
Simon Peyton Jones

Microsoft Research

August 2013

 Instantiate „reverse‟ with a unification variable
, standing for an as-yet-unknown type. So this
occurrence of reverse has type [] -> [].

 Constrain expected arg type [] equal to actual
arg type [Bool], thus  ~ Bool.

 Solve by unification:  := Bool

reverse :: a. [a] -> [a]
xs :: [Bool]

foo :: [Bool]
foo = reverse xs

 Instantiate „(>)‟ to  ->  -> Bool, and emit a
wanted constraint (Ord )

 Constrain  ~ [a], since xs :: [a], and solve by
unification

 Solve wanted constraint (Ord ), i.e. (Ord [a]),
from given constraint (Ord a)

 Here „a‟ plays the role of a skolem constant.

(>) :: a. Ord a => a -> a -> Bool
instance Ord a => Ord [a] where ...

foo :: a. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

 Instantiate „(>)‟ to  ->  -> Bool,
and emit a wanted constraint
(Ord )

 Constrain  ~ [a], since xs :: [a],
and solve by unification

 Solve wanted constraint (Ord )
from given constraint (Ord a)

 Here „a‟ plays the role of a skolem
constant.

(>) :: a. Ord a => a -> a -> Bool
instance Ord a => Ord [a] where ...

foo :: a. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

a. Ord a =>

Ord    ~ [a]

Solve
this

 instance Ord a => Ord [a] where ...

foo :: a. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d2 xs ys)

Elaborate

Source
Haskell

Rest of GHC

Source
language

Typed
intermediate

language

T
yp

e
ch

ec
k

D
e
su

ga
r

Elaborated
source

Elaboration inserts

 Type and dictionary applications

 Type and dictionary abstractions

 Dictionary bindings

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d2 xs ys)

 Type and dictionary applications
(inserted when we instantiate)

 Type and dictionary abstractions
(inserted when we generalise)

 Dictionary bindings
(inserted when we solve constraints)

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d xs ys)

 Instantiate „(>)‟ to  ->  -> Bool,
and emit a wanted constraint
(Ord )

 Constrain  ~ [a], since xs :: [a],
and solve by unification

 Solve wanted constraint (Ord )
from given constraint (Ord a)

 Here „a‟ plays the role of a skolem
constant.

a. d::Ord a =>

d2::Ord    ~ [a]

Solve this, creating a
binding for d2,
mentioning d

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d2 xs ys)

type Id = Var

data Var = Id Name Type |

data HsExpr n

 = HsVar n | HsApp (HsExpr n) (HsExpr n) | ..

tcExpr :: HsExpr Name -> TcRhoType -> TcM (HsExpr Id)

Term to
typecheck

Expected
type

Elaborated
term

 Old school
 Find a unfication problem

 Solve it

 If fails, report error

 Otherwise, proceed

 This will not work any more
 g :: F a -> a -> Int

type instance F Bool = Bool

f x = (g x x, not x)

 x::

 Instantiate g at 

F  ~  
 ~  
 ~ Bool

g x

g x „v‟

not x

g :: F a -> a -> Int
type instance F Bool = Bool

f x = (g x x,, not x)

We have to
solve this

first

Order of
encounter

 Cannot solve constraint (C a ) until we
“later” discover that ( ~ Bool)

 Need to defer constraint solving, rather
than doing it all “on the fly”

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: a Eq a => a -> a
 g a = op a x
 in g (not x)

x : 
Constraint: C a 

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: a Eq a => a -> a
 g a = op a x
 in g (not x)

x : 
Constraint: C a 

(a. Eq a => C a )


 ~ Bool

Solve
this
first

And
then
this

Haskell source
program

Large syntax,

with many
many

constructors

A constraint, W

Small syntax,
with few

constructors

Constraint
generation

Residual
constraint

S
olve

Report errors

Step 1:
Easy

Step 2:
Hard

Haskell source
program

Large syntax,

with many
many

constructors

A constraint, W

Small syntax,
with few

constructors

Constraint
generation

Residual
constraint

S
olve

Report errors

F::= C t1..tn | t1 ~ t2 | F1  F2

W ::= F | W1  W2 | a1..an. FW

 Modular: Totally separate
 constraint generation (7 modules, 3000 loc)

 constraint solving (5 modules, 3000 loc)

 error message generation (1 module, 800 loc)

 Independent of the order in which you
traverse the source program.

 Can solve the constraint however you like
(outside-in is good), including iteratively.

 Efficient: constraint generator does a bit of “on
the fly” unification to solve simple cases, but
generates a constraint whenever anything looks
tricky

 All type error messages generated from the
final, residual unsolved constraint. (And hence
type errors incorporate results of all solved
constraints. Eg “Can‟t match [Int] with Bool”,
rather than “Can‟t match [a] with Bool”)

 Cured a raft of type inference bugs

F::= C t1..tn Class constraint
 | t1 ~ t2 Equality constraint
 | F1  F2 Conjunction

 | True

W ::= F Flat constraint
 | W1  W2 Conjunction

 | a1..an. FW Implication

F::= d::C t1..tn Class constraint
 | c::t1 ~ t2 Equality constraint
 | F1  F2 Conjunction

 | True

W ::= F Flat constraint
 | W1  W2 Conjunction

 | a1..an. FW Implication

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f :: T a -> Maybe a

f x = case x of

 T1 z -> Just z

 T2 -> False

T1 :: a. (a~Bool) -> Bool -> T a

f :: T a -> Maybe a

f (a:*) (x:T a)

 = case x of

 T1 (c:a~Bool) (z:Bool)

 -> let

 

 in Just z  c2

 T2 -> False

T1 :: a. (a~Bool) -> Bool -> T a

(c :: a~Bool) => c2 :: Maybe Bool ~ Maybe a

Elaborated
program

plus
constraint to

solve

 (c :: a~Bool) => c2 :: Maybe Bool ~ Maybe a

(c :: a~Bool) => c3 :: Bool ~ a

c2 = Maybe c3

(c :: a~Bool) => c4 :: a ~ Bool

c3 = sym c4

(c :: a~Bool) => True

c4 = c

 f :: T a -> Maybe a

f (a:*) (x:T a)

 = case x of

 T1 (c:a~Bool) (z:Bool)

 -> let c4:a~Bool = c

 c3:Bool~a = sym c4

 c2:Maybe Bool ~ Maybe a = Maybe c3

 in Just z  c2

 T2 -> False

 Constraint solving takes place by successive
rewrites of the constraint

 Each rewrite generates a binding, for
 a type variable (fixing a unification variable)

 a dictionary (class constraints)

 a coercion (equality constraint)

as we go

 Bindings record the proof steps

 Bindings get injected back into the term

What type shall we infer for f?

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

What type shall we infer for f?

 f :: b. T b -> b -> b

 f :: b. T b -> Bool -> Bool

Neither is more general than the other!

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

f :: T  ->  -> 

( ~ Bool =>  ~ Bool)  ( ~ )

From T1
branch

From T2
branch

f :: T  ->  -> 

( ~ Bool =>  ~ Bool)  ( ~ )

Two solutions, neither principal

  := Bool

  := a

GHC’s conclusion
No principal solution,

so reject the
program

( ~ Bool =>  ~ Bool)  ( ~ )

 Treat  as untouchable under the (~Bool)

equality; i.e. (~Bool) is not solvable

 Equality information propagates outside-in

 So ( ~ Bool =>  ~ Bool)  ( ~ )
is soluble

 Generalises beautifully to more complex
constraints:
 Functional dependencies
 Implicit parameters
 Type families
 Kind constraints
 Deferred type errors and holes

 Robust foundation for new crazy type stuff.

 Provides a great “sanity check” for the type system:
is it easy to generate constraints, or do we need a
new form of constraint?

 All brought together in an epic 80-page JFP paper
“Modular type inference with local assumptions”

Vive la France

 The rise of dynamic languages

 “The type errors are getting in my way”

 Feedback to programmer
 Static: type system

 Dynamic: run tests

“Programmer is denied dynamic feedback in the
periods when the program is not globally type
correct” [DuctileJ, ICSE‟11]

 Underlying problem: forces programmer to
fix all type errors before running any code.

Goal: Damn the torpedos

Compile even type-incorrect
programs to executable code,
without losing type soundness

 Not just the command line: can load modules with
type errors --- and run them

 Type errors occur at run-time if (and only if) they
are actually encountered

bash$ ghci –fdefer-type-errors

ghci> let foo = (True, ‘a’ && False)

Warning: can’t match Char with Bool

gici> fst foo

True

ghci> snd foo

Error: can’t match Char with Bool

 Quick, what type does the “_” have?

 Agda does this, via Emacs IDE

{-# LANGUAGE TypeHoles #-}

module Holes where

f x = (reverse . _) x

Holes.hs:2:18:

 Found hole ‘_’ with type: a -> [a1]

 Relevant bindings include

 f :: a -> [a1] (bound at Holes.hs:2:1)

 x :: a (bound at Holes.hs:2:3)

 In the second argument of (.), namely ‘_’

 In the expression: reverse . _

 In the expression: (reverse . _) x

f x = [_a, x::[Char], _b:_c]

Holes:2:12:

 Found hole `_a' with type: [Char]

 In the expression: _a

 In the expression: [_a, x :: [Char], _b : _c]

 In an equation for `f': f x = [_a, x :: [Char], _b : _c]

Holes:2:27:

 Found hole `_b' with type: Char

 In the first argument of `(:)', namely `_b'

 In the expression: _b : _c

 In the expression: [_a, x :: [Char], _b : _c]

Holes:2:30:

 Found hole `_c' with type: [Char]

 In the second argument of `(:)', namely `_c'

 In the expression: _b : _c

 In the expression: [_a, x :: [Char], _b : _c]

 -XTypeHoles and –fdefer-type-errors work
together

 With both,
 you get warnings for holes,

 but you can still run the program

 If you evaluate a hole you get a runtime
error.

 Presumably, we generate a program with
suitable run-time checks.

 How can we be sure that the run-time
checks are in the right place, and stay in
the right places after optimisation?

 Answer: not a hack at all, but a thing of
beauty!

 Zero runtime cost

(True, „a‟ && False)

(True, („a‟  c7) && False) c7 : Int ~ Bool

Haskell term

Constraints Elaborated program
(mentioning constraint variables)

let c7: Int~Bool
= error “Can‟t match ...”

(True, („a‟  c7) && False) c7 : Int ~ Bool

Constraints Elaborated program
(mentioning constraint variables)

Solve

 Use lazily evaluated “error” evidence

 Cast evaluates its evidence

 Error triggered when (and only when) „a‟
must have type Bool

let c7: Int~Bool
= error “Can‟t match ...”

(True, („a‟  c7) && False) c7 : Int ~ Bool

Constraints Elaborated program
(mentioning constraint variables)

Solve

 Use lazily evaluated “error” evidence

 Cast evaluates its evidence

 Error triggered when (and only when) „a‟
must have type Bool

Uh oh! What
became of coercion

erasure?

True && _

(True && h7) h7 : Hole 
 ~ Bool

Haskell term

Constraints
Elaborated program
(mentioning constraint variables)

(True && h7) h7 : Hole Bool

Constraints
Elaborated program
(mentioning constraint variables)

let h7: Bool
 = error “Evaluated hole” Solve

 Again use lazily evaluated “error” evidence

 Error triggered when (and only when) the
hole is evaluated

 We need to infer the most general type for
 g :: a. Num a => a -> a
so that it can be called at Int and Float

 Generate constraints for g‟s RHS, simplify
them, quantify over variables not free in the
environment

 BUT: what happened to “generate then solve”?

f :: Int -> Float -> (Int,Float)

f x y = let g v = v+v

 in (g x, g y)

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = case v of
 C -> let y = not x
 in y
 D x -> True

Should this
typecheck?

In the C
alternative, we

know a~Bool

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = let y = not x
 in case v of
 C -> y
 D x -> True

What about
this?

Constraint
a~Bool arises
from RHS

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = let y () = not x
 in case v of
 C -> y ()
 D x -> True

Or this?

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = let y :: (a~Bool) => () -> Bool
 y () = not x
 in case v of
 C -> y ()
 D x -> True

But this
surely
should!

Here we
abstract over

the a~Bool
constraint

Abstract over all unsolved constraints from
RHS

 Big types, unexpected to programmer

 Errors postponed to usage sites

 Have to postpone ALL unification

 (Serious) Sharing loss for thunks

 (Killer) Can‟t abstract over implications
 f :: (forall a. (a~[b]) => b~Int) => blah

Do not generalise local let-bindings at all!

 Simple, straightforward, efficient

 Polymorphism is almost never used in local
bindings (see “Modular type inference with
local constraints”, JFP)

 GHC actually generalises local bindings that
could have been top-level, so there is no
penalty for localising a definition.

 Is this all this coercion faff efficient?

 ML typechecking has zero runtime cost; so
anything involving these casts and coercions
looks inefficient, doesn‟t it?

 Remember deferred type errors: cast must
evaluate its coercion argument.

 What became of erasure?

let c7: Bool~Bool = refl Bool
in (x  c7) && False)

 Expose evaluation to optimiser

data Int = I# Int#

plusInt :: Int -> Int -> Int
plusInt x y
 = case x of I# a ->
 case y of I# b ->
 I# (a +# b)

x `plusInt` x

= case x of I# a ->
 case x of I# b ->
 I# (a +# b)

= case x of I# a ->
 I# (a +# a)

Library code Inline + optimise

 So (~#) is the primitive type constructor

 (#) is the primitive language construct

 And (#) is erasable

data a ~ b = Eq# (a ~# b)

() :: (a~b) -> a -> b
x  c = case c of
 Eq# d -> x # d

refl :: t~t
refl = /\t. Eq# (refl# t)

Library code
Inline + optimise

let c7 = refl Bool
in (x  c7) && False

 ...inline refl, 
= (x # (refl# Bool))
 && False

A T1 value allocated in the heap looks like this

Question: what is the
representation for (a~#Bool)?

data T where

 T1 :: a. (a~#Bool) -> Double# -> Bool -> T a

T1 3.8

64 bits 32 bits

???

True

A T1 value allocated in the heap looks like this

Question: what is the
representation for (a~#Bool)?

Answer: a 0-bit value

data T where

 T1 :: a. (a~#Bool) -> Double# -> Bool -> T a

T1 3.8

64 bits 32 bits

True

0 bits

 User API and type inference deal exclusively in
boxed equality (a~b)

 Hence all evidence (equalities, type classes, implicit
parameters...) is uniformly boxed

 Ordinary, already-implemented optimisation unwrap
almost all boxed equalities.

 Unboxed equality (a~#b) is represented by 0-bit
values. Casts are erased.

 Possibility of residual computations to check
termination

data a ~ b = Eq# (a ~# b)

 Modular type inference with local
assumptions (JFP 2011). Epic paper.

 Practical type inference for arbitrary-rank
types (JFP 2007). Full executable code; but
does not use the Glorious French Approach

