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 Lightweight (so programmers use them) 

 Machine checked (fully automated, every 
compilation) 

 Ubiquitous (so programmers can‟t avoid them) 

Static typing is by far the most 
widely-used program verification 

technology in use today: particularly 
good cost/benefit ratio 



 Types guarantee the absence of certain classes of 
errors: “well typed programs don‟t go wrong” 
 True + „c‟ 
 Seg-faults 

 The static type of a function is a partial, machine-
checked specification: its says something (but not too 
much), to a person, about what the function does 
     reverse :: [a] -> [a]  

 Types are a design language; types are the UML of 
Haskell 

 Types massively support interactive program 
development (Intellisense, F# type providers) 

 The BIGGEST MERIT (though seldom mentioned) of 
types is their support for software maintenance 



Sometimes the type system gets in the way 

 

 

 

 

Now I want a list of Char, but I do not want to 
duplicate all that code. 

 

 

data IntList = Nil | Cons Int IntList 

 

lengthI :: IntList -> Int 

lengthI Nil         = 0 

lengthI (Cons _ xs) = 1 + lengthI xs 



 Dynamically typed language   
 

 

 

 

 More sophisticated type system 

 

lengthI :: Value -> Value 

lengthI Nil         = 0 

lengthI (Cons _ xs) = 1 + lengthI xs 

data List a = Nil | Cons a (List a) 

 

length :: List a -> Int 

length Nil         = 0 

length (Cons _ xs) = 1 + length xs 
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 Build on the demonstrated success of static 
types 

 ...guided by type theory, dependent types 

 ...so that more good programs are accepted 
(and more bad ones rejected) 

 ...without losing the Joyful Properties 
(comprehensible to programmers) 





 OrOrOr   data Maybe a  = Nothing | Just a 

data Maybe a where 
    Just :: a -> Maybe a 
    Nothing :: Maybe a 

Or 

These two 
declarations 

mean the 
same thing  



 
data Term a where 
 Lit  :: Int -> Term Int 
 Succ  :: Term Int -> Term Int 
 IsZero :: Term Int -> Term Bool  
 If  :: Term Bool -> Term a -> Term a -> Term a 

eval :: Term a -> a 
eval (Lit i)  = i 
eval (Succ t)  = 1 + eval t 
eval (IsZero i)  = eval i == 0 
eval (If b e1 e2)  = if eval b then eval e1  
                                           else eval e2 

In here 
a~Int 



 What type should we infer for f? 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



 f doesn‟t have a principal type 
 f :: T a -> Bool -> Bool 

 f :: T a -> a -> a 

 So reject the definition; unless programmer supplies a 
type signature for f 

 Tricky to specify and implement (e.g. do not want to 
require type signatures for all functions!) 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



 data OC = Open | Closed 
 
data Stmt in out where 
    Label  :: Label -> Stmt Closed Open 
 Assign  :: Reg -> Expr -> Stmt Open Open 
    Call  :: Expr -> [Expr] -> Stmt Open Open 
    Goto  :: Label -> Stmt Open Closed 
 
data StmtSeq in out where 
    Single :: Stmt in out -> StmtSeq in out 
    Join :: StmtSeq in Open -> StmtSeq Open out  
            -> StmtSeq in out 



sf1 >>> sf2 

data SF a b where 
   -- A function from streams of a‟s to streams of b‟s 
 
arr   :: (a->b) -> SF a b 
(>>>) :: SF a b -> SF b c -> SF a c 

 Yampa is a DSL for describing stream 
functions 

SF a b Stream of a‟s Stream of b‟s 

SF a b SF b c 
Stream of a‟s Stream of c‟s 



data SF a b where 
   SF :: (a -> (b, SF a b)) -> SF a b 
 
arr :: (a->b) -> SF a b 
arr f = result 
   where  
      result = SF (\x -> (f x, result)) 
 
(>>>) :: SF a b -> SF b c -> SF a c 
(SF f1) >>> (SF f2) = SF fr 
  where  
     fr x = let (r1, sf1) = f1 x 
                     (r2,sf2) = f2 r1 
               in (r2, sf1 >>> sf2)  



 GOAL: 

 This optimisation (and some others like it) is 
really really important in practice. 

data SF a b where 
   SF :: (a -> (b, SF a b)) -> SF a b 
   SFId :: SF a a  
 
sfId :: SF a a 
sfId = SFId 
 
(>>>) :: SF a b -> SF b c -> SF a c 
SFId >>> sf  = sf 
sf >>> SFId  = sf 
(SF f1) >>> (SF f2) = …as before… 

arr id >>> f = f 

Absolutely essential 
that we have a 

GADT, so the result 
type can be SF a a 

Only well typed 
because SFId : SF a a 



 
Time without 
optimisations 

Time with 
optimisations 





 Which of these user-written  
type signatures are ok? 

data Maybe a    = Nothing  

                | Just a 

 

data Either a b = Left a 

                | Right b 

f1 :: Maybe Int -> Maybe Bool 

f2 :: Maybe -> Int 

f3 :: Either Int -> Maybe Int 

f4 :: Maybe Either -> Int 



 Which of these user-written  
type signatures are ok? 

data Maybe a    = Nothing  

                | Just a 

 

data Either a b = Left a 

                | Right b 

f1 :: Maybe Int -> Maybe Bool -- Yes   

f2 :: Maybe -> Int -- No 

f3 :: Either Int -> Maybe Int -- No 

f4 :: Either Int (Maybe Bool) -- Yes 

f4 :: Maybe Either -> Int -- No 



 Which of these user-written  
type signatures are ok? 

data Maybe a    = Nothing  

                | Just a 

 

data Either a b = Left a 

                | Right b 

f1 :: Maybe Int -> Maybe Bool -- Yes   

f2 :: Maybe -> Int -- No 

f3 :: Either Int -> Maybe Int -- No 

f4 :: Either Int (Maybe Bool) -- Yes 

f4 :: Maybe Either -> Int -- No 



data Maybe a    = Nothing | Just a 

  -- Maybe :: * -> * 

 

data Either a b = Left a | Right b 

  -- Either :: * -> * -> * 

 

-- Built-in definition for (->) 

-- (->) :: * -> * -> * 

f2 :: Maybe -> Int -- No 

Kind error 
(->) requires “*” as its first argument, 

but Maybe has kind (* -> *) 

* is the 
kind of 
types 



 Just as  
 Types classify terms 

eg 3 :: Int, (\x.x+1) :: Int -> Int 
 Kinds classify types 

eg  Int :: *, Maybe :: * -> *, Maybe Int :: * 
 

 Just as  
 Types stop you building nonsensical terms  

eg (True + 4) 
 Kinds stop you building nonsensical types  

eg (Maybe  Maybe) 
 

 ::= *  
    |  ->   



 Abstract out the common bits 

sum :: [Int] -> Int 

sum [] = 0 

sum (x:xs) = x + sum xs 

 

product :: [Float] -> Float 

product [] = 1 

product (x:xs) = x * product xs 

foldr :: (a->b->b) -> b -> [a] -> b 

foldr k z [] = z 

foldr k z (x:xs) = x `k` foldr k z xs 

 

sum = foldr (+) 0 

product = foldr (*) 1 



foldr :: (a->b->b) -> b -> [a] -> b 

foldr k z [] = z 

foldr k z (x:xs) = x `k` foldr k z xs 

 

sum = foldr (+) 0 

product = foldr (*) 1 

 A first order language does not support 
abstraction of functions.  Sad.  So sad. 

 The language is “getting in the way” 

 Higher order => same language with fewer 
restrictions 

Note that we abstract a 
FUNCTION 



 data RoseTree a = RLeaf a  

 | RNode [RoseTree a] 

data BinTree a = BLeaf a 

               | BNode (Pair (BinTree a)) 

 

data Pair a = MkPair a a 



Remove syntactic sugar 

data RoseTree a = RLeaf a  

                | RNode [RoseTree a] 

data RoseTree a = RLeaf a  

 | RNode ([] (RoseTree a)) 

data BinTree a = BLeaf a 

               | BNode (Pair (BinTree a)) 

 

-- [] :: * -> *          The list constructor 

means exactly the same as 



 „a‟ stands for a type 

 „f‟ stands for a type constructor 

data Tree f a = Leaf a  

 | Node (f (Tree f a)) 

 

type RoseTree a = Tree []   a 

type BinTree  a = Tree Pair a 

type AnnTree  a = Tree AnnPair a 

 

data Pair a    = P a a 

data AnnPair a = AP String a a 



 „a‟ stands for a type 

 „f‟ stands for a type constructor 

 

 Abstracting over something of kind (*->*) is 
very useful (cf foldr); same language, fewer 
restrictions 

 You can do this in Haskell (since the beginning), 
but not in ML, Java, .NET etc 

 

data Tree f a = Leaf a  

 | Node (f (Tree f a)) 

      a :: * 
      f :: * -> * 
 Tree :: (*->*) -> * -> * 

 ::= *  
    |  ->   



 Being able to abstract over a higher-kinded „m‟ 
is utterly crucial to code re-use 

 We can give a kind to Monad: 
 Monad :: (*->*) -> Constraint 

class Monad m where 

  return :: a -> m a 

  (>>=) :: m a -> (a -> m b) -> m b 

 

sequence :: Monad m => [m a] -> m [a] 

sequence [] = return [] 

sequence (a:as) = a >>= \x -> 

                  sequence as >>= \xs ->  

                  return (x:xs) 





 But is this ok too? 

 

 

 What kind does T have? 
 T :: (* -> *) -> * -> *? 
 T :: ((* -> *) -> *) -> (* -> *) -> *? 

 Haskell 98 “defaults” to the first,  
and hence rejects T2 
 

data T f a = MkT (f a) 

data F f = MkF (f Int) 

type T2 = T F Maybe 

data Maybe a = Nothing | Just a 

type T1 = T Maybe Int 

F :: (*->*) -> * 

Maybe :: * -> * 



 What kind does T have? 
 T :: (* -> *) -> * -> *? 

 T :: ((* -> *) -> *) -> (* -> *) -> *? 

 Haskell 98 “defaults” to the first 

 This is Obviously Wrong!  We want... 
 

data T f a = MkT (f a) 



 What kind does T have? 
 T :: (* -> *) -> * -> *? 

 T :: ((* -> *) -> *) -> (* -> *) -> *? 

 Haskell 98 “defaults” to the first 

 This is obviously wrong!  We want... 
 

data T f a = MkT (f a) 

T :: k. (k->*) -> k -> * 

Kind polymorphism 



Syntax of kinds 

data T f a = MkT (f a) 

T :: k. (k->*) -> k -> * 

 ::= * |  ->  
        | k.  
        |  k 



And hence: 
 
 
 
 

So poly-kinded type constructors mean that 
terms too must be poly-kinded. 
 

data T f a = MkT (f a) 

T :: k. (k->*) -> k -> * 

MkT :: k. (f:k->*) (a:k). 
    f a -> T f a 

A kind 

A type 



 Just as we infer the most general type of a 
function definition, so we should infer the 
most general kind of a type definition 

 Just like for functions, the type constructor 
can be used only monomorphically its own 
RHS. 
 
 
 
T2 forces T‟s kind to be (*->*) -> * 

 

data T f a = MkT (f a) 

           | T2 (T Maybe Int) 



 Haskell today: 

data TypeRep = TyCon String 

             | TyApp TypeRep TypeRep 

 

class Typeable a where 

  typeOf :: a -> TypeRep 

 

instance Typeable Int where 

  typeOf _ = TyCon “Int” 

 

instance Typeable a  

      => Typeable (Maybe a) where 

  typeOf _ = TyApp (TyCon “Maybe”)  

                   (typeOf (undefined :: a)) 



instance Typeable a  

      => Typeable (Maybe a) where 

  typeOf _ = TyApp (TyCon “Maybe”)  

                   (typeOf (undefined :: a)) 

instance (Typeable f, Typeable a) 

      => Typeable (f a) where 

  typeOf _ = TyApp (typeOf (undefined :: f)) 

                   (typeOf (undefined :: a)) 

No! 

Yes! 

But: 

 Typeable  :: * -> Constraint,  but  f :: *->* 

 (undefined :: f) makes no sense, since f :: *->* 



 Typeable :: k.  k -> Constraint 
typeOf :: k a:k. Typeable a =>  
                      (p:k->*). p a -> TypeRep 
Proxy :: k.  k -> * 

 Now everything is cool: 

class Typeable a where 

  typeOf :: p a -> TypeRep 

 

data Proxy a 

instance (Typeable f, Typeable a) 

      => Typeable (f a) where 

  typeOf _  

    = TyApp (typeOf (undefined :: Proxy f)) 

            (typeOf (undefined :: Proxy a)) 



 Type inference becomes a bit more tricky –
but not much. 
 Instantiate f :: forall k. forall (a:k). tau 

with a fresh kind unification variable for k,  
and  a fresh type unification variable for a 

 When unifying (a ~ some-type), unify a‟s kind with 
some-type‟s kind. 

 Intermediate language (System F) 
 Already has type abstraction and application 

 Add kind abstraction and application 

 





 

 

 What is Zero, Succ? Kind of Vec? 

 
 

 

 Yuk!  Nothing to stop you writing stupid types: 
   f :: Vec Int a -> Vec Bool a 

data Vec n a where 

  Vnil  :: Vec Zero a 

  Vcons :: a -> Vec n a -> Vec (Succ n) a 

data Zero 

data Succ a 

-- Vec :: * -> * -> * 



 Haskell is a strongly typed language 

 But programming at the type level is entirely 
un-typed – or rather uni-typed, with one 
type, *. 

 How embarrassing is that? 

data Zero 

data Succ a 

-- Vec :: * -> * -> * 



 Now the type (Vec Int a) is ill-kinded; hurrah 

 Nat is a kind, here introduced by „datakind‟ 

datakind Nat = Zero | Succ Nat 

 

data Vec n a where 

  Vnil  :: Vec Zero a 

  Vcons :: a -> Vec n a -> Vec (Succ n) a 

 Vec :: Nat -> * -> * 



 Nat is an ordinary type, but it is automatically 
promoted to be a kind as well 

 Its constuctors are promoted to be (uninhabited) 
types 

 Mostly: simple, easy 

data Nat = Zero | Succ Nat 

 

data Vec n a where 

  Vnil  :: Vec Zero a 

  Vcons :: a -> Vec n a -> Vec (Succ n) a 

 Vec :: Nat -> * -> * 



Add :: Nat -> Nat -> Nat 

data Nat = Zero | Succ Nat 

 

type family Add (a::Nat) (b::Nat) :: Nat 

 

type instance Add Z        n = n 

type instance Add (Succ n) m = Succ (Add n m) 



 Where there is only one Foo (type or data constructor) 
use that 

 If both Foo‟s are in scope, “Foo” in a type means the type 
constructor (backward compaitible) 

 If both Foo‟s are in scope, „Foo means the data 
constructor 

data Foo = Foo Int 

 

f :: T Foo -> Int 

Type constructor 

Data constructor 

Which?   



 Which data types are promoted? 

 

 

 

 

 Keep it simple: only simple, vanilla, types with 
kinds of form T :: * -> * -> … -> * 

 Avoids the need for 
 A sort system (to classify kinds!) 
 Kind equalities (for GADTs) 

data T where 

  MkT :: a -> (a->Int) -> T 

 

data S where 

  MkS :: S Int 

Existentials?   

GADTs?   



 Take lessons from term :: type 
and apply them to  type :: kind 
 Polymorphism 
 Constraint kind 
 Data types 

 Hopefully: no new concepts.  Re-use 
programmers intuitions abou how typing 
works, one level up. 

 Fits smoothly into the IL 

 Result: world peace 


