TYPE INFERENCE
AS CONSTRAINT SOLVING

Simon Peyton Jones

Microsoft Research
August 2013

Classic Damas-Milner

reverse :. Va. [a] -> [a]
XS :: [Bool]

foo :: [Bool]
foo = reverse xs

» Instantiate 'reverse’ with a unification variable
a, standing for an as-yet-unknown type. So this
occurrence of reverse has type [a] -> [a].

= Constrain expected arg type [a] equal to actual
arg type [Bool], thus a ~ Bool.

= Solve by unification: a := Bool

Modify for type classes

(>):: Ya.Orda=>a->a->Bool
instance Ord a => Ord [a] where ...

foo :: Va. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

Instantiate '(>) to o -> a -> Bool, and emit a
wanted constraint (Ord o)

Constrain a ~ [a], since xs :: [a], and solve by
unification

Solve wanted constraint (Ord a), i.e. (Ord [a]),
from given constraint (Ord a)

Here 'a’ plays the role of a skolem constant.

Another view

(>):: YVa.Orda=>a->a->Bool
instance Ord a => Ord [a] where ...

foo :: Va. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

m Instantiate '(>) to a -> a -> Bool,
and emit a wanted constraint
(Ord a)

m Constrain a ~ [a], since xs :: [a],
and solve by unification

m Solve wanted constraint (Ord o)
from given constraint (Ord a)

= Here 'a plays the role of a skolem
constant.

Additional complication: evidence

instance Ord a => Ord [a] where ...

foo :: Va. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

dfOrdList :: Va. Ord a -> Ord [a]

foo :: Va. Ord a -> [a] -> [a] -> Bool

foo a (d::Ord a) (xs::[a]) (ys::[a])
Elaborate = let d2::Ord [a] = dfOrdList a d
in not ((>) [a] d2 xs ys)

How GHC works

Source Elaborated Typed
language intermediate

language

source

Source

Haskell

S
QO
Q

=
QO
Q
S

—

Rest of GHC

Elaboration
dfOrdList :: Va. Ord a -> Ord [a]

foo :: Va. Ord a -> [a] -> [a] -> Bool

foo a (d::Ord a) (xs::[a]) (ys::[a])
= let d2::Ord [a] = dfOrdList a d
in not ((>) [a] d2 xs ys)

Elaboration inserts
= Type and dictionary applications
= Type and dictionary abstractions

= Dictionary bindings

Elaboration

dfOrdList :: Va. Ord a -> Ord [a]

foo :: Va. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
= let d2::Ord [a] = dfOrdList a d
in not ((>) [a] d xsys)

= Type and dictionary applications
(inserted when we instantiate)

= Type and dictionary abstractions
(inserted when we generalise)

= Dictionary bindings
(inserted when we solve constraints)

Another view

dfOrdList :: Va. Ord a -> Ord [a]

foo :: Va. Ord a -> [a] -> [a] -> Bool

foo a (d::Ord a) (xs::[a]) (ys::[a])
= let d2::Ord [a] = dfOrdList a d
in not ((>) [a] d2 xsys)

= Instantiate '(>) to a -> a -> Bool,
and emit a wanted constraint Ya. d::Ord a =>

(Ord a) d2::0Ord a A a ~ [a]

m Constrain o ~ [a], since xs :: [a],
and solve by unification

m Solve wanted constraint (Ord o) : :
from given constraint (Ord a) Solve this, creating a

binding for d2,

= Here 'a plays the role of a skolem mentioning d

constant.

Elaboration in practice

type Id = Var
data Var = Id Name Type |

data HsExpr n
= HsVar n | HsApp (HsExpr n) (HsExpr n) |

tcExpr :: HsExpr Name -> TcRhoType -> TcM (HsExpr Id)

Term to Expected Elaborated
typecheck Type term

DEFERRED SOLVING

Deferring solving

= Old school
= Find a unfication problem
m Solve it
m If fails, report error
= Otherwise, proceed

= This will not work any more

g:Fa->a->Int
type instance F Bool = Bool

f x = (g X X, not x)

Deferring solving

" X103

g:Fa->a->Int

type instance F Bool = Bool [SYNRIINeE g at o

Order of
encounter

Deferring solving

op:i:Cax=>a->x->Int
instance Eq a => C a Bool

fx=letg::VaEqa=>a->a x: B
ga=opax Constraint: Ca f
in g (not x)

® Cannot solve constraint (C a) until we
“later” discover that (B ~ Bool)

= Need to defer constraint solving, rather
than doing it all "on the fly"

Deferring solving

op:i:Cax=>a->x->Int
instance Eq a => C a Bool

fx=letg::VaEqa=>a->a x: B

ga=opax Constraint: Ca f
in g (not x)

(Va.Eqa=>Caf)

/\
B ~ Bool

The French approach
to type inference
A constraint, W

Haskell source

program Constraint

Small syntax,

generation .
with few
Lar‘ge syntax, Step 1: constructors
with many Easy
many Step 2:
constructors P2
Hard

Residual
Report errors constraint

The French approach
to type inference

Haskell source A constraint, W
program oo Small syntax,

consTtrucrors

Residual
Report errors constraint

GHC uses the French approach

= Modular: Totally separate
= constraint generation (7 modules, 3000 loc)
m constraint solving (5 modules, 3000 loc)
= error message generation (1 module, 800 loc)

= Independent of the order in which you
traverse the source program.

= Can solve the constraint however you like
(outside-in is good), including iteratively.

GHC uses the French approach

= Efficient: constraint generator does a bit of “on
the fly" unification to solve simple cases, but
generates a constraint whenever anything looks
tricky

= All type error messages generated from the
final, residual unsolved constraint. (And hence
type errors incorporate results of all solved
constraints. Eg "Can't match [Int] with Bool”,
rather than "Can't match [a] with Bool")

= Cured a raft of type inference bugs

The language of constraints

F::i=Cr..7, Class constraint
| 74 ~ 7 Equality constraint
| F; A F, Conhjunction
| True

W:=F Flat constraint
| W; A W, Conjunction
| Va,..a,. F>W Implication

The language of constraints

C 1,..1, Class constraint
Ty ~ Ty Equality constraint
| F; A F, Conhjunction
| True

W:=F Flat constraint
| W; A W, Conjunction
| Va,..a,. F>W Implication

Equality constraints
generate evidence too!

data T a where
Tl :: Bool -> T Bool
T2 :: T a

:: T a -> Maybe a
= case x of
Tl z -> Just z
T2 -> False

:: VYa. (a~Bool) -> Bool -> T a

Equality constraints
generate evidence too!
:: Va. (a~Bool) -> Bool -> T a

f :: T a -> Maybe a

f (a:*) (x:T a)
= case x of Elaborated
Tl (c:a~Bool) (z:Bool) program

-> let

[] plus

in Just z [c2 constraint to
T2 -> False solve

(c :: a~Bool) => ¢2 :: Maybe Bool ~ Maybe a

Equality constraints
generate evidence too!

(c :: a~Bool) => c2 :: Maybe Bool ~ Maybe a

c2 = Maybe c3

(c :: a~Bool) => ¢c3:: Bool ~a

(c :: a~Bool) => c4 :: a ~ Bool

(c :: a~Bool) => True

Plug the evidence
back into the term

f :: T a -> Maybe a
f (a:*) (x:T a)
= case x of
Tl (c:a~Bool) (z:Bool)
-> let c4d4:a~Bool

c3:Bool~a

c2:Maybe Bool ~ Maybe a
in Just z [c2
T2 -> False

Things to notice

= Constraint solving takes place by successive
rewrites of the constraint

= Each rewrite generates a binding, for
= g type variable (fixing a unification variable)
m g dictionary (class constraints)
= g coercion (equality constraint)

as we go
= Bindings record the proof steps
= Bindings get injected back into the term

Care with GADTs

data T a where
Tl :: Bool -> T Bool
T2 :: T a

f x y = case x of
Tl z -> True
T2 -> y

What type shall we infer for f?

Care with GADTs

data T a where
Tl :: Bool -> T Bool
T2 :: T a

f x y = case x of
Tl z -> True
T2 -> y

What type shall we infer for f?

= fuVb. Tb->b->b

= f:Vb. Tb->Bool -> Bool

Neither is more general than the other!

In the language of constraints

data T a where
Tl :: Bool -> T Bool
T2 :: T a

f x y = case x of
Tl z -> True
T2 -> y

fouTa->p->y

(oo ~ Bool =>y ~ Bool) A (B ~7)

In the language of constraints

fouTa->B->y

(oo ~ Bool =>y ~ Bool) A (B ~)

Two solutions, neither principal

GHC's conclusion
" yizq No principal solution,

so reject the
program

In the language of constraints

(a0 ~ Bool =>y ~ Boo) A (B ~¥y)

= Treat Y as untouchable under the (0.~Bool)

equa
= Equa
= So

ity; i.e. (Y~Bool) is not solvable
ity information propagates outside-in

(a0 ~ Bool =>y ~ Bool) A (a0 ~ y)

is soluble

This is THE way to do type inference

= Generalises beautifully to more complex
constraints:
= Functional dependencies . |
« Implicit parameters Vive la France
= Type families

= Kind constraints
= Deferred type errors and holes

= Robust foundation for new crazy type stuff.

= Provides a great "sanity check” for the type system:
is it easy to generate constraints, or do we need a
new form of constraint?

= All brought together in an epic 80-page JFP paper
"Modular type inference with local assumptions”

DEFERRED TYPE ERRORS

Type errors considered harmful

= The rise of dynamic languages
= "The type errors are getting in my way"

= Feedback to programmer
m Static: type system
= Dynamic: run tests

"Programmer is denied dynamic feedback in the
periods when the program is not globally type
correct” [DuctileJ, ICSE'11]

Type errors considered harmful

= Underlying problem: forces programmer to
fix all type errors before running any code.

Goal: Damn the torpedos

Compile even type-incorrect
programs to executable code,
without losing type soundness

How it looks

bash$ ghci -fdefer-type-errors
ghci> let foo = (True, ‘a’ && False)
Warning: can’t match Char with Bool
gici> fst foo

True
ghci> snd foo
Error: can’t match Char with Bool

= Not just the command line: can load modules with
type errors --- and run them

= Type errors occur at run-time if (and only if) they
are actually encountered

Type holes: incomplete programs
{-# LANGUAGE TypeHoles #-}

module Holes where
f x = (reverse .) x

= Quick, what type does the "_" have?

Holes.hs:2:18:
Found hole ' ' with type: a -> [al]
Relevant bindings include
f :: a -> [al] (bound at Holes.hs:2:1)

X :: a (bound at Holes.hs:2:3)
In the second argument of (.), namely ‘' '

In the expression: reverse . _
In the expression: (reverse .) x

= Agda does this, via Emacs IDE

Multiple, named holes

= [a, x::[Char], b:

Holes:2:12:
Found hole ' _a' with type: [Char]
In the expression: _a
In the expression: [_a, x :: [Char], Db
In an equation for f': £ x = [a, x

Holes:2:27:
Found hole '~ b' with type: Char
In the first argument of " (:)', namely " b'
In the expression:

In the expression: [_a, x :: [Char], b : c]
Holes:2:30:

Found hole " c' with type: [Char]

In the second argument of " (:)', namely

In the expression: b

In the expression: :: [Char], Db

Combining the two

-XTypeHoles and -fdefer-type-errors work
together

With both,

= you get warnings for holes,
= but you can still run the program

If you evaluate a hole you get a runtime
error.

Just a hack?

Presumably, we generate a program with
suitable run-time checks.

How can we be sure that the run-time
checks are in the right place, and stay in
the right places after optimisation?

Answer: not a hack at all, but a thing of
beauty!

Zero runtime cost

When equality is insoluble. ..

BERQIRS M (True, 'a’ && False)

(True, (' > ¢7) && False)

Constraints Elaborated program
(mentioning constraint variables)

Step 2: solve constraints
= Use lazily evaluated “error” evidence

m Cast evaluates its evidence

= Error triggered when (and only when) 'd
must have type Bool

let ¢7: Int~Bool
Solve = error "Can't match ..."
c7 : Int ~ Bool (True, (‘a' > c7) && False)

Constraints Elaborated program
(mentioning constraint variables)

Step 2: Uh oh! What
MVELA VIRl Decame of coercion

= Cast evaluates erasure?

= Error triggered whel " 7d only when) 'd

must have type Bool

let ¢7: Int~Bool
Solve = error "Can't match ..."
c7 : Int ~ Bool (True, (‘a' > c7) && False)

Constraints Elaborated program
(mentioning constraint variables)

Hole constraints
(a new form of constraint)

h7 : Hole B
B ~ Bool

(True && h7)

) Elaborated program
Constraints (mentioning constraint variables)

Hole constraints...

® Again use lazily evaluated "error” evidence

= Error triggered when (and only when) the
hole is evaluated

let h7: Bool
Solve = error "Evaluated hole"
h7 : Hole Bool (True && h7)

. Elaborated program
Constraints (mentioning constraint variables)

A FLY IN THE OINTMENT

Generalisation (Hindley-Milner)

f :: Int -> Float -> (Int,Float)

f xy=1let g v = v+v
in (g x, g Y)

= We need to infer the most general type for
g: Va.Numa=>a->a
so that it can be called at Int and Float

= Generate constraints for g's RHS, simplify
them, quantify over variables not free in the
environment

= BUT: what happened to "generate then solve"?

A more extreme example

data T a where

C :: T Bool
Di:a->Ta Should this

typecheck?

f:Ta->a->Bool
f v x = case v of
C -> let y = not x
In the C iny

alfernative,we | N x _> True
know a~Bool

A more extreme example

data T a where
C: T Bool
Diia->Ta

f::Ta->a->Bool
fvx=lety=not x
in case v of
C->y
D x -> True

What about
this?

Constraint
a~Bool arises

from RHS

A more extreme example

data T a where
C: T Bool
Diia->Ta

f::Ta->a->Bool
fvx=lety()=notx
in case v of

C->y()
D x -> True

A more extreme example

data T a where " Byt this
C: T Bool surely
Dia->Ta should!

f: Ta->a->Bool %

fvx=lety:: (a~Bool) => () -> Bool
y () = not x

in case v of bHere we
abstract over
C->y()

the a~Bool
D x ->True constraint

A possible path [Pottier et al]

Abstract over all unsolved constraints from
RHS

= Big types, unexpected to programmer
= Errors postponed to usage sites

= Have to postpone ALL unification

= (Serious) Sharing loss for thunks

= (Killer) Can't abstract over implications
f i (forall a. (a~[b]) => b~Int) => blah

A much easier path

Do not generalise local let-bindings at alll
= Simple, straightforward, efficient

= Polymorphism is almost never used in local
bindings (see "Modular type inference with
local constraints”, JFP)

® GHC actually generalises local bindings that
could have been top-level, so there is no
penalty for localising a definition.

EFFICIENT EQUALITIES

Questions you might like to ask

m Ts this all this coercion faff efficient?

= ML typechecking has zero runtime cost; so

anything involving these casts and coercions
looks inefficient, doesn't it?

Making it efficient

let ¢7: Bool~Bool = refl Bool

in (x > ¢7) && False)

= Remember deferred type errors: cast must
evaluate its coercion argument.

m What became of erasure?

Take a clue from unboxed values

data Int = I# Int# < [IEL

=case x of I# a ->
case x of I# b ->
I# (a+# b)

plusInt :: Int -> Int -> Int
plusInt xy
= case x of I# a ->

C]?;e zlao:;f]:?) 0 = case X of I# a ->

I# (a+# a)

Library code Inline + optimise

= Expose evaluation to optimiser

Take a clue from unboxed values
dataa~b = Eq# (a~g4b)

let ¢7 = refl Bool
in (x > c7) && False

(>):(a~b)->a->b

X > ¢ = case c of

Eq# d->xD, d

...inline refl, >
= (x D4 (refl# Bool))
&é& False

Inline + optimise

refl :: t~1
refl = /\t. Eq# (refl# t)

Library code

m So (~y) is the primitive type constructor
= (D>4)is the primitive language construct
= And () is erasable

Implementing ~4

data T where

Tl :: Va. (a~#Bool) -> Double# -> Bool -> T a

A T1 value allocated in the heap looks like this

64 bits 32 bits

1

Question: what is the T
representation for (a~4Bool)? rue

Implementing ~4

data T where

Tl :: Va. (a~#Bool) -> Double# -> Bool -> T a

A T1 value allocated in the heap looks like this

0 bits 64 bits 32 bits

I

Question: what is the
representation for (a~4Bool)? True

Answer: a O-bit value

Boxed and primitive equality

dataa~ b = Eq# (a ~4b)

User APT and type inference deal exclusively in
boxed equality (a~b)

Hence all evidence (equalities, T)épe classes, implicit
parameters...) is uniformly boxe

Ordinary, already-implemented optimisation unwrap
almost all boxed equalities.

Unboxed equality (a~#b) is represented by O-bit
values. Casts are erased.

Possibility of residual computations to check
tfermination

Background reading

= Moaular type inference with local
assumptions (JFP 2011). Epic paper.

» Practical type inference for arbitrary-rank
types (JFP 2007). Full executable code; but
does not use the Glorious French Approach

