Logj\ col Relstions

What are logical relations? They are a proof method. This is a lot like the
method you use to prove type safety, by progress and proservation,
which every PL researcher knows.

This is a proof method you really ought to know.

NGy yov tan PRovE

— Sj((w\ﬂ Y\d(("\a\'%&ﬂaa O’F ST[—C / Jotse®t wark

W‘Bf" IOS‘lQal celeflons v inductlon X
-1 Cotmgler collecinessi
- | & Sa’(\e“t e ‘ot topic. Net Co Ce"l]
y/) esP, f\O'\"‘CIM\n 1"_9 \eﬂjve e’ [Mu— I\Y ’e
SLTC + recvigive 4.jpe L
_ 1/_: to show correctness of optimizations...
ECT\)\VQ\Q(\CQ 0 P(O&IQMS or do a transformation (lambda lifting)
: where the type of expressions CHANGES
1’\"?’7 (or an IR-to-IR transformation)
[} M . s L
— NO(\"\(\JY,Q('PQ(Q(\(‘. 2 {”E\”' "_ft ’
n it
(coofide mllz“f\7 w e 5‘{5*(“"\5) AL
X = 7 X ellos
@, 'm’(l'xln’c”%‘m’cL i y20 4en p=0celie p=1 X ero!

P(VL) VHi) ,/VVL P(VL ,VHz')

As long as you feed in the same low security input, no matter what the
high security inputs are, the low security output should "look" the same.

& & Q: Canyou do this in cryptography?

\

° 5? & A: This is a pretty simplistic non-interference theorem. I'm not sure; you should
Y S Google it, | am not sure what technicalities you run into. In crypto, you have
SAC : . : . :

%CR.P situations where there is no leak of information at all, and some where you leak

a little bit of information.

’\ There are two categories of logical relations: unary logical relations (strong
normalization and type safety) and binary logical relations (equivalence

and non-interference). Unary relations (predicates) have a single expression
with a properfy i{e) we are interested in; these relations have always been
built out of types (though nowadays, you can do relations for untyped languages).
Binary relations are about two terms R(e, e'); both have the same type and are
related; possibly equivalence, but also different. These are more sophisticated
than unarv relations.

Note aLout Fype safety

The very first time logical relations were used were for strong normalization.
For the longest time, they were defined by induction on types, and when you
had recursive types or mutable references (which cause cycles in memory),
there were circular advanced typing features which caused problems for

logical relations. So how do you break this circularity? The key is
STEP-INDEXED LOGICAL RELATIONS.

SLTC (cav)
Tiz=bool | TT>T,
ei= trve] fose| e thene, else e, |
2| Ao l@. @)
viz tvel fse | AxiT. e
— |E'-'-'—‘- [‘]\ ® £ then ¢ else ¢ I Ee \ viE

evaluhon
Condext

OFQIB‘“OAQ\ S{Mgntlc_s

. /
F Lrve dhen e, else ¢ D @ e—>e

f £\se tlen e, else ¢, > € E[e] L——?E[e’j
(am.e)v > e [v/x]

Jc,\/p‘mj res

[Ma= o) T 20T
T | Theibool Mot [re,m
— [Ftvve boo T if e tlen e, else €, T
[C(») =T
FPemT eabket’ TFepma0' (he, i
FHEART.¢iT>T! e e, i T

— 0’_2_‘9 *
edv=er-sv

Q: Isn't this weak normalization?

A: This happens every year! Well, because of determinacy, it's strong. Recall

weak normalization says there exists a path which terminates; since the language
is deterministic, all paths do this.

I P(T(?-)‘ —e hestye T
—_— — € has popetty of 1nierest

e stenthoned LR preseved ly e|'minsticn o
WAAWE by ot sl for type T

So what is the problem with induction? We might say the induction hypothesis
is normalizes(e). We will fail when we get to the application rule:

X
& 2 (ax.e) e, —> (An.ev

doos S noime]'%
The idea of logical relations is we want a STRONGER induction hypothesis,

that is to say, there is some structure of the expression under the binder which
we want to capture. Define a new predicate:

SN‘T(Q) e is strongly normalizing and has
type tau

SN, (@) & Feibool A @

SN/];,9¢2(Q) = e T-T, A e\lll/\(‘v’e,‘San(e,)—qsmrz(e e

_—

When you do the elim-form for that type, the logical relation will be preserved.

The elimination form for bools is if...then...else, while the elimination rule for functions
is application. For booleans, we don't need anything else, since the relation is
"obviously" preserved. (Recall this worked for normal induction.)

The function has something built-in which makes sure the logical relation is
preserved by application. So if you give me a strongly normalizing argument,
| will get a result which is strongly normalizing.

Recall that we said LRs are defined on induction of the type. So let's check that
things are well founded. Bool has no problem; for T1 -> T2, I'm using SN of
T1 and SN of T2; these are all smaller, so everything is OK! (The inner references

to LRs have smaller types.)

Jut bl ?fnelallth
C Sndveh Yoy plbasls
Proof idea to show every well-typed thing terminates:
A) ‘et T = SNg(e) (hora part!)
B) SNq-(@) = Q,.U/ (4n13] Sy \ndvdlon on T,

immedigte by A0fntfion)

Q: The condition you wrote down, the way | read the very last part is that
if the argument is strongly normalizing, then the result strongly normalizes.
A: Well, it says that the application strongly normalizes. We'll see in just a
minute that strong normalization is preserved by reduction. As we reduce
it, it will remain in SN.
C: This is a bigger thing, because T2 could be a big type. This is not really
normalization, but reducibility. You need more than just strong normalization
of el, which is that if it's applied.
A: Yes, that is what | am trying to capture. The third clause gives me my stronger
induction hypothesis.
C: Well, there's a confusion here, because you're calling SN strong normalization,
and it's not actually strong normalization.
A: You're right, I'm calling it SN to be suggestive, it is NOT strong normalization.
It gives me a strong induction hypothesis, and it implies strong normalization.
It will be helpful to mentally replace "strong
normalization" with "SN" in later sections.

So, how do we prove A? If we try induction on the derivation of the type, we
will still run into the lambda typing rule, since it's no longer a closed context.
We CANNOT prove A directly. We need a more general lemma which works
with open terms. So we need to generalize AGAIN.

Lemma (SN paserved ky backward 2nd Ao wd redvcfhm)

Suppose you have ‘e an evr—oe’. Then
3.) SNrr (e') :"'> SN:T'(@))
v 4 o
b) SN, (e) = SNr-(e') “a“ﬁ-ki,&&”‘a?‘zm
opeledtens| cules !

Ex) Prove at least one of these. Hard case is application. In (b),
you will need the preservation property too.

AWy 1§ 999 A) becawse closed walve s

%1100 2.9 .
Now wp can heve free 2 s S A
Vellehes [5: 2W|HVI7 1o 701\)—_;\1!\3

—
LQMI"\Q I—I—-C'.rl_ A @ = SNrr (D/(e))

w K.wbz'i‘ does Thls Me2n?

Wes Lree v 2nzdes
W

Idea: we want gamma to be strongly normalizing; similar to lambda, except
there are an arbitrary number of free variables.

Another note: the substitution needs to preserve typing;
Benjamin proves this in TAPL.

yET % dm(®)=dom(r)
c ¥
A Vredom(), SN,_(W)())
i.e. give me a substitution, and they all should be strongly normalizing.

Note: aren't values strongly normalizing? Yes: we're punning here,
what we actually mean is SN.

Sdest lomma et ATED = o) T

Proof by induction on size of gamma, referring to the actual substitution
lemma when gamma is size one.

&_4.\1, \eMme 24

/ Yol ok {;{cu\ov
Roof induction on tiphg deltafier ot v 3
e s
Case) =T . swpase FET
[| .l o \\ o/
[FEmT show SNq-(Z(W)) SV S
SN/'- (\/’)
Vs \
Snce we 9o sTutke on I¥ +-—°~ Lot fals 1y Jy dof2 N/

\ ,
! c2%e r’—@,:frr—?fr ﬂ:Qz ;r,"_. Suppok TElr

WY Show SN CZ(Q, Qz))

B\/ \/\duC’HOI\ b\\I()dU'\(’S\.S; ,r'_)q_(b’(e,)) {\

S, (Be)
= Jley) e sag .

SN’I’?T(K@)@’) 5(3) 1"\}_—-9’(‘/\5(@)\[‘/ /\{V@l ~SN'T2(Q|)=75'\‘¢ (3 . »
VoY close to
s conclode SN’T (25(@0 b’(ez')) Wwhat e wertt

= SN’T (5(6\ QLX)

Wait, this was really easy! What got harder? The function case.

case 1y 2.0, F e q,

e Spe YEI
M A% e T, — Ty Show SNy g (B (r. @)
O +AawT, . e)m - |
' by subsﬁ‘\'f\j’)\‘;n lepn s/ le. %%-‘T,’D’(Q’)

) samm.e) §y ey

Q: When you're pushing the substitution, don't you need some technical
details?

A: At the very outset, | said that whenever | write Gamma, x : tau, x doesn't
occur in Gamma. So that's fine.

e
@ SUPP Q,I st SN(T‘ (el)
Show S(\‘q-z ((?\NZ(T. 'D’(@)) Ql.)

—J
(e aeedthis 4o le & e

But ¢ ined SNq (0)

The fact that generalizing the induction hypothesis made the introduction
case harder and the elimination case easier is a pattern that shows up again

and again in logical relations. If you don't get it right, one will work while
the other will fall apart.

So, let e,\]\l/\/\ (_&Le ex\sdendi 2\ leMMa')
L\/ Lorward ceduedlon lemma) Kaov SNT'(\/.)

(’Am;rr. b’(e)) e, \,—;* (Mo:’r. D’(Q)) vy l— D’(Q)[V'/ao]

suffices 4o ghow SN,rZ(b’(e) [Vyx]) ly baehwads red,
= Siq, (x[xrv) (@)

we “n'l dle opSRms forvrrd
S>nd tun Hackwerds

Notice we haven't applied our induction hypothesis yet.

What is the inductive hypothesis?
Heve' (590 T, e Ty Need ! th:r; 21T,
\—\r_J

Nof\ce fl‘\s ozl\q!\-\a \ S b\(‘gj'/

EHLwa, adt die

So we 02ed 3> New F, Q..

{0 1) B0,
For thy we negd
TE T (esy)
((F!am F.) /\ SI\](T|(7)

oM let's have dhis

N —— be v,
Se s SNy (V)T es!

now \/VQ(J(’.«—I- 1le resold of 4o TH: now We e dong

SN, ((3TmmD)e]) —
— _

e mystows c2se Us dle Qocase ond Ale gpp-lese.

If you can do that, you'll be set for life!

To sum up: we wanted to use the induction hypothesis, but we couldn't immediately
do it. We had an application, but we couldn't stick it into the context until

it became a value. This is actually a valuable source of operational insight.

We were in the lambda case and we wanted to apply it. So we carefully

followed the operational semantics, and reduced it to a value, then beta-reduced

it, and then finally proved something about the term at the end of the beta-reduction
step,

Logical relations are like a big jigsaw puzzle. If you define your relations just
right, the proofs will just work out. Some people say the proofs are boring,
but if you don't do the proofs, then you won't know why it's hard.

Q: Have you ever tried this with a non-deterministic language?
A: Well, I've done it with CBN and CBYV (it's just a different operational semantics)
but | haven't done it for nondeterminism.

Q: What about polymorphism?
A: Let's talk about that on Saturday. Polymorphism is...interesting. This takes
us to work by Girard.

Some historical context: strong normalization was used for this proof. This is
often called Tait's method, since he was the one who did it. Reynolds and Girard
came up with the polymorphic lambda calculus (or the second-order lambda
calculus); they ended up being the same. But Girard was also famous for the
candidates method, where he showed strong normalization for System F using

a logical relation technique, called "reducibility". We are not going to do Girard's
method, but we will talk about parametricity for System F.

Booys: cheat sheet

One might say that the key to understanding why logical relations works
is definition unwinding. This is not too surprising, since the INGENUITY of
logical relations comes from the definition of the logical relation. So
I've collected all the definitions in one place for easy reference here.

The celatlon:

SNL”"‘ (Q) = I""ﬁ'. boo\ N ell,
SNgsq (7= FeiT=T, A @\ly/\(jv’e,.SNrrl CHERIINCED)

Substitions on ¢ or\tex‘f,Si‘

YET = daom(8) = dom(T) A Vi & dom ("), SNW(ZM

Ihe, lemmas;
SN-p{@Sef\/{d },y_ ba\kwy(}s /@{w?ﬁb fadyctlon
—_—1

Given |-eir andh er—e’
) SNe (e) = Sn,(e)
2) SN~ (e) = SNrl(e)

Suost lemms

[FeT A TEN = F 26T
The cofe lemma

FeT A TET = SN, (3e)

