b) -> a -> c

compose = abc. f:b->c. g:a->b. x:a.
 let tmp:b = g x

 in f tmp

 Big lambdas are applied to types,
just as little lambdas are applied to values

 Now the types stay correct!

 In GHC, the IL is like what we‟ve seen but
we add:
 Algebraic data type declarations

 Data constructors in terms

 Case expressions

 Let expressions

data Maybe a = Nothing | Just a

x:Int. Just (Just x)

case x of { Nothing -> 0; Just x -> x+1 }

let x:Int = 4 in x+x

data T a where

 T1 :: a. b. b -> (b -> a) -> T a

f :: T a -> a

f = a. \(x:T a).

 case x of

 T1 (b:*) (y:b) (g:b->a) -> g y

‘b’ is not mentioned in
T1’s result type

Pattern-matching on T1
binds the type variable
‘b’ as well as the term

variables ‘y’ and ‘g’

 We say that „b‟ is an existential variable of T1

 T1 :: ab. b -> (b -> a) -> T a

  a. (b.(b, b->a)) -> T a

e ::= x | k
 | e1 e2 | (x:).e
 | e  | (a:).e
 | let bind in e
 | case e of { alt1 .. altn }

bind ::= x:=e
 | rec { x1:1=e1 .. xn:n=en }

alt := C (x1:1).. (xn:n) -> e | DEFAULT -> e

data Expr

 = Var Var

 | Lit Literal

 | App Expr Expr

 | Lam Var Expr -- Both term and type lambda

 | Let Bind Expr

 | Case Expr Var Type [(AltCon, [Var], Expr)]

 | Type Type -- Used for type application

data Var = Id Name Type -- Term variable

 | TyVar Name Kind -- Type variable

data Type = TyVarTy Var

 | LitTy TyLit

 | AppTy Type Type

 | TyConApp TyCon [Type]

 | FunTy Type Type -- Not really necy

 | ForAllTy Var Type

data Expr

 = Var Var

 | Lit Literal

 | App Expr Expr

 | Lam Var Expr -- Both term and type lambda

 | Let Bind Expr

 | Case Expr Var Type [(AltCon, [Var], Expr)]

 | Type Type -- Used for type application

data Var = Id Name Type -- Term variable

 | TyVar Name Kind -- Type variable

data Type = TyVarTy Var

 | LitTy TyLit

 | AppTy Type Type

 | TyConApp TyCon [Type]

 | FunTy Type Type -- Not really necy

 | ForAllTy Var Type

 In our presentation of System F, each variable
occurrence is annotated with its type.

 Hence every term has a unique type

 exprType is pure; needs no “Gamma” argument

 Sharing of the Var means that the apparent
duplication is not real

exprType :: Expr -> Type

exprType (Var v) = varType v

exprType (Lam v a) = Arrow (varType v) (exprType a)

...more equations...

 Type checking (Lint) is fast and easy,
because the rules are syntax-directed

The syntax of a term
encodes its typing derivation

|- r:(Int->Bool). r 4 : (Int -> Bool) -> Bool

r:Int->Bool |- r 4 : Bool

r:Int->Bool |- r : Int -> Bool r:Int->Bool |- 4 : Int

(fabs)

(fapp)

(fvar) (fvar)

 Robust to transformations (ie if the term is
well typed, then the transformed term is
well typed):
 beta reduction

 inlining

 floating lets outward or inward

 case simplification

 Simple, pure

 Type checking (Lint) is easy and fast

exprType :: Expr -> Type

f :: T a -> a -> Bool

f = a. (x:T a) (y:a).

 let (v:Bool) = not y

 in case x of

 T1 (z:Bool) -> v && z

 T2 -> False

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f :: T a -> a -> Bool

f = a. (x:T a) (y:a).

 case x of

 T1 (z:Bool) -> let (v:Bool) = not y

 in v && z

 T2 -> False

Problem 1
not :: Bool -> Bool

but
y::a

Problem 2
Floating the let seems

well-scoped, but gives a
bogus program

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f :: T a -> a -> Bool

f = a. (x:T a) (y:a).

 case x of

 T1 (c:a~Bool) (z:Bool)

 -> let (v:Bool) = not (y  c)

 in v && z

 T2 -> False

Pattern matching on T1
brings into scope some

EVIDENCE that (a=Bool)

We can USE the evidence to
convert (y::a) to type Bool

c is an EVIDENCE VARIABLE

T1 :: a. (a~Bool) -> Bool -> T a

If e: and c: ~,
then (e  c) : 

 Any application of T1 must supply evidence
 T1  e1 e2
where e1 : (~Bool), e2 : Bool

 Here e1 is a value that denotes evidence
that =Bool

 And any pattern match on T1 gives access to
evidence
 case s of { T1 (c:~Bool) (y:Bool) -> ... }
where s : T 

T1 :: a. (a~Bool) -> Bool -> T a

e ::= x | k
 | e1 e2 | (x:).e
 | e  | (a:).e
 | let bind in e
 | case e of { alt1 .. altn }
 | e  | (c:1~2).e
 | e  

Coercion abstraction
and application

A coercion :1~2
is evidence that

t1 and t2 are
equivalent

Type-safe cast

If e: and : ~,
then (e  ) :  The syntax of a term (again)

encodes its typing derivation

data Expr

 = Var Var

 | Lit Literal

 | App Expr Expr

 | Lam Var Expr

 | Let Bind Expr

 | Case Expr Var Type [(AltCon, [Var], Expr)]

 | Type Type

 | Coercion Coercion -- Used for coercion apps

 | Cast Expr Coercion -- Type-safe cast

data Var = Id Name Type -- Term variable

 | TyVar Name Kind -- Type variable

 | CoVar Name Type Type -- Coercion var

 Consider the call:
 T1 Bool <Bool> True : T Bool

 Here <Bool> : Bool ~ Bool

 Can I call T1 Char  True : T Char?

 No: that would need ( : Char ~ Bool) and
there are no such terms 

T1 :: a. (a~Bool) -> Bool -> T a

 ::= <> | ...

 If  :  ~  then sym  :  ~ 

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

g :: T a -> Maybe a

g = a. (x:T a).

 case x of

 T1 (c:a~Bool) (z:Bool)

 -> Just a (z  sym c)

 T2 -> Nothing

Have evidence c:a~Bool
Need evidence
sym c : Bool~a

 ::= <> | sym  | ...

 If i : i ~i
then T 1 ... n : T 1 ... n ~ T 1 ... n

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

g :: T a -> Maybe a

g = a. (x:T a).

 case x of

 T1 (c:a~Bool) (z:Bool)

 -> (Just Bool z)  Maybe (sym c)

 T2 -> Nothing

Have evidence c:a~Bool
Need evidence

Maybe (sym c) : Maybe Bool ~ Maybe a

 ::= <> | sym  | T 1 ... n | ...

 Coercions are computationally irrelevant

 Coercion abstractions, applications, and
casts are erased at runtime

 Just like type abstraction/application,
evidence abstraction/application provides a
simple, elegant, consistent way to
 express programs that use local type equalities

 in a way that is fully robust to program
transformation

 and can be typechecked in an absolutely
straightforward way

 Cost model: coercion abstractions,
applications, and casts are erased at runtime

 Haskell

 No danger of confusing Age with Int

 Type abstraction by limiting visibility of
MkAge

 Cost model: Age and Int are represented
the same way

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age
bumpAge (MkAge a) n = MkAge (a+n)

 Newtype constructor/pattern matching turn
into casts

 (New) Top-level axiom for equivalence
between Age and Int

 Everything else as before

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age
bumpAge (MkAge a) n = MkAge (a+n)

axiom ageInt :: Age ~ Int

bumpAge :: Age -> Int -> Age

bumpAge = \(a:Age) (n:Int).

 (a  ageInt + n)  sym ageInt

 Axioms can be parameterised, of course

 No problem with having a polytype in s~t

type GenericQ r = GQ (forall a. Data a => a -> r)

axiom axGQ r :: GenericQ r ~ a. Data a => a -> r

 More about this on Saturday

type family Add (a::Nat) (b::Nat) :: Nat

type instance Add Z b = b

type instance Add (S a) b = S (Add a b)

axiom axAdd1 b :: Add Z b ~ b

axiom axAdd2 a b :: Add (S a) b ~ S (Add a b)

 We do not want casts to interfere with
optimisation

 And the very same issue comes up when
proving the progress lemma

axiom ageInt :: Age ~ Int

((x:Int).x) 3 ==> 3 -- Beta reduction

((x:Int).x)  g) (3  sym ageInt) ==> ???

 where g :: (Int->Int) ~ (Age->Int)

 Push the cast out of the way

 Something similar for (case (K e)  g of …)

 NB: consistency needed for progress lemma

g :: (1 -> 2) ~ (1 –> 2)

nth[1] g :: 1 ~ 1

nth[2] g :: 2 ~ 2

(e1  g) e2

==>

(e1 (e2  sym (nth[1] g))  nth[2] g

 All this pushing around just makes the coercions
bigger! Compiler gets slower, debugging the
compiler gets harder.

 Solution: rewrite the coercions to simpler form

axiom ageInt :: Age ~ Int

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>

((x:Int).x)  g) (3  sym ageInt)

==>

((x:Int).x) ((3  sym ageInt)  sym (nth[1] g))

  nth[2] g

nth[1] g

= nth[1] (sym ageInt -> <Int>)

= sym ageInt

A coercion
built by

composition

Decomposition nth[2] g

= <Int>

 More simplifications

axiom ageInt :: Age ~ Int

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>

((x:Int).x) ((3  sym ageInt)  sym (nth[1] g))

  nth[2] g

==>

((x:Int).x) ((3  sym ageInt)  sym (sym ageInt))

  <Int>

sym (sym g) = g

e  g1  g2 = e  (g1;g2)

e  <t> = e

 More simplifications

axiom ageInt :: Age ~ Int

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>

((x:Int).x) ((3  sym ageInt)  sym (sym ageInt))

  <Int>

==>

((x:Int).x) (3  (sym ageInt ; ageInt))

sym g ; g = <t> -- g :: s ~ t

 See paper in proceedings for a terminating
(albeit not confluent) rewrite system to
optimise coercions

 Lack of confluence doesn‟t matter; it‟s just to
keep the compiler from running out of
space/time

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>

((x:Int).x) (3  (sym ageInt ; ageInt))

==>

((x:Int).x) 3 -- Hurrah

 What if you have stupid top-level axioms?

 Then “well typed programs don‟t go wrong” would be
out of the window

 Standard solution:
insist that the
axioms are
consistent:

 But how to guarantee consistency of axioms? Hard to
check, so instead guarantee by construction.

axiom bogus :: Int ~ Bool

Consistency
If g : T1 1 ~ T2 2,
where T1, T2 are data types,
then T1=T2

 Axioms in Core are not freely written by
user; they are generated from Haskell
source code

 e.g. Newtypes: the axioms are never
inconsistent

 newtype Age = MkAge Int

 axiom ageInt :: Age ~ Int

 -- Age is not a data type

Consistency
If g : T1 1 ~ T2 2,
where T1, T2 are data types,
then T1=T2

 What about type functions?

 These generate axioms that would allow us to
prove
 Bool ~ F Int Int ~ Char

 Obvious solution: prohibit overlap.

 Two equations overlap if their LHSs unify.

type instance F Int y = Bool

type instance F x Int = Char

Consistency
If g : T1 1 ~ T2 2,
where T1, T2 are data types,
then T1=T2

 What about type functions?

 These generate axioms that would allow us to
prove
 Bool ~ F Int Int ~ Char

 Obvious solution: prohibit overlap.

 Two equations overlap if their LHSs unify.

type instance F Int y = Bool

type instance F x Int = Char

Consistency
If g : T1 1 ~ T2 2,
where T1, T2 are data types,
then T1=T2

Wrong

 The LHSs of the F equations don‟t unify

 But

 Eeek! The combination of non-left-linear LHSs
and non-termination type families is tricky.
Very tricky. Actually very tricky indeed.

type instance Loop = [Loop] -- (A)

type instance F a a = Bool -- (B)

type instance F b [b] = Char -- (C)

F Loop Loop ~ Bool -- By (B)

F Loop Loop

~ F Loop [Loop] -- By (A)

~ Char -- By (C)

 All is well if replace “unify” by “unify”.
Roughly, unify allowing infinite types in the
solving substitution.

 Then unify((a,a),(b,[b])) succeeds, and
hence these two equations overlap, and are
rejected

type instance F a a = Bool -- (B)

type instance F b [b] = Char -- (C)

Conjecture
If all the LHSs of axioms don‟t
overlap using unify, then the

axioms are consistent.

 We think it‟s true

 GHC uses this criterion

 But we have not been able to prove it

 Obvious approach: treat axioms as left-to-right
rewrite rules, and prove confluence

 Alas: if rules are (a) non-left-linear and (b) non-
terminating, confluence doesn‟t hold!

type instance A = C A

type instance C x = D x (C x)

type instance D x x = Int

(1) A  C A  D A (C A)  D (C A) (C A)  Int

(2) A  C A  C Int

But C Int does not reduce to Int!

 Notice that this counter-example depends on

 non-linear left-hand sides

 non-terminating rewrite rules

data Maybe a = Nothing | Just a

newtype Age = Int -- axAge :: Age ~ Int

f :: Maybe Age -> Maybe Int

f Nothing = Nothing

f (Just x) = Just (x  axAge)

f :: Maybe Age -> Maybe Int

f xs = xs  Maybe axAge

or

newtype Age = Int -- axAge :: Age ~ Int

type family F a :: *

type instance F Age = Bool -- axF1 :: F Age ~ Bool

type instance F Int = Char -- asF2 :: F Int ~ Char

data T a = MkT (F a)

f :: T Age -> T Int

f xs = xs  T axAge

newtype Age = Int -- axAge :: Age ~ Int

type family F a :: *

type instance F Age = Bool -- axF1 :: F Age ~ Bool

type instance F Int = Char -- asF2 :: F Int ~ Char

data T a = MkT (F a)

f :: T Age -> T Int

f xs = xs  T axAge

bad :: Bool -> Char

bad b = case y of { MkT fi -> fi  axF2 }

 where

 x :: T Age = MkT (b  sym axF1))

 y :: T Int = f x

 Two different equalities:
 representational equality (R)

 nominal equality (N)

 Nominal implies representational, but vice versa;
nominal makes more distinctions

 Cast (e  g) takes a representational equality

newtype Age = Int -- axAge :: Age ~R Int

type instance F Age = Bool -- axF1 :: F Age ~N Bool

type instance F Int = Char -- asF2 :: F Int ~N Char

 Three different argument “roles” for type constructors:
 Maybe uses its argument parametrically (role R)

 W dispatches on its argument (role N)

 K ignores its argument (role P)

 To get (T s ~N T t), we need (s ~N t)

 To get (T s ~R T t), we need
 s ~R t for T=Maybe

 s ~N t for T=W

 nothing for T=K

data Maybe a = Nothing | Just a

data W a = MkT (F a)

data K a = MkP Int

 Many more aspects not covered in this talk
 “Closed” type families with non-linear patterns,

and proving consistency thereof

 Heterogeneous equalities; coercions at the type
level

 A more complicated and interesting design
space than we had at first imagined

type family Eq a b where

 Eq a a = True

 Eq a b = False POPL submission

 Main “new” idea: programs manipulate evidence
along with types and values

 This single idea in Core explains multiple source-
language concepts:
 GADTs
 Newtypes
 Type and data families (both open and closed)

 Typed evidence-manipulating calculi perhaps
worthy of more study
 E.g. McBride/Gundry: lambda-cube-like idea applied to

types/terms/evidence
 Open problems of establishing consistent axiom sets

(e.g. non-linear patterns + non-terminating functions…
help!)

