STLL +Recurshve Types

Now we would like to talk about recursive types, and talk about how to
prove type safety for STLC + recursive types, starting with a proof for
type safety for just STLC.

Well Typeok P(OS{éMS can't

9 O wyYo (\3 not +rans Hive
\; clasvre

Type safety £ +e:T then Ve',el—-%*e'
= valle’)

V ae”‘ el ’___?e"
Q: Do we formally care that the value we
get has the correct type? "not getting stuck"
A: Good question! Right now, we don't!
While most of you have seen type safety proved
using progress and preservation, these are only e'_.r,te tece v
means to ends: THIS is the theorem we really care about. e s no *

Remark: Type safety does not imply strong normalization

Pogess If -eim thn Je'. erve’ of val(e)

P(@.S(’.Nat\of\ ‘e A CHG‘ @ el

If you were allowed to transition to the same term, that's OK!

You just me able to use the operational semantics to take one

step. Even if you get to the same term, you're still making progress.
C: But it seems you are not doing anything useful.

A: Well, you are still progressing, just not doing anything useful.

All we really want to avoid is stuckness.

It used to be the case, whenever you proved type safety (in the eighties)

people normally did this using denotational semantics: give a mathematical
denotations for everything and show the typing rules were sound. Then
Wright/Felleisen showed how to do type safety in a syntactic manner. If you
prove these two lemmas, you can conclude type safety, by repeated application.

Q: Does this mean if you have any language that satisfies preservation,
you can trivially make it progress by adding a looping operation?

A: Yeah! It's not very useful, but there is always a rule that will let it loop.
It's type safe! It's not stuck. (laugh)

C: Well, that's because yesterday we were talking about normalization.
A: An important point is that I'm going to work with a language which
does NOT have normalization.

You do agt need o vse ol (esS
and P’ese“a'“"" Yo plove ype Sa'('eﬁ.

Recall that yesterday, we defined a predicate, such that if an expression
was a member of our predicate, it was strongly normalizing. We'll do the
same thing today, but for type safety. Take this simple predicate:

Safele) X' Vel o1 Be! Dulle’) or Je' e

Q: How does the denotational semantics proof go?
A: You normally have to prove a theorem called Adequacy which shows that
the denotational semantics reflect the operational semantics of your language.

The inability to prove adequacy of domain theory for PCF was a
huge pain in the neck for PL researchers for a long time.

We're going to define our new relation (like SN) into a different style:

_ l.e. what are the "values" of type tau;
V [[‘T_-[I = <2\l \ v ’,S what are the closed expressions of type
tau? Instead of defining a single relation
8“: ‘T]’ = 5 6‘ " g of all the types type tau, we're dividing this
into values and expressions. There will
be a mutually recursive definition. This logical

relation will capture safe; they will imply Safe,
but Safe will not necessarily imply this relation.

\/[[boo]]] = ivl v=true og d=fa\se§
V[[T"_)%.]] = 3?\%1’7’ e V\/ VG\/H‘EB SelVa] e E[\‘Tﬂ\}

Tl;uo ol molt

EHT] 3@]\% erse’ A wes(e!) QCGVﬂTﬂi

where Wved (¢) def .',ée, er—e' (st o V)

@ ‘F—e',rr -—:> e eaﬂq] same structure as
yesterday!
B) ee EMT] = safe (o)

Once again, let's do the easy step (B) first.

S yppose ere' Shew valle') of Fe'. e're".
Swppose isvedl(e'), then tnwially Fe’
,AI\&\ i \//Eo\(e) 'U,{n e' ¢ wlue L7 QGVE‘T‘U]

Now let's consider (A). As last time, we first need to generalize our hypothesis to
work with open terms.
CS is 3 ‘estatement of OF [~
GI-] - §#%
G 2] = § 9lxov] | 5eGrD A veVIT]

)_'Fe T VUGS[U_I]—} ¥) e U]

f?zd\ Se l‘\an’t\czlly If you give me substitutions that belong to my logical
relation, if you close off my expression, it belongs to
my logical relation.

Gl [FeiT = [F e

This theorem is called the "Fundamental Property", since in all logical relation proofs

you will have to prove something like this. "If you have a well-typed term, if you close

off the free variables with things in the logical relation, the result is in the logical relation.
It has also been called the "Basic Lemma." This is the theorem that tells you if

your logical relation is sensible. After you prove this, you usually can get the

theorem you're interested in. (Or, in the case of program equivalence, you may
need to do more work.)

Proof proceeds by induction on the derivation. So you'll have a case for every
typing rule, the interesting cases being lambda and application.

I am not going to do this proof, because it looks very similar.

I/\’hfo o\uclr\j Ve cu s\l '\\MQS / Unlb
g sy s [Creur |

Maz v \d ‘ Mm-‘T

11
_ ei= v | fold ¢ | unfelde [0 e [px. /o]
fu o Viz e lFo\o\m,r v 10 T ’Po\o)\m.,r ¢ e, T
iﬁ:’xa) E‘l"‘: Y I.Foldﬂdﬂ' E \ V"'ro|°\ E
o ndae e pa
Ufold (foldk yar V) H5 V

TF unfad & T [T/

Haskell programmers may be confused by the terminology here;
fold/unfold correspond to roll/unrold, not the recursive higher-order function.

Brief review:

hS‘t: Ni| l Cong of jat # “St
list = pa, L+ (int x)

R_ 4he postien where 1# 18

fepearvey ifself
In equirecursive typing, we think of a list as equal to its unfolding.

Mok, 7 = T M/

In isorecursive typing, we think of this as an isomorphism; thus you need an
explicit set of functions to go from unexpanded to expanded views. (They
are like "markers").
vafol
T [/\AOK'T/O(]
ol A

Mok, ¥

o _ In homotopy type theory, equivalence
This is a very useful typing feature!

is equality! But you still need to
transport...

Previously, omega, the canonical example of a nonterminating expression,
did not type check. SA

Q'—‘m (D . % %)

With recursive types, we can now make it type check.

the strict positivity condition would prevent us
SA*- (MOMO(f?'r) ~ (T from writing this recursive type, keeping Coq sound.

SA= Ax:pak. Asa, (ufold 0) 2

n
(Mx>7) > J LM“""'*‘T
"t tyfe-ch ecViS!

so) = SA (fla SA)
J T

(pa.x>T) 2 M o T

We did not bother with the monotonicity conditions; we don't need anything
to do both contravariant and covariant types.

This is because we don't have subtyping.

Let's now extend our logical relation with recursive types.

\/ﬂ:bool]] = %v] vetrve og \/=fa\3e§
\/[[‘T,-—)f‘r.)_]] h 3 Aanim.e | Vv, veVIml elVa] e ((:IX‘TZ]}

\/ﬂ:y\o(.“‘r:ﬂ = %‘Fdé‘,mnv | W}

vh aV\,’ Lthiy 8 no la'\gcf well e--f‘o\,nJon\

We tried to use a bigger type in our definition of the mu-relation. How do we
know this fixed point exists? We don't. How do we solve this problem?

S‘tep»'\ndexed\ loglca\ n&laﬂo(\s‘l
\/kU.‘T] = iVl ‘”’%

A value is a member of this relation, if it looks like it's type tau for k steps.
Afterwards, we don't say anything about it! Now our definition works on
the number of steps, as well as type tau, a double induction.

2llnred 14 Ae

\/k[[boo]]] = 'iv l v=trve og \/:—Fa\geg\/’_\theiaw?
\{<[[¢.—>rr2]] = 3?\9@:1. e\jﬁk.V\/.ve\é |[rr,]]—_5€[v/%] c Ejll%]k}

We may not evaluate the lambda right away. We'll use up some number of steps,
and when we have j steps left, we might apply the lambda. But at this point, we
better apply it to an argument which is good for the remaining j steps.

elv/x]
A%. e Vv Why not j-17 After all, actually doing
| | ' e[v/x] takes a step. Well it turns out that |
J J ! don't really need the v to be good for
K > I 2 one extra step.
lg?\?c. ?G) V) l\‘ ? .,V.\ Lnrfgglevcigé \t/);sthe Alternate (equivalent) definition:
J+) 5 substitution. (It's clear 34 k :) .

in the proof itself.)

Vper] = i, v vy veV) [r[*%]]3

T ofglnz ly k-9

The idea here is that the only way to get to the inside of a fold
is an unfold, which would take up a step. Thus, we don't need the v
for very many steps.

Q: What is V_07?

A: It contains everything. But this isn't the interesting question: what is E_07?
Q: Well, | was wondering what happens with k-1

A: Ah, let me generalize this definition [shown above].

Now we're going to work on E. E has the type tau for k-steps. So what do you
do with E? Well, you run it. But recall you have a bound; you can't run it for more
than k steps.

E&[[T]] = Se | Vic<k. Vo' erse’ A i (e) e’é\/k-jﬂ’fﬂi

Q: Why is j strictly less than k?

A: Well, with step-indexed relations, the indices can be somewhat fiddly.
I've placed it on E instead of the function case. The time is going down,
so you're allowed to use it. If we ate up k steps, we would have zero steps
left. | suppose that would work, and on my feet | can't think of it, but it's
not really meaningful to be in V for zero steps. Let me think about it.

GL-1=18%
8 N, «: fr:ﬂ ib’[mwv]l 569 I["j] A vGVk[['T]]}

Meer ¥ Vico. VUeS[[F']] > o) e EJ7]

Q: The step-indexes have polluted everything. Is there any salvation?

A: No. Note that with step-indices, you can immediately tell that it's a well-founded
relation; these sets can't be uninhabited. If you weren't using step-indexes, you would
have to write things that weren't obviously founded. In those cases, you have to do

a lot of work to show the relation is inhabited. People have done this sort of stuff.
What this is saving you is a lot of extra mathematical work to prove the relation

is sensible. The PRICE is the ks are now polluting everything.
It is a bit like dependent types.

Note that some people have come up with ways to work around the ugliness
of the indices.

So we could write down an operational semantics where they are all zero-step
operations, and only fold/unfold is a one-step operation. So the intuition is nice in
our case, and you can make it nicer but now you have to specialize. You've just
defined a metric.

Important note: | said some expression looks like tau up to k step. So what if
you had fewer steps? Yes! If you have more, it shouldn't. What I'm trying to get
at, is that these logical relations rely on a downward closure/monotonicity. So
this is an important lemma you have to prove:

__LQ_MM Dow/\waro\ closule /I"\al\o"'(?l\“cﬂ7
Tf 34K kv QVKHT] then Ve \/J [[‘TJ]

Proof by induction on type tau. Here's the mu case:

Hove *Loa v eV [pma]
Show fold v € Vj H)’W('(T]

Suppose J'4], Show ve \/j' L [/"“’(rr/"(]ﬂ
Tastanhiote & with 9'¢) Lk ey [‘T[Moc.fr/ocj_]]

Exercise: do the function case. Notice that we carefully said less-than-or-equal
to k. If we did not talk about an arbitrary j and just put in k, there will
be a problem. This is incredibly important! You need to talk about the future.

M (Fundg mendal \O(af(’l‘}y')" e 2 [CEar

Exercise: do the lambda case and the function case. You will need to be
careful about decrementing the steps; you will sometimes have too many
steps, in which case the monotonicity lemma comes in handy. In other cases,
you'll have sequence of reductions and decrement them appropriately.

Q: Last time, you went to logical relations because you needed a strengthened
induction hypothesis. But here, if you did a progress/preservation, you wouldn't
need a strengthened induction hypothesis.

A: Yes, that would work fine. And here we have to do step-indexed. But we're
building towards program equivalence, at which point you do NEED step-indexed
logical relations for recursive types. My PhD types was about step-indexed
logical relations for mutable references. When | finished, | thought this was lame,
because progress/preservation could always done. Program equivalence is the
KILLER APP.

Q: Does CBN work the same way?
A: Yes, so long as you stay faithful to your operational semantics. You have
to tweak the definitions based on the language semantics.

