Colextnyl equivalence |+ 6|’r‘\':dwezf’f = VG (CFT) (" Fbeo)
' > clelv & clev

Aom{m, w2] = § (0,00 | e Avesi Ty} Abom B0 % Atow (0.0, 641]
Rel [‘T\ a'Tz] = SQ =P (Ao mva\ [‘T}, fT;p}

V ,Ilooal —HP =5 v, ,v,) GNDMD:oo\]P | VizVasbve v Vi=v,e lese}
’l/ﬂ:f‘n ~9'T1]]f> = i(y\oo:ﬂ(rr.), ¢,, Mxify(m).¢;) eAom [—m D p
| Wi,) eV Im] p- (e,[\/'/m]: €, [vz/vv]) € aﬂ_q‘zﬂ P}

VIvarDp= e, As.e) | Y, . YReRel[m, 7]

(e.T), & L7/1) € E[TT p ol 1,00
V{[xDp= §0va)eMomledp | (vish) €p, ()}
Vsl p = {lpack(m,v), pac(Ty,%) € Mom [t]p | IRe Rel [, 7).

(i) eV 7] plet - (m,13,0)]

EK‘T]JF = 5 (e,,¢,) € Atom[)] Ty, GV A3V A (yv) e'l/lI’Tﬂp‘ﬁ

DI 1= 145

DA,] = $plx (1,7, R)] | peDIA] AReRel[T,%]3
GLIp =i%:98§

9[[1’,%: ‘T]] P :EX\L’X’\HV‘]) vz{”aﬁvﬂ \ (5\,61)€9Er:ﬂ‘o

ANVirvy) eV T] p%

ATrew 22T \peD[al. V(5,,5)eGIrp.
(p3(e), p,T,(e)) €MD p

Up on the board is what we had from Saturday. Where were we? We were

trying to program equivalence with logical relations in System F, which is up on
the board. | didn't say this, but System F is technically STLC with polymorphism;
we just added existentials. Our relation was a binary relation rather than a unary
relation that we were using before; we setup interpretations of types saying how
to values are related at some interpretation. And as an aside, I'm using a notation
where v1, v2 \in V[t], but | could have written this differently vl ~ v2 : tiff ... This
is just a notational thing, and you'll see both styles. The pair-ness is not essential.

(viv2) €V~ VieoVa DT

You, the person who is using the logical relation, gets to pick the relation.
But if I'm trying to show something is related, | have to work under an
arbitrary relation when | actually use the relation. So we used rho to help
us keep track of these relations. Existentials are the dual of the universals.

What have we not done? We have only talked about closed terms, but we
also need to consider open terms. Our sense of contextual equivalence is
actually not quite right, since we need to add type variables to the context.

COQ{%ﬂ\Q_\‘qu\W\CMC AT PR R VG (AFHT) &2 (-5 Fbool)

> clev & cleWyv

Now, we want to define a logical relation for two open terms.
NTrewe, T %ef ?

We'll do the same thing as we did previously, which is "give me a bunch of related
substitutions to close me off" and then we relate the closed version. We have

to do this for both term variables and type variables. Rho will let us do this

for types. So let's define relations for delta and gamma.

DI 1= 14}
DﬂA;‘x]]:' fP[O(H(‘T,,’TZ)R)] l PGD[[A]] AReRel[‘T,,ff’z]}

Notice that we were always careful to make sure R was a Rel[tl, t2]. Thatis all |
am checking over here.

Q: Can't | always pick R to be the complete relation, in which case the existential
trivially holds?

A: Yes, but it won't be useful. It will be important it won't be all values of t1

and t2, because what the statement says is that there exists some special
relation, a cut down version, it could even be singleton. What you define in

your relation has to be precisely what you want to be related.

Note that we don't have very many restrictions on Rel at the moment. But
when we add recursive types, Rel will now need some restrictions
reminiscent of the monotonicity restrictions we saw previously.

Gamma will need two substitutions!

FEL 1) (o155 €SI
» Xt =3O, By 7V, 51, 02) €
gﬂr% ‘T]] P 3 Y_’)" A(\/,,\/z)e'u[[rr:['f;i

NTre x R4 \/pe DAl \/(b‘.,?f,)egﬁrl]p.
(P\ 5,(e), p,T,(¢) €E] P

Don't forget that gamma needs rho, so it can pass it on appropriately. We now have

a logical relation for open terms. So we should now be able to do our proof of
equivalence using our logical relation. Once again, we have a two step process:

we need to show the relation is sound and complete for showing contextual equivalence.
But before that, we should check it upholds the FUNDAMENTAL PROPERTY.

Tkeorgg (Fw\&aml\’\z\ ﬁ.gpe({):) Also known as parametricity
NoTrer = AyTrererT

Recall, last time, we did something a little different: rl—a‘.q— =28 Fe:iq
These are almost the same thing (one is closed,
the other is open), but in the new case, our relation is binary.

Q: Aren't you missing indices?

A: No! Although this looks very benign (obviously e is equivalent to e),

there is some serious stuff hiding under the surface of this statement.

To prove this, you will need a number of compatibility lemmas. You'll have one
per type inference rule in the language, and they will do "the work you want".

Think of the fundamental property as "reflexivity".

S

COMPM'\L‘I H'}:/ LQ(\AI"\‘Q_S

r(W)='T i _ Ajr,?a‘.ﬂ' e ey B
A',\"}—x'.\’,x'-ﬂ' Al)r)")w:rr‘e'g)%mez;q—awv
(ExX) AT rewe, Ver AT Asx:THe ®eai

[9

G

ATrer]y er] Tlaj) KT Do s e W7

(Pack and unpack are also very interesting)

Once you have this, you have the fundamental property easily, by induction on
the derivation. Each case is discharged by the corresponding compatibility lemma
(which is actually more general, because it's different on both sides.) Let's

prove the compatibility lemma for type abstraction.

Compat Tfaa:The ¥e,t T then AY - Noe, ® Aoxezt Vour
Proof Suppose pe DAl | (5,,7,)€GTrlpe > sow

(p 5 (0e), p, % (Mg, e EL V] p
= (A°(P' 5(6.) : AO(. Pz'zg (ez)) g/pushing the substitution in since

alpha is not in rho or gamma.

Conveniently, our expressions are already values.

Tt suffices 1o show (AO(P g(e)) , Nt P,'ZS (¢,)) € V[] V“\‘T:n P
Cons\der 2rbittary M, and ReRel[m, T,7.
Show: (p¥.EITTK], p. (&) [T/4]) € ELTD plx 1> (T, T, RY]
Now we can use our hypothesis.
We oees p'e DUA,XT e (71,5,0e LD P’
We have Pe DH.A:U) So F\ - P[O(F—>(Pﬁ,'Ti ’ R)] (dn(dd/\j D[IA,O(]] rule)
We hove (8,,3,) € Q] p,|so wealkenny gues vs this wder p'

L (PVB (e)), pB,ley)) € £17Dp L (Tyr,, R)]

- —

P 5 (e,) [’T'/o(]

The most interesting compatibility lemma is type application, which will need
a compositionality lemma (also known as a semantic substitution lemma).

| ema (Cat“pos'\‘l,lol\a\\’t‘j)
If AFT' g0 DyX =T and PE DIAY 2m R=V[r'] P,
tren VITI]Tp = VIT oL (i, pya's RY)

That is, if you look at the interpretation of some arbitrary tau, where tau' does
not have the variable in it, if you substitute t' for alpha syntactically, you should
get exactly the same relation, as if you just took the interpretation of tau with

the free binding (and your interpretation was rhol of t' and rho2 of t' and R
having v of t'. Semantically substituting t' for alpha is the same thing syntactically
substituting t' for alpha. It lets you shift your view

from semantics to syntax, which comes in handy. S\/f\'LQ)‘ @ SPMZ‘T‘:\CS

Now, the next thing you need to show is soundness and completeness w.r.t.
contextual equivalence:

Thescem (Sowmdness w.rd. codlextual equivalence)

A M e, ve: T thn A,l"\—e"k'lcw e

2T

T,,“.Cﬂ!ﬂ!} (Comp\e-kncss (WAL S CDﬂ'TCp’lA:?\ 64[.}\\,3\(1\(;()
"F A')r\'_e|mm ez',rr ’U‘\ef\- A.) [\i—e.’.}’,e;_:"r

TT-closuee

Completeness sounds like if you had been able to pull it off, you'd have a method
that would work for everything in the world. This is suspicious. So if you see tha
someone has claimed they have completeness, look to see if they've used
biorthorgonality (or top-top closure, or bottom-bottom closure). This uses a different
definition of relatedness, where if | put related expressions in related contexts,

| get related values. What does it mean for evaluation contexts to be related?
They'd be related where if you give them logically related expressions, you get
logically related expressions. This is kind of circular. This is the standard trick

for making the logical relation complete, but if you then go and try to use

a top-top closed logical relation to do examples, e.g. weird and interesting
examples (esp. mutable references), you may not be able to show them equivalent.
The top-top trick just baked contextual equivalence into the logical relation. You're
pulling the definition of contextual equivalence into your definition to get the
completeness theorem work. I'm not deriding this, but it is an important distinction to
make. You may need to setup a logical relation which is sound and complete,

for technical reasons, but you won't necessarily need to lean on it for an

example. (Though, these days, with the state of the art, things are quite good).

Q: Why is it called completeness?
A: Well, that's what it is! (The definitions are just funny). It's traditional.

Funny story: one of the reviewers said: your logical relation isn't even complete
with regards to contextual equivalence. And back then, it was not well understood
that you could have top-top to get completeness, while not being able to

take all examples and prove them logically equivalent.

If you want to understand exactly how this proof works, soundness mostly follows
from the fundamenta theorem. As for completeness, | spell this out in a

summer school lecture two years ago, OPLSS 2011, lecture three. All of this
treatment, and for step-indexed relations, it can be found in a tech report

ESOP 2006 "Syntactic step-indexed logical relations for polymorphic lambda

calculus and lambda calculus." This tech report has every proof step spelled out

in every detail. It is very detailed, you'll have to squint at some notational differences
but it is really helpful. Completeness for this is very difficult, so this TR will be

useful.

Free theotem: LE Fe: Voo« 2nd - viq dhen Cftrjv\""f}\/

Prost By Aindamental popelty, -Feme VYo o

Therefore , (60 € E [, o >] ¢ We're going to lean on
determinacy,

EH—‘ e\—f)-F. eV [V > | & (ve keow ‘F:Ad,e+.)

HW 22 9oy 4o vse this ’(\AC‘? We ac'\. +to pevide Ty, T, 2nd R this is the only
interesting thing

Ty= My=1 R'-'—' %(V:» V)} (Slnoledon) in the proof.
- (e-F [rr/o{] , €f [(T/O(-]) € 8 ‘I"(]] ¢[°“"7 (rr) T, R)] (unwind some more)
3. elmk] 9. (39) eV [l f (o (1,7, R)]
Now we ot o provihe (vi,v,) e V] ¢[o(r—>6T,'T,R)] (e know 9= 2"':'r'?-f])
=R by definition!

SO'- \/‘ =V \/"lt‘g

2 (eg0m), e (/] e EM]) 4 (x> (T,m,R))
v’ eg[Ve) 2> v A (Vi) €V[] p[xr> (1, T,R))

e vi=v as it is the only thing in the relation.

What we have done is taken e[t] v and run it down to a value, and found out that
the result was v', which must be v! e["r]v | PF> 'F[rﬂ v x 3 v k—’—k} V' = v

Q: It looks like some sort of abstract interpretation.
A: It is true that in logical relations, you tend to run things for a while, and then
find out something about the result. But it's not abstract interpretation.

Exercise: show that our pack example is equivalent. Here, you'll need to
pick an R appropriately, and it will be the singleton (4, true)

Q: Can you do a unary relation for polymorphic calculus?
A: Yes, it would look quite simple, just with one side omitted.

Q: What happens if you have full beta reduction?
A: I'm not sure.

Modficotlens der fecursve dqpes (WIo nama\\w\on)

Don't get confused for the function case and the expression case;
function case talks about doing something later.

Conleytn) 3pptoxi myllon [Me, f-,dwez!T = V(. (THT) &2 (" Fbso!)
= cle v S cle\yv

Ko, 2] = § (0,60 | Fee T Aveni Ty} Ao [¥)p % Aol), § (]

\
R@I [‘T\ 1¢2] = SQ = N "'>/P (A{OM\Ia [‘T;,(Tq_l-) ’ Vj £ k.Vv,,vz ' (Vl)Vz) GR(‘()—> (V”V)_')
If things belong to R at k, then it has to belong in R at j < k (monotonicity) GIQ(j)}

IVk[[Lool —]]P = 3 (v, ,v,) € Mom[boo!] P l V=V, cdve v Vi=v,z lese,}
VL R Ip = {(wp(m). ¢, Mify(m).0) eAtom [— D P
IV:)S k. Wl 4v3) 6%‘[‘1\] P (e,[\/'/x]; € tv’/a']) Ly P}

VIvanr] p= (e, \a.e;) Ik Vi . YReRellm, w15,

(e.[0], €2 [/]) € ﬁa [[T] plx H(’T‘,(TQJYZ)]}
%[[OLBP) 3—(\"?\,2) QA%m[O(]P | (V”\/’) € PR('O()(kYg It/Ite doesn't seem to matter
1{([[30(;(]] p= § (pack (T,,v)), pack (T,,92) & Atom L3xm]p |3¢k IReRel [m,m7.

(Vi>vp) e'lé[]_']'] P[d = (’TU’HJR)]

UL s D p= §hold v, fold v [Vick (u,vp)e Vs [r[ponn/n]

We can't put j here, because that would
. imply that they would have to take the
& Ek“"T] F = % (e, ,€3) € A"'DMY_WJ I ‘76 <K came number of steps.
9 *
VV\. eV, $3\/2,ez\/7v1 AN (VUVz) evk—j 'IT‘BP%

yes! an arbitrary number of steps. the previous
ezyang: | think D does not need an index. intuition of step-indices breaks down here. It

Dﬂ]] - E¢§ really is just an inductive principle.
DA,]= iplx (1,7,R)] | peDIA] AReRel [T)%

9Hr°'>°: ‘T]] P :3?5'\[7(’\HV'])~62[7°2 2V,] \ (5\361)68‘[[”]“)
k /\(\/,,\/z)e'ukl["r;ﬂp.g
ATFe, 2 e TE k20, e Dllal. V(5,5 eGIrIp.
(pBie), p,T,(e2)) €EfT] p

This weird asymmetry in the E case causes interesting problems for step-indexed
logical relations. In particular, you can't prove transitivity anymore. If you have

el <=e2:t,and e2 <=e3:t, if you want to show el <= e3 : t, the problem

is spelled out in ESOP, but the problem is what substitutions are you picking?

You have something bounding the thing on the left, but not the thing on the

right, that can take an arbitrary number of steps. So what do you do on the

rhs e2? Read the paper for the details. There are a lot of tricks to try to bound

the other step, but you will always end up demanding both sides have to reduce

with the same number of steps. So now everyone agrees this is the correct definition.

Wrapup remarks and references. Last time, in the beginning we started with
step indices (third and fourth lecture). The other thing | did not cover is how

to do step-indexed relations with mutable references. This is very interesting
for practical languages, so if you want to understand this better, 2011 and 2012
will work; check the fourth lecture/fifth lecture respectively. Tomorrow, when

| survey logical relations, I'll talk about more pointers to the literature. This
afternoon, I'm going to talk about compiler correctness. This will be a

"state of the compiler correctness", giving a tiny sense of how to take

a trivial translation and setup the logical relation. But what | really want to

say is, what is it we really want to prove?

