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 Instantiate „reverse‟ with a unification variable 
, standing for an as-yet-unknown type.  So this 
occurrence of reverse has type [] -> []. 

 Constrain expected arg type [] equal to actual 
arg type [Bool], thus  ~ Bool.  

 Solve by unification:  := Bool 

 

reverse  :: a. [a] -> [a] 
xs :: [Bool] 
 
foo :: [Bool] 
foo = reverse xs 



 Instantiate „(>)‟ to  ->  -> Bool, and emit a 
wanted constraint (Ord ) 

 Constrain  ~ [a], since xs :: [a], and solve by 
unification 

 Solve wanted constraint (Ord ), i.e. (Ord [a]), 
from given constraint (Ord a) 

 Here „a‟ plays the role of a skolem constant. 

 

(>) :: a. Ord a => a -> a -> Bool 
instance Ord a => Ord [a] where ... 
 
foo :: a. Ord a => [a] -> [a] -> Bool 
foo xs ys = not (xs > ys) 



 Instantiate „(>)‟ to  ->  -> Bool, 
and emit a wanted constraint  
(Ord ) 

 Constrain  ~ [a], since xs :: [a], 
and solve by unification 

 Solve wanted constraint (Ord ) 
from given constraint (Ord a) 

 Here „a‟ plays the role of a skolem 
constant. 

 

(>) :: a. Ord a => a -> a -> Bool 
instance Ord a => Ord [a] where ... 
 
foo :: a. Ord a => [a] -> [a] -> Bool 
foo xs ys = not (xs > ys) 

 

 

a. Ord a =>  

Ord    ~ [a] 

Solve 
this 



 instance Ord a => Ord [a] where ... 
 
foo :: a. Ord a => [a] -> [a] -> Bool 
foo xs ys = not (xs > ys) 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d2 xs ys) 

Elaborate 
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Elaboration inserts 

 Type and dictionary applications 

 Type and dictionary abstractions 

 Dictionary bindings 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d2 xs ys) 



 Type and dictionary applications 
(inserted when we instantiate) 

 Type and dictionary abstractions 
(inserted when we generalise) 

 Dictionary bindings 
(inserted when we solve constraints) 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d xs ys) 



 Instantiate „(>)‟ to  ->  -> Bool, 
and emit a wanted constraint  
(Ord ) 

 Constrain  ~ [a], since xs :: [a], 
and solve by unification 

 Solve wanted constraint (Ord ) 
from given constraint (Ord a) 

 Here „a‟ plays the role of a skolem 
constant. 

 

 

 

a. d::Ord a =>  

d2::Ord    ~ [a] 

Solve this, creating a 
binding for d2, 
mentioning d 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d2 xs ys) 



 
type Id = Var 

data Var = Id Name Type | .... 

 

data HsExpr n  

  = HsVar n | HsApp (HsExpr n) (HsExpr n) | .. 

 

tcExpr :: HsExpr Name -> TcRhoType -> TcM (HsExpr Id) 

Term to 
typecheck 

Expected 
type 

Elaborated 
term 





 Old school 
 Find a unfication problem 

 Solve it 

 If fails, report error 

 Otherwise, proceed 

 This will not work any more 
 g :: F a -> a -> Int 

type instance F Bool = Bool 
 
f x = (g x x, not x) 



 x:: 

 Instantiate g at   

F  ~      
 ~     
 ~ Bool   

g x 

g x „v‟ 

not x 

g :: F a -> a -> Int 
type instance F Bool = Bool 
 
f x = (g x x, ....,  not x) 

We have to 
solve this 

first 

Order of 
encounter 



 Cannot solve constraint (C a ) until we 
“later” discover that ( ~ Bool) 

 Need to defer constraint solving, rather 
than doing it all “on the fly” 

op :: C a x => a -> x -> Int 
instance Eq a => C a Bool 
 
f x = let g :: a Eq a => a -> a 
              g a = op a x 
         in g (not x) 

x :  
Constraint: C a  



op :: C a x => a -> x -> Int 
instance Eq a => C a Bool 
 
f x = let g :: a Eq a => a -> a 
              g a = op a x 
         in g (not x) 

x :  
Constraint: C a  

(a. Eq a => C a )   
 

 ~ Bool 

Solve 
this 
first 

And 
then 
this 



Haskell source 
program 

 
Large syntax, 

with many 
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A constraint, W 
 

Small syntax, 
with few 

constructors 
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Report errors 
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Hard 



Haskell source 
program 

 
Large syntax, 

with many 
many 

constructors 

A constraint, W 
 

Small syntax, 
with few 

constructors 

Constraint 
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S
olve

 

Report errors 

F::= C t1..tn  | t1 ~ t2 | F1  F2 
 
W ::= F | W1  W2 | a1..an. FW 



 Modular: Totally separate  
 constraint generation (7 modules, 3000 loc) 

 constraint solving (5 modules, 3000 loc) 

 error message generation (1 module, 800 loc) 

 Independent of the order in which you 
traverse the source program.   

 Can solve the constraint however you like 
(outside-in is good), including iteratively. 



 Efficient: constraint generator does a bit of “on 
the fly” unification to solve simple cases, but 
generates a constraint whenever anything looks 
tricky 

 All type error messages generated from the 
final, residual unsolved constraint.  (And hence 
type errors  incorporate results of all solved 
constraints.  Eg “Can‟t match [Int] with Bool”, 
rather than “Can‟t match [a] with Bool”) 

 Cured a raft of type inference bugs 



F::= C t1..tn  Class constraint  
   | t1 ~ t2  Equality constraint 
   | F1  F2 Conjunction 

   | True 
 
W ::= F  Flat constraint 
   | W1  W2  Conjunction 

    | a1..an. FW Implication 



F::= d::C t1..tn  Class constraint  
   | c::t1 ~ t2  Equality constraint 
   | F1  F2 Conjunction 

   | True 
 
W ::= F  Flat constraint 
   | W1  W2  Conjunction 

    | a1..an. FW Implication 



 
data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f :: T a -> Maybe a 

f x = case x of  

          T1 z -> Just z 

          T2   -> False 

T1 :: a. (a~Bool) -> Bool -> T a 



 
f :: T a -> Maybe a 

f (a:*) (x:T a) 

   = case x of  

        T1 (c:a~Bool) (z:Bool)  

           -> let 

                  

              in Just z  c2 

        T2 -> False 

T1 :: a. (a~Bool) -> Bool -> T a 

(c :: a~Bool)  =>  c2 :: Maybe Bool ~ Maybe a 

Elaborated 
program 

plus 
constraint to 

solve 



 (c :: a~Bool)  =>  c2 :: Maybe Bool ~ Maybe a 

(c :: a~Bool)  =>  c3 :: Bool ~ a 

c2 = Maybe c3 

(c :: a~Bool)  =>  c4 :: a ~ Bool 

c3 = sym c4 

(c :: a~Bool)  =>  True 

c4 = c 



 f :: T a -> Maybe a 

f (a:*) (x:T a) 

  = case x of  

      T1 (c:a~Bool) (z:Bool)  

        -> let  c4:a~Bool               = c 

 c3:Bool~a               = sym c4 

 c2:Maybe Bool ~ Maybe a = Maybe c3 

           in Just z  c2 

      T2   -> False 



 Constraint solving takes place by successive 
rewrites of the constraint 

 Each rewrite generates a binding, for 
 a type variable (fixing a unification variable) 

 a dictionary (class constraints) 

 a coercion (equality constraint) 

as we go 

 Bindings record the proof steps 

 Bindings get injected back into the term 



What type shall we infer for f? 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



What type shall we infer for f? 

 f :: b. T b -> b -> b 

 f :: b. T b -> Bool -> Bool 

Neither is more general than the other! 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 

f :: T  ->  ->  
 
( ~ Bool =>  ~ Bool)  ( ~ )  

From T1 
branch 

From T2 
branch 



f :: T  ->  ->  
 
( ~ Bool =>  ~ Bool)  ( ~ )  

Two solutions, neither principal 

  := Bool 

  := a 

GHC’s conclusion 
No principal solution, 

so reject the 
program 



( ~ Bool =>  ~ Bool)  ( ~ )  

 Treat  as untouchable under the (~Bool) 

equality; i.e. (~Bool) is not solvable 

 Equality information propagates outside-in 

 So    ( ~ Bool =>  ~ Bool)  ( ~ )  
is  soluble 

 

 

 



 Generalises beautifully to more complex 
constraints: 
 Functional dependencies 
 Implicit parameters 
 Type families 
 Kind constraints 
 Deferred type errors and holes 

 Robust foundation for new crazy type stuff. 

 Provides a great “sanity check” for the type system: 
is it easy to generate constraints, or do we need a 
new form of constraint? 

 All brought together in an epic 80-page JFP paper 
“Modular type inference with local assumptions” 

 

Vive la France 





 The rise of dynamic languages 

 “The type errors are getting in my way” 

 Feedback to programmer 
 Static: type system 

 Dynamic: run tests 

“Programmer is denied dynamic feedback in the 
periods when the program is not globally type 
correct” [DuctileJ, ICSE‟11] 



 Underlying problem: forces programmer to 
fix all type errors before running any code.  

Goal: Damn the torpedos 
 

Compile even type-incorrect 
programs to executable code, 
without losing type soundness 



 Not just the command line: can load modules with 
type errors --- and run them 

 Type errors occur at run-time if (and only if) they 
are actually encountered 

bash$ ghci –fdefer-type-errors 

ghci> let foo = (True, ‘a’ && False) 

Warning: can’t match Char with Bool 

gici> fst foo 

True 

ghci> snd foo 

Error: can’t match Char with Bool 



 Quick, what type does the “_” have? 

 

 

 

 

 Agda does this, via Emacs IDE 

{-# LANGUAGE TypeHoles #-} 

module Holes where 

f x = (reverse . _) x 

Holes.hs:2:18: 

    Found hole ‘_’ with type: a -> [a1] 

    Relevant bindings include 

      f :: a -> [a1] (bound at Holes.hs:2:1) 

      x :: a (bound at Holes.hs:2:3) 

    In the second argument of (.), namely ‘_’    

    In the expression: reverse . _ 

    In the expression: (reverse . _) x 



f x = [_a, x::[Char], _b:_c ] 

Holes:2:12: 

    Found hole `_a' with type: [Char] 

    In the expression: _a 

    In the expression: [_a, x :: [Char], _b : _c] 

    In an equation for `f': f x = [_a, x :: [Char], _b : _c] 

 

Holes:2:27: 

    Found hole `_b' with type: Char 

    In the first argument of `(:)', namely `_b' 

    In the expression: _b : _c 

    In the expression: [_a, x :: [Char], _b : _c] 

 

Holes:2:30: 

    Found hole `_c' with type: [Char] 

    In the second argument of `(:)', namely `_c' 

    In the expression: _b : _c 

    In the expression: [_a, x :: [Char], _b : _c] 



 -XTypeHoles and –fdefer-type-errors work 
together 

 With both,  
 you get warnings for holes,  

 but you can still run the program 

 If you evaluate a hole you get a runtime 
error. 



 Presumably, we generate a program with 
suitable run-time checks. 

 How can we be sure that the run-time 
checks are in the right place, and stay  in 
the right places after optimisation? 

 Answer: not a hack at all, but a thing of 
beauty! 

 Zero runtime cost 



(True, „a‟ && False) 

(True, („a‟  c7) && False) c7 : Int ~ Bool 

Haskell term 

Constraints Elaborated program 
(mentioning constraint variables) 



let c7: Int~Bool  
= error “Can‟t match ...” 

(True, („a‟  c7) && False) c7 : Int ~ Bool 

Constraints Elaborated program 
(mentioning constraint variables) 

Solve 

 Use lazily evaluated “error” evidence 

 Cast evaluates its evidence 

 Error triggered when (and only when) „a‟ 
must have type Bool 



let c7: Int~Bool  
= error “Can‟t match ...” 

(True, („a‟  c7) && False) c7 : Int ~ Bool 

Constraints Elaborated program 
(mentioning constraint variables) 

Solve 

 Use lazily evaluated “error” evidence 

 Cast evaluates its evidence 

 Error triggered when (and only when) „a‟ 
must have type Bool 

Uh oh!  What 
became of coercion 

erasure? 



True && _ 

(True && h7) h7 : Hole  
 ~ Bool 

Haskell term 

Constraints 
Elaborated program 
(mentioning constraint variables) 



(True && h7) h7 : Hole Bool 

Constraints 
Elaborated program 
(mentioning constraint variables) 

let h7: Bool  
    = error “Evaluated hole” Solve 

 Again use lazily evaluated “error” evidence 

 Error triggered when (and only when) the 
hole is evaluated 





 We need to infer the most general type for 
 g :: a. Num a => a -> a 
so that it can be called at Int and Float 

 Generate constraints for g‟s RHS, simplify 
them, quantify over variables not free in the 
environment 

 BUT: what happened to “generate then solve”? 
   

f :: Int -> Float -> (Int,Float) 

f x y = let g v = v+v 

        in (g x, g y) 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = case v of 
 C -> let y = not x  
                       in y 
 D x -> True 

Should this 
typecheck? 

In the C 
alternative, we 

know a~Bool 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = let y = not x 
           in case v of 
 C -> y 
 D x -> True 

What about 
this? 

Constraint 
a~Bool arises 
from  RHS 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = let y () = not x 
           in case v of 
 C -> y () 
 D x -> True 

Or this? 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = let y :: (a~Bool) => () -> Bool  
                y () = not x 
           in case v of 
 C -> y () 
 D x -> True 

But this 
surely 
should! 

Here we 
abstract over 

the a~Bool 
constraint 



Abstract over all unsolved constraints from 
RHS 

 Big types, unexpected to programmer 

 Errors postponed to usage sites 

 Have to postpone ALL unification 

 (Serious) Sharing loss for thunks 

 (Killer) Can‟t abstract over implications 
  f :: (forall a. (a~[b]) => b~Int) => blah 

 



Do not generalise local let-bindings at all! 

 Simple, straightforward, efficient 

 Polymorphism is almost never used in local 
bindings (see “Modular type inference with 
local constraints”, JFP) 

 GHC actually generalises local bindings that 
could have been top-level, so there is no 
penalty for localising a definition. 





 Is this all this coercion faff efficient? 

 ML typechecking has zero runtime cost; so 
anything involving these casts and coercions 
looks inefficient, doesn‟t it? 



 Remember deferred type errors: cast must 
evaluate its coercion argument.   

 What became of erasure? 

let c7: Bool~Bool = refl Bool 
in (x  c7) && False) 



 Expose evaluation to optimiser 

data Int = I#  Int# 
 
plusInt :: Int -> Int -> Int 
plusInt x y  
  = case x of I# a -> 
     case y of I# b -> 
      I#  (a +# b) 

x `plusInt` x 
 
= case x of I# a -> 
   case x of I# b -> 
    I#  (a +# b) 
 
= case x of I# a -> 
    I#  (a +# a) 

Library code Inline + optimise 



 So (~#) is the primitive type constructor 

 (#) is the primitive language construct 

 And (#) is erasable 

data a ~ b = Eq#  (a ~# b) 
 
() :: (a~b) -> a -> b 
x  c = case c of 
                Eq# d -> x # d 
 
refl :: t~t 
refl = /\t. Eq# (refl# t) 

Library code 
Inline + optimise 

let c7 = refl Bool 
in (x  c7) && False 
 
 ...inline refl,  
=  (x #  (refl# Bool)) 
      && False 



A T1 value allocated in the heap looks like this  

 

 

 

Question: what is the  
representation for (a~#Bool)? 

data T where 

  T1 :: a. (a~#Bool) -> Double# -> Bool -> T a 

T1 3.8 

64 bits 32 bits 

??? 

True 



A T1 value allocated in the heap looks like this  

 

 

 

Question: what is the  
representation for (a~#Bool)? 

Answer: a 0-bit value 

data T where 

  T1 :: a. (a~#Bool) -> Double# -> Bool -> T a 

T1 3.8 

64 bits 32 bits 

True 

0 bits 



 User API and type inference deal exclusively in 
boxed equality (a~b) 

 Hence all evidence (equalities, type classes, implicit 
parameters...) is uniformly boxed 

 Ordinary, already-implemented optimisation unwrap 
almost all boxed equalities. 

 Unboxed equality (a~#b) is represented by 0-bit 
values.  Casts are erased. 

 Possibility of residual computations to check 
termination 

data a ~ b = Eq#  (a ~# b) 



 Modular type inference with local 
assumptions (JFP 2011).  Epic paper. 

 Practical type inference for arbitrary-rank 
types (JFP 2007).  Full executable code; but 
does not use the Glorious French Approach 


