Comp'l\e(Coflfectness

Perhaps the most famous verified compiler out there is CompCert. This project
was started by Xavier Leroy in 2004-2005. It is a C compiler written entirely

in Coq. It is an impressive feat: it is a realistic language that is being compiled.
It has 11 (or perhaps 147?) passes which goes from C-light to three different
backends, PowerPC, x86 and ARM. This whole thing has been formalized.

What I'm going to talk about today is compiler correctness theorems themselves,
and what it is that we are proving about compilers.

(:O — Notationally, we will be using
MPCER\ C blue to represent terms in

the source language, and red
to represent terms in the
Tbﬂ_ PS 7 PT "_? Pg & PT target language.

Intuitively, when a compiler is correct, the source and target programs should be

the same. So one way to express this is to specify a mathematical equality between
the *denotation* of programs. We don't actually do this, because taking the
denotation of programs is difficult. Instead, we define - p 7
some appropriate "equivalence" relation. Now, how [[%Il - ﬂ: —,—:H
this is defined is very subtle, and has important)
implications on how you will proceed with your proof.

In CompCert, you carry out a simulation argument,
"">| k'?
% %'z = %'zn where if you take a step in the source language,

3 this correspond to zero or more steps in the
‘ target language.

P

There is an important caveat here, which is that
CompCert's theorem only works if you compile

; Sk .
' — P a whole program. But we don't usually compile
PT 2 HF%‘; E”H) a whole program; we want to link against libraries.

What I'd like to do is take a source program, compile it to a target
language, link it against another program (assembly, low level libraries,
or even a program in another language):

Q\/{\‘ €s es PL

compilation arrow!
(1)

er M ¢

As a concrete example, consider .NET: .NET is an intermediate language or platform
designed by Microsoft. The idea is that there are many frontend languages
which compile down to .NET IL.

B o# Viswl Bage
NET [

(Previously, we were considering an intermediate language which was assembly.)
This is a common way people achieve language interoperability today. (Of course,
you might run into trouble if you wanted to link .NET IL against assembly).

The upshot is that when we have multiple languages, they need to be compiled
down some common intermediate representation, at which point they can be
linked together. Once this step is achieved, when can use a CompCert style
whole program proof; however, for all of the earlier steps, we will need to be
able to verify the passes in absence of a full program.

Allowing linking is equivalent to allowing open terms (who are filled in with
things provided by the linker. So our statement of equivalence is now over expressions,

not programes.

While we have generalized our problem to expressions, we still haven't said

what it means for two partial programs in different languages to be equivalent.
Today, we will look at two methods for achieving this. The first will use a logical
relation to say what it means for two expressions to be equal, across the language
barrier:

’—h El—-({siri'sf\/_’ er = [;l"esec er Mg

—

/] L(og‘uzlL] rel;i-co!

am open program with some this symbol is purposely asymmetric
free variables, the slots for the to emphasize the fact that the are
things to be linked in. different languages

So, | am going to do a simple example of a STLC with booleans, and compile into
a STLC with integers and recursive types (providing non-termination).

SovRCE e Muz - | T, 20T
T = bool I'T\%'T')_
ei= de | flse | if (¢,e,,e) 1 x| M:T.ele e,
viz tive H‘a\se \ ANT.C

Ei= [] l (B2 ,8) IEG \ vE

TARGET Prei® e InwT
CTaEE et | o, o] T

ei=n|#] e e |3 | dmmel e | folde lurfolde

Vii= n I Mo T.e | fld v

Ei=[]|¥E e.e, |Ec|vEITME[vnfld E

Why non-termination in the target language? | want to make it clear that
there are often many things in low-level code that you cannot write in a high
level language. So the target has some feature which the source doesn't,
that is non-termination.

Q: Are you going to prove a completeness theorem?

A: What is meant by "completeness"? Perhaps you are speaking of the

fact that we are proving only one direction: if S evaluates to SV, then T evaluates

to TV. So sometimes you need to show the other direction, though for our case

it is not necessary. CompCert TSO, which deals with C with relaxed memory

model and concurrency. With concurrency, you often need both backward simulation

We're going to write a small type-preserving compiler for our language.
Co What is type preserving compilation? For a long time, even when you were compiling
S|Prs . .
a typed language, you would first do type checking for the source language,
T and if it did type check, you threw away the types, and translated the untyped
syntax down the successive phases of the compiler. In the early 90s, at CMU,
. people like Harper and Morrisett started working on type-preserving compilation.
zl'(q:s)I The idea was that when you defined your language, if you had type information
é at the source level, that information should not be thrown away; it should be
T : , : :
transformed from phase to phase. This would require your intermediate languages
ZT'.(‘T)IT to be typed. But was really nice was it gave you a really nice way of debugging
3J)" your compiler. If your compiler has a mistake in a pass and produces a target
code that doesn't type check, you'd immediately know that you'd
+ensdormationdone something wrong. Even Java to Java bytecode preserves types, since the JVM
00 hpe bytecode has lots of security checks.

ComPILER
* .
r(zo):rT (J)Ob\) = m'b
+ + +

[Ftwe:bool ML [THLalseibosl ~ O jovarlznt i MreT~e

FMree:7t
[heibool e Tre.:Tm™re
T it(e,en,e: v~ if(e2),e,e,)
Sxrte: s ~e - [Fer'sr e, [FoiT e,
FEAMT. e ! ~y A% T, & Fre, e T~ e e,

The type-directed compiler can be divided into two parts: first, we define a type
translation (the superscript plus), which tells us what the types of compiled
expressions should be (as expressed by the invariant). Then, our translation
proceeds as per all of the typing-derivations in the language.

Now let's setup our logical relation, which says when two terms (in different languages)
are equivalent (notice the relation is defined only on the source types):

V[beol T = § (tve,n)) nz1} U 1fslse,n)) n 2 0}

VT —=m =30 e,,’)\z T e) | Vg v eVIm]. (e[\(s] Y_V/x] GEE_"':IB
E\I'TI] = %(es,eﬂl\‘/vs‘ es&-—>vs = 3v,. eﬂ—i;’vf A (\/S,VJG’UITJ]

A few notes: while our target language may be non-terminating,

our source language is terminating, so we can simply just require the target

to be terminating for the expressions to be related. Additionally, our transformation
is quite simple, but if you were doing something such as closure conversion,

your types would get a bit more complicated, since you'd have to translate

certain types into existentials. However, if you follow the types, you should

still be able to figure out the translation! There are no step-indexes, because

we're defining the relation on the type structure of the *source* language.

GLI=%(¢,9)%
G i 7] = $ (B, B lxove)] (8,83 € G A (%, V) e V7T S

\-; P@s oC 81— . ‘Ts A—"EZ‘G V(ZSS)ZST)E 9“—'1-“ :'> (ES(QS)) UT(QT)) € E‘I_‘TS]]}

Digression: bisimulation is abused term in the community. It refers to a specific
proof technique, but it is sometimes used to describe when there is some
simulation relationship between two processes. The proof technique requires
coinduction. And you cannot use bisimulation to directly show contextual
equivalence, since you cannot run open terms.

IMPORTANT POINT: We had to write down our logical relation in order
to be even able to STATE what our compositional correctness theorem was.

We can prove our correctness theorem (semantics preserving compilation)

using induction on derivations.
e

. 'Q"'\ P@?QM

h [(Feg' T e = rPeSOCQT.

—

Q: What happens if type safety doesn't hold, e.g. an untyped language?
A: Type preserving compilation doesn't really work in the way I've described. But
| guess you can still set up a logical relation with step-indexes.

Digression: This is not the only theorem that one might be interested in. Consider
another theorem (called "equivalence preservation"):

M+~ €Es, %fm/e\,s LT equ -presev
> 2 \Il/ “‘ = fully Adtoct
. 4
I+ eT Q//Er‘bo /éT "'T+ equiv-reflect

This is insanely difficult to prove! The reason is this: the target language could
have some pretty low-level operations to distinguish between otherwise equivalent
source programs (e.g. something using a stack versus using a list). So what
you would need is to show that "encapsulation" is also preserved, and you
might expect this to not generally be true for most low level languages. But this
is still a desirable property: this theorem would allow us to ensure that

security guarantees in the source level are preserved. So we might also

call this type of compilation "security preserving compilation." As an

example, F* is a dependently typed extension of F#, which allows you to prove
all sorts of properties of your language. You would like to make sure these
invariants are preserved, and it is something that is open research.

By the way, when the implication goes in the other way, it goes equivalence reflecting,
and when it goes both ways, it is fully abstract. There was a recent paper
on this subject.

Returning to semantics preserving compilation, we have defined equivalence
in terms of a logical relation. But what does it really mean? Take this sample program
and its compilation.

’F:BOO\ - boo\ — ’F 'PQ[S&': boo\ eé

: , |
‘Fﬁn’t—éin’t — ’F 0: int M er Even though we compiled

e t' from some other language...

Teaglne ’P| = Axint. O 4’, = A%ibool. fh\se

What does our compiler correctness theorem says? Well, our statement of logical
relation requires the substitutions to be related. So I've given an f1, but | need

to come up with an es' which related, in order to do this substitution. In this
particular case, we can imagine up the right source term:

Q: This only works because you only had integers in your source language.
A: | am about to make a point like this. Before that, here is another example that works:

%:’Ax;;,\’c‘ if x>0 Uen Oclse | ’Fz" At bool, if » ten trve else £2\se

And now here are some examples that do not work:

’Pg = Axiat. x| We intentionally chose the target language to use
,F = Axiint. L ints to make this example fail; if it was nat, 3
4 would just be constant true.

These are really trivial languages, so the fact that we are having this difficulties
elucidates what our compiler correctness theorem actually means. What we
have effectively said, is that we can only link with things which *could* have
been compiled from the source language, i.e. you cannot link with anything
that you could not have written in the source.

The theorem is not EVEN THINKING about things that are not in the source
language. And remember, that's our fault, because we wrote the definition!

So next time you read a compiler correctness paper, don't just say, "Hey,

they proved correctness!" You have to read the theorem, you have to understand
what is going on under the covers, to see what actually happened.

To make things worse, when you add references, and you need Kripke logical
relations (with things on worlds), it is really hard to wade through the logical relation
to find out what the correctness theorem is really saying.

Q: Well, is this a problem if your source language is really expressive?

A: You could say with a Turing-complete language, you'd always be able

to *find a way*. But you'd still run into problems with type-directedness. Imagine you
were linking with something like int -> int. Surely you could imagine some

function which had that type, but modified some state. You wouldn't be

able to represent it with the type.

By the way, there is another weakness with the original approach.

People who work in compositional correctness talk about vertical compositionality
and horizontal compositionality. Horizontal compositionality is about linking,
while vertical compositionality is about multipass compilers:

esw,elmer

You should be able to prove each pass correct independently, and then easily
combine them. The problem with the previous approach, is once you scale

this approach up (e.qg. if you have references in your source), is that you'd need a
step-indexed logical relation, and these logical relations ARE NOT transitive.

(We discussed this problem in previous lectures.)

2
0soC €11 T €reClriaqy = EsXeq s

Nota bene: within a single language, you have a statement:

ct ctx 17 2SN
e <7 e ™ A T Hes eiTTregé &0 T

Contextual equivalence is obviously transitive. So if | am only in one language,
| can do a trick where | show my logical relation is sound and complete with
respect to contextual equivalence, and then | automatically get that it's
transitive, | don't even need to crank the proof.

In a multi-language definition, there is no notion of contextual equivalence
to appeal to. But that's exactly the idea that will underly our next notion
of equivalence.

So | want to talk about a different way of doing things that allows us to
link with arbitrary e t'. So we only require that it is of the right type. It
can be a simple type or a logical specification. At the assembly level, this
might be a question of calling conventions. But | want to allow linking

with f3 and f4.

Let's have a new specification of "equivalence" between programs.
Intuitively, what we want to say is:

1 , |
s M er Informally, this says that we want some way
of linking S things with T things, and then
say linking eS and eT' is the same as linking
eT and eT'. Of course, if eT' introspects on
the structure of eT, then this will not work;
e/r < @.’r so we need to forbid that.

Of course, there is a question mark above one of these linkings, so we have to
say something about how we're going to link things which are in different languages.

Here is what we'll do: let's define a big language ST which embeds both S and T in itself:

ST However, S and T are not permitted to interact
S with each other in an unrestricted way: we will
have specific boundaries between S and T that allow
TS T them to interoperate.

To define this language, we literally copy paste the old definitions, semantics
and typing rules, and just add some ST/TS forms for interoperability.

SovACE kel M ue-| T, 25
T = bool [TV > T
en= te | fise | if (e,e,,e) x| dxT.e le,e,|"STe
\VATE= tre H‘a\se_ \ A%\, 0. always evaluate in

the boundary down

E‘.‘-= [] l ~,$(E,e.,eﬂ IE@ \ vE \’TST E &__/ to a value, before
translating
TARGET e [Tu=- (L@l
Ti= ot | =T, || px, T
en=n|d 2] e e | |5 | dmmel oo | folie lunfolde | TS's
visn | dome | fold v
Ei=[J|#E coe, |Ec|vEIDME[vafld €| TSTE

ConBINED Mrewr TEee |l R
Ti=T|T
e=ele Mre: Tt AL
vi=V |V 78T e M- T8Te: 7
Ei=E|S

The most interesting thing about this combination is what happens operationally.
The problem is how to bring values from the source language to the target language.

beolST > de W n>0 STy %M. ST (v (18" £)

boo! AEY o T
STrn k= fise if n40 o —
TS Lwe — 1 2
TS‘c-"\ {‘;\ge — 0 Cout -2 s Aine 1) Exercise (trivial): do the other direction.

Notice: Post-lecture, we noticed that there was a problem with this definition,
that is, it does not preserve the cancellation rules (TS (ST 3) !'= 3). We couldn't
really think of a good fix for the problem. However, in actually developments,
this tends not to come up, since in the target language we tend to have ways
of expressing types which are isomorphic to the types in the source language.
Beware, though!

We now have a single language for ST. And since it is a single language, we

can define contextual equivalence for it. (You know how to do that). So thus,

our theorem is: T
—

- An 1 .
”\M rpzs 'T N = r__-eSNC” sSTQ,- S

+
T
The beautiful thing about this is that | no longer have to deal with the messiness
of the two languages; | now only have a single language.

This definition assumes a type preserving compiler (and we think this is a good
restriction), because it argues that code of type bool which is allowed to link
against other things, it is allowed to link against a translation of the type.

This information is important, because it tells you what is sensible to link with.

| don't think it's essential to have types at the target language, all you need is a
program logic. | wish for a dependently typed assembly language

which can express rich properties.

This equivalence solves the horizontal composition problem, since you are now
able to link everything with everything else. Furthermore, you are able to do

vertical compositiog:
ct»

J, ST 1% s ny @z D esNsg STex
cty
R I

SlTe;‘
\LIT TT ¢r T eT:;eINCWITC

T ST ?,I Ngi?- ST (IT QT)

But note that we need to say that it is contextually equivalent to when something
is wrapped in ST. Contextual equivalence is hard to prove, so you should use
logical relations.

When does this get hard? When you have polymorphism in your source and
your target language, the interoperability boundary between the two can be
a bit tricky. When both languages have mutable references is also interesting:
you can't just make a copy of the location to go across the boundary.

This operational semantics captures what it means for a source thing of some
type to be related to a target thing of a related type. | don't think this should
be characterized as compilation. The driving force is the type transformation.

An important thing you need to prove when doing contextual equivalence are
these:

ee ¥ STTS eg: Ts
01 ¥ T8 ST e T

If this doesn't hold, then you've done something wrong. You don't have
free rein over your definition of contextual equivalence.

The target language would have to have parametricity. If eS is typed,

it has requirements about what it wants to be linked with. It needs

to capture things that the source language cares about. So maybe this means
this technique will not scale.

By the way, the original paper for language interoperability between a typed
language like STLC and an untyped language was by Matthews-Findler POPL '07.
In interoperability work, people have been doing FFIs and a lot of hacking,

and what their work did was really say we should put this on formal ground.

We also had a more recent paper on CPS transformation in ICFP'11.

Q: Haven't you told us that you have a way of combining any two programming
languages together?

A: Yes, but remember, | am not allowing unrestricted combinations, | am forcing
the languages to only interact through these boundaries, mediated through

my type translation!

