Fun with kinds and GADTs

Simon Peyton Jones, (Microsoft Research)
with lots of contributions from Dimitrios Vytiniotis,
Stephanie Weirich, Brent Yorgey, Julien Cretin, Pedro Magalhaes

August 2013
Focus

Programmers

Programming language implementors

Theorists
Focus

- Type inference

Programmers: YES

Professional language implementors: NO

Theorists: NO
Types are wildly successful

Static typing is by far the most widely-used program verification technology in use today: particularly good cost/benefit ratio

- Lightweight (so programmers use them)
- Machine checked (fully automated, every compilation)
- Ubiquitous (so programmers can't avoid them)
The joy of types

- Types guarantee the absence of certain classes of errors: "well typed programs don't go wrong"
 - True + 'c'
 - Seg-faults

- The static type of a function is a partial, machine-checked specification: it says something (but not too much), to a person, about what the function does.

 `reverse :: [a] -> [a]`

- Types are a design language; types are the UML of Haskell

- Types massively support interactive program development (Intellisense, F# type providers)

- The BIGGEST MERIT (though seldom mentioned) of types is their support for software maintenance
The pain of types

Sometimes the type system gets in the way

```haskell
data IntList = Nil | Cons Int IntList

lengthI :: IntList -> Int
lengthI Nil = 0
lengthI (Cons _ xs) = 1 + lengthI xs
```

Now I want a list of Char, but I do not want to duplicate all that code.
Choices

- **Dynamically typed language**

  ```
  lengthI :: Value -> Value
  lengthI Nil = 0
  lengthI (Cons _ xs) = 1 + lengthI xs
  ```

- **More sophisticated type system**

  ```
  data List a = Nil | Cons a (List a)
  
  length :: List a -> Int
  length Nil = 0
  length (Cons _ xs) = 1 + length xs
  ```
Bad type systems

Programs that are well typed

All programs

Programs that work

Region of Abysmal Pain
Programs that are well typed

Programs that work

Smaller Region of Abysmal Pain

All programs
Type systems in practical use

- Simple types
- ML polymorphism + algebraic data types
- Type classes
- GADTs
- Type families, kind polymorphism etc

ML Haskell
Haskell has become a laboratory for exploring crazy type systems.
The spectrum of confidence
Increasing confidence that the program does what you want

Hammer
(cheap, easy to use, limited effectiveness)

Tactical nuclear weapon
(expensive, needs a trained user, but very effective indeed)

No types
ML
Agda
Coq

Simple types
Haskell
Idris

"Machine to produce papers"
David Christiansen

Power over usability: no PhD
Power over usability: PhD required

Type systems vary A LOT
Plan for World Domination

- Build on the demonstrated success of static types
- ...guided by type theory, dependent types
- ...so that more good programs are accepted (and more bad ones rejected)
- ...without losing the Joyful Properties (comprehensible to programmers)
EPISODE 1

GADTS
GADT syntax

data Maybe a = Nothing | Just a

Or

data Maybe a where
 Just :: a -> Maybe a
 Nothing :: Maybe a

These two declarations mean the same thing.
Just like Agda

data Term a where
 Lit :: Int -> Term Int
 Succ :: Term Int -> Term Int
 IsZero :: Term Int -> Term Bool
 If :: Term Bool -> Term a -> Term a -> Term a

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
What about type inference?

```haskell
data T a where
  T1 :: Bool -> T Bool
  T2 :: T a

f x y = case x of
  T1 z -> True
  T2   -> y
```

- What type should we infer for f?
What about type inference?

- `f` doesn't have a principal type
 - `f :: T a -> Bool -> Bool`
 - `f :: T a -> a -> a`

- So reject the definition; unless programmer supplies a type signature for `f`

- Tricky to specify and implement (e.g. do not want to require type signatures for all functions!)
Example: Hoopl [HS2010]

data OC = Open | Closed

data Stmt in out where
 Label :: Label -> Stmt Closed Open
 Assign :: Reg -> Expr -> Stmt Open Open
 Call :: Expr -> [Expr] -> Stmt Open Open
 Goto :: Label -> Stmt Open Closed

data StmtSeq in out where
 Single :: Stmt in out -> StmtSeq in out
 Join :: StmtSeq in Open -> StmtSeq Open out
 -> StmtSeq in out
War story: Yampa [ICFP'05]

- Yampa is a DSL for describing stream functions

\[
\text{data SF } a \ b \ \\
\ \\
\text{-- A function from streams of } a's \text{ to streams of } b's
\]

\[
\text{arr :: } (a \rightarrow b) \rightarrow \text{SF } a \ b \\
(\gg\gg) :: \text{SF } a \ b \rightarrow \text{SF } b \ c \rightarrow \text{SF } a \ c
\]
data SF a b where
 SF :: (a -> (b, SF a b)) -> SF a b

arr :: (a->b) -> SF a b
arr f = result
 where
 result = SF (\x -> (f x, result))

(>>>) :: SF a b -> SF b c -> SF a c
(SF f1) >>> (SF f2) = SF fr
 where
 fr x = let (r1, sf1) = f1 x
 (r2,sf2) = f2 r1
 in (r2, sf1 >>> sf2)
GOAL: `arr id >>> f = f`

This optimisation (and some others like it) is really really important in practice.

```haskell
data SF a b where
  SF :: (a -> (b, SF a b)) -> SF a b
  SFId :: SF a a

sfId :: SF a a
sfId = SFId

(>>>) :: SF a b -> SF b c -> SF a c
SFId >>> sf = sf
sf >>> SFId = sf
(SF f1) >>> (SF f2) = ...as before...
```

Absolutely essential that we have a GADT, so the result type can be `SF a a`

Only well typed because `SFId : SF a a`
Big speedups [ICFP’05]

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>T_S [s]</th>
<th>T_G [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.41</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.74</td>
<td>0.22</td>
</tr>
<tr>
<td>3</td>
<td>0.45</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>1.29</td>
<td>0.07</td>
</tr>
<tr>
<td>5</td>
<td>1.95</td>
<td>0.08</td>
</tr>
<tr>
<td>6</td>
<td>1.48</td>
<td>0.69</td>
</tr>
<tr>
<td>7</td>
<td>2.85</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 3. Micro benchmark performance. Averages over five runs.
EPISODE 2

HIGHER KINDS
Which of these user-written type signatures are ok?

- `f1 :: Maybe Int -> Maybe Bool`
- `f2 :: Maybe -> Int`
- `f3 :: Either Int -> Maybe Int`
- `f4 :: Maybe Either -> Int`
Which of these user-written type signatures are ok?

- data Maybe a = Nothing
 | Just a

- data Either a b = Left a
 | Right b

- f1 :: Maybe Int -> Maybe Bool -- Yes
- f2 :: Maybe -> Int -- No
- f3 :: Either Int -> Maybe Int -- No
- f4 :: Either Int (Maybe Bool) -- Yes
- f4 :: Maybe Either -> Int -- No
Which of these user-written type signatures are ok?

```haskell
data Maybe a = Nothing |
               Just a

data Either a b = Left a |
                 Right b
```

- `f1 :: Maybe Int -> Maybe Bool` -- Yes
- `f2 :: Maybe Int -> Int` -- No
- `f3 :: Either Int -> Maybe Int` -- No
- `f4 :: Either Int (Maybe Bool)` -- Yes
- `f4 :: Maybe Either -> Int` -- No

Just as we type-check user-written terms, so we must kind-check user-written types!
data Maybe a = Nothing | Just a
 -- Maybe :: * -> *

data Either a b = Left a | Right b
 -- Either :: * -> * -> *

-- Built-in definition for (->)
-- (->) :: * -> * -> *

f2 :: Maybe -> Int
 -- No

* is the kind of types

Kind error
(->) requires "*" as its first argument, but Maybe has kind (* -> *)
Kinds in Haskell

- Just as
 - **Types** classify **terms**
 eg 3 :: Int, (\x.x+1) :: Int -> Int
 - **Kinds** classify **types**
 eg Int :: *, Maybe :: * -> *, Maybe Int :: *

- Just as
 - **Types** stop you building nonsensical **terms**
 eg (True + 4)
 - **Kinds** stop you building nonsensical **types**
 eg (Maybe Maybe)
Reuse via abstraction

Abstract out the common bits

```
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

product :: [Float] -> Float
product [] = 1
product (x:xs) = x * product xs

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr k z [] = z
foldr k z (x:xs) = x `k` foldr k z xs

sum = foldr (+) 0
product = foldr (*) 1
```
A first order language does not support abstraction of functions. Sad. So sad.

The language is “getting in the way”

Higher order => same language with fewer restrictions

Note that we abstract a FUNCTION

foldr :: (a->b->b) -> b -> [a] -> b
foldr k z [] = z
foldr k z (x:xs) = x `k` foldr k z xs

sum = foldr (+) 0
product = foldr (*) 1
It's the same for types!

```haskell
data RoseTree a = RLeaf a
                | RNode [RoseTree a]

data BinTree a = BLeaf a
                | BNode (Pair (BinTree a))

data Pair a = MkPair a a
```
It's the same for types!

Remove syntactic sugar

```haskell
data RoseTree a = RLeaf a
               | RNode ([] (RoseTree a))
data BinTree a = BLeaf a
               | BNode (Pair (BinTree a))
```

-- [] :: * -> * The list constructor

means exactly the same as

```haskell
data RoseTree a = RLeaf a
               | RNode [RoseTree a]
```
data Tree f a = Leaf a
 | Node (f (Tree f a))

type RoseTree a = Tree [] a

type BinTree a = Tree Pair a

type AnnTree a = Tree AnnPair a

data Pair a = P a a

data AnnPair a = AP String a a

- 'a' stands for a type
- 'f' stands for a type constructor
`a` stands for a type

`f` stands for a type constructor

Abstracting over something of kind (*->*) is very useful (cf foldr); same language, fewer restrictions

You can do this in Haskell (since the beginning), but not in ML, Java, .NET etc
Being able to abstract over a higher-kindled ‘m’ is utterly crucial to code re-use.

We can give a kind to Monad:

Monad :: (*->*) -> Constraint
EPISODE 3

KIND POLYMORPHISM
But kinds are Too Weedy

\[
data \ T \ f \ a = \text{MkT} \ (f\ a)
\]

data Maybe a = Nothing | Just a

\[\text{type } T1 = T \text{ Maybe } \text{Int}\]

- But is this ok too?

data F f = MkF (f Int)

\[\text{type } T2 = T \text{ F } \text{Maybe}\]

- What kind does T have?
 - \[T :: (* \rightarrow *) \rightarrow * \rightarrow *\]
 - \[T :: ((* \rightarrow *) \rightarrow *) \rightarrow (* \rightarrow *) \rightarrow *\]

- Haskell 98 "defaults" to the first, and hence rejects T2
data T f a = MkT (f a)

- What kind does T have?
 - T :: (* -> *) -> * -> *?
 - T :: ((* -> *) -> *) -> (* -> *) -> *?

- Haskell 98 “defaults” to the first

- This is Obviously Wrong! We want...
What kind does T have?
- \(T :: (*) \rightarrow * \rightarrow * \rightarrow * \)?
- \(T :: ((*) \rightarrow *) \rightarrow *) \rightarrow *) \rightarrow * \)?

Haskell 98 “defaults” to the first

This is obviously wrong! We want...

\[T :: \forall k. (k \rightarrow *) \rightarrow k \rightarrow * \]
Kind polymorphism

data T f a = MkT (f a)

T ::: ∀k. (k→*) → k → *

Syntax of kinds

κ ::= * | κ → κ
| ∀k. κ
| k
And hence:

\[
T :: \forall k. (k \rightarrow *) \rightarrow k \rightarrow *
\]

So poly-kindred type constructors mean that terms too must be poly-kindred.
Kind inference

- Just as we infer the most general type of a function definition, so we should infer the most general kind of a type definition.

- Just like for functions, the type constructor can be used only monomorphically its own RHS.

```haskell
data T f a = MkT (f a) 
  | T2 (T Maybe Int)
```

T2 forces T’s kind to be \((**\to**)\) \(\to \star\)
data TypeRep = TyCon String
 | TyApp TypeRep TypeRep

class Typeable a where
 typeOf :: a -> TypeRep

instance Typeable Int where
 typeOf _ = TyCon "Int"

instance Typeable a => Typeable (Maybe a) where
 typeOf _ = TyApp (TyCon "Maybe"
 (typeOf (undefined :: a)))
Same story for type classes

instance Typeable a => Typeable (Maybe a) where
 typeOf _ = TyApp (TyCon "Maybe")
 (typeOf (undefined :: a))

instance (Typeable f, Typeable a)
 => Typeable (f a) where
 typeOf _ = TyApp (typeOf (undefined :: f))
 (typeOf (undefined :: a))

But:
- Typeable :: * -> Constraint, but f :: *->*
- (undefined :: f) makes no sense, since f :: *->*
What we want: a poly-kindred class

class Typeable a where
 typeOf :: p a -> TypeRep

data Proxy a

- Typeable :: \(\forall k. \; k \rightarrow \text{Constraint} \)

 typeOf :: \(\forall k \; \forall a:k. \; \text{Typeable} \; a \rightarrow \)

 \(\forall (p:k \rightarrow *) \). \; p a \rightarrow \text{TypeRep} \)

Proxy :: \(\forall k. \; k \rightarrow * \)

instance (Typeable f, Typeable a) => Typeable (f a) where

 typeOf __ = TyApp (typeOf (undefined :: Proxy f))
 (typeOf (undefined :: Proxy a))
Type inference becomes a bit more tricky — but not much.

- Instantiate $f :: \forall k. \forall (a:k). \tau$ with a fresh kind unification variable for k, and a fresh type unification variable for a.
- When unifying ($a \sim \text{some-type}$), unify a’s kind with some-type’s kind.

Intermediate language (System F)
- Already has type abstraction and application
- Add kind abstraction and application
EPISODE 4

PROMOTING DATA TYPES
What is Zero, Succ? Kind of Vec?

Yuk! Nothing to stop you writing stupid types:
\[
f :: \text{Vec} \text{Int} a \rightarrow \text{Vec} \text{Bool} a
\]
Haskell is a strongly typed language

But programming at the type level is entirely un-typed - or rather uni-typed, with one type, *.

How embarrassing is that?

data Zero
data Succ a
-- Vec :: * -> * -> *

In short
What we want: typed type-level programming

```
datakind Nat = Zero | Succ Nat

data Vec n a where
  Vnil :: Vec Zero a
  Vcons :: a -> Vec n a -> Vec (Succ n) a

Vec :: Nat -> * -> *
```

- Now the type (Vec Int a) is ill-kindled; hurrah
- Nat is a **kind**, here introduced by `datakind`
Nat is an ordinary type, but it is automatically promoted to be a kind as well.

Its constructors are promoted to be (uninhabited) types.

Mostly: simple, easy.
data Nat = Zero | Succ Nat

type family Add (a::Nat) (b::Nat) :: Nat

type instance Add Z n = n

type instance Add (Succ n) m = Succ (Add n m)

Add :: Nat -> Nat -> Nat
Where there is only one Foo (type or data constructor) use that

If both Foo's are in scope, "Foo" in a type means the type constructor (backward compatible)

If both Foo's are in scope, 'Foo means the data constructor
Which data types are promoted?

Keep it simple: only simple, vanilla, types with kinds of form $T :: * \rightarrow * \rightarrow \ldots \rightarrow *$

Avoids the need for
- A sort system (to classify kinds!)
- Kind equalities (for GADTs)
Summary of kinds

- Take lessons from term :: type and apply them to type :: kind
 - Polymorphism
 - Constraint kind
 - Data types

- Hopefully: no new concepts. Re-use programmers intuitions about how typing works, one level up.

- Fits smoothly into the IL

- Result: world peace