Verifying LLVM Optimizations in Coqg

Steve Zdancewic
Oregon PL Summer School 2013

PENN

7

Thanks To

Dmitri Garbuzov
— developed the Vminus & hands-on part of the lectures

Jianzhou Zhao
— developed the Vellvm Coq framework

Santosh Nagarakatte
Milo Martin

Xavier Leroy
— some of the slides are modeled after his

Motivation: SoftBound/CETS

SoftBound e Buffer overflow vulnerabilities.

* Detect spatial/temporal memory
CETS safety violations in legacy C code.

* Implemented as an LLVM pass.
 What about correctness?

http://www.cis.upenn.edu/acg/softbound/

Motivation:Compiler Bugs

[Yang et al. PLDI 2011]

Random test-case 79 bugs:
generation 25 critical
202 bugs
Source 325 bugs in
Programs total

{8 other C compilers} /

Motivation: Semantics

Are these two C programs equivalent?

int Sum = (N & (N & 2 2 0 : ~0)
| (((N & 2)>>1) "~ (N & 1)));

int Sum = 0
for (int i

{

| ~eo

1; 1 < N; ++i)

A

Sum = Sum S

}

(Yes!)

Motivation: OPLSS

 Demonstrate some applications of techniques from the
summer school:
— Formal Modeling in Coq
— Operational Semantics
— Preservation & Progress-style safety proofs

— Simulation arguments

* Introduction to LLVM IR
— Potentially useful target for PL implementations

Low-level Virtual Machine (LLVM)

Began in 2002 as Chris Lattner’s Masters Thesis

Has since evolved into an industrial-strength compiler
intermediate language

— open source

— used widely in academia

— used extensively by Apple

— very active community

Key features:
— Simple design: one IR for many analyses/optimizations
— Single Static Assignment
— Typed IR

See: http://llvm.org

LLVM Compiler Infrastructure

[Lattner et al.]

Objective-C

@ python’

=

EScala

-

&
() A

| (3
\ O
. A
~ =7 y

| .

y
LLVM

Typed SSA
IR

-

Code
Gen/lJit

3

il

Optimizations/
Transformations

)

1

[Analysis }

I!l!llll

MIFRPS

B POWERED

SPARC

owerPl

—

LLVM Compiler Infrastructure

[Lattner et al.]

Objective-C

@ python’

DE

EScala

-

L

Front
Ends

verified

LVM

—>
—>

Typed SSA —/

_£

Optimizations/
Transformations

)

1

{ Analysis }

Code
Gen/lJit

3

I!l!ll!l

MIFRPS

SPARC

owerPl

—

The Vellvm Project

[Zhao et al. POPL 2012, CPP 2012, PLDI 2013]

P T——————

Ve”\/m ormal semantics

e . .
‘tiwm * Facilities for creating

- Simulation proofs

TVpelfli S8 |m Iemented in Coq

e Ext a(;t passes for use

it i.LVM compiler
Optimizations/
{TransformatlbnsE ample verified

) memory safety
[Analysis Jinstru:mentation

Vellvm Vellvm Framework

Type System Operational
and SSA Semantics

OCaml Bindings

Parser Prlnter LLVM

C Source LLVM LLVM Other
T, t
Code w Optimizations oes

Vellvm
verified
LLVM

e

Type System Operational
and SSA Semantics

Firdina ~4

!} Verified
Transform | |?

U

LLVM

HYM Other Target
IR Optimizations

C Source
Code -

Plan

Vminus: a highly simplified SSA IR based on LLVM
— What is SSA?
Verified Compilation of Imp to Vminus
— What does it mean to “verify compilation”?
Scaling up: Vellvm
— Taste of the full LLVM IR
— Operational Semantics
— Metatheory + Proof Techniques
Case studies:
— SoftBound memory safety
— mem?2reg
Conclusion:

— challenges & research directions

««mpiei (UNOptimized) LLVM IR Code

define i32 @factorial(i32 %n) nounwind uwtable ssp {
entry:

%1 = alloca 132, align 4

%acc = alloca 132, align 4

store 132 %n, 132* %1, align 4

store 132 1, i32* %acc, align 4

br label %start

start: ; preds = %entry, %else
$3 = load i32* %1, align 4
%4 icmp ugt 132 %3, 0
br il %4, label %then, label %else

then: ; preds = %$start example.c
%6 = load 132* %acc, align 4 unsigned factorial(unsigned n) {
%7 = load i32* %1, align 4 unsigned acc = 1;
g = ; 2 2 . !
58 mgl 132 §, 7 . while (n > 0) {
store 132 %8, 132* %acc, align 4 N "
%9 = load i32* %1, align 4 etle = ek nj
$10 = sub 132 %9, 1 n =n-1;
store i32 %10, i32* %1, align 4 }
br label %start return acc;
}
else: ; preds = $%$start
$12 = load i32* %acc, align 4
ret 132 %12
14

Distilling the LLVM

 —

Documentatio _
‘Documentation 1€ tion 10 o

Gions * Messages sorted by: [subject] [4
i ;) —==Hbject |

o La%%‘::?c(;uides info on this

) L/%)' amy

. Gen;e\rzlsLt;zm Docur Starting: Sun
o LLVML SRS

—
Nuary 2012 Archives by thread
o LLVM Design

Jan] 12:44:27 csT 2012
Mailing Lists Ending: Thu Jan j9 18:2] :55 CST 2012
. %m Messages: 345
Written by

—

1 ¢ [LLWdev] [Pareyy 11
LLV] ° [LLVMdev] [PATCHI
— T

indows 32+64h; a7
ILS s /1 y El7 Friednan
n fLLVMdeVJ fPATCH] Support for Windows 32+64bit Kas
Reference n [LLVMdev] [PATCHJ TLS Support for Windows 32+64bit Kas
'M Language ‘
. W * [LLVMdev] thaa Jianzhou Zhap
L4 / \. . .
W * [LLVMdev] Checking validity of metadat
¢ : stem. , B
explg\jlmitg:: ilation Fra ° [LLvd
o LLVM.ALompmm
ovef\.'ie\v.

. An Infrastructure
LLVM: An -An
: etElementptf FA Ctim
misunderstood instru:

I

Analysig in LL

Alias
L LLVMdev] Compar
——————

Analysis in LLVY Chrss Lattner
n of Alias Analysis in LLVY
Analysis in LL

Jianzhoy Zhao
VM
o Stz Analysis ip LLVM
T e Everything fom b~
-
infrastructure.

Jianzhoy Zhao

Chris [af tner

Talin

Interpreterh

Distilling the LLVM

i ~ ~ ¥ TVM System
Documentation f0 Ta T TVM Sy
Docul e —

e LLVM Publications

uary 2012’&"{
« LLUM Desizn chives by thread

* Messages sort

ed by - [- . .
; ® . - sub
e LLVM User Guides More info on this 1ie7 s Lauthor] [date]

Programr 1s list e ate J
. Genetal LL\'M O _ e —_—
Execution.cpp
Ivm/instructions h lvm/Constants h IvmjCodeGen/intrinsicLowering.h IvmySupport/Debug.h cmath
| Ivm/callingConvh | I Ivm/Support/GetElementPtTyp h Ivm/instrTypes.h | lvm/Constant.h | | lvm/ADT/APFloat h |
vm/Attributes h Ivm/DerivedTypes.h Ivm/instruction.h lvm/OperandTraits.h [vm/ADT/APIRt h J Ivm/ADT/Statistic h | Ivm/ntrinsics h
Ivm/Support/MathExtras h Ilvm/instruction.def lvmyUserh JI\vm/ADT/ArrayRef,h N [lvm/Support/Atomic.h

Ivm/Support/CommandLine.h

| IvmySupport Valgrind.h ‘ | IvmySupport/ErrorHandiing h [vm/intrinsics.gen

Ivm/aDT/SmallVectorh ’ Ivm/Support/SwapByteOrderh | | IvmType h | | IvmValue.h vector Ivm/ADT/Wineh | climits cstdarg Ivm/Support/Compiler.h
algorithm iterator cstdlb memory cstddef | Ivm/Support/Castingh | Ivm/Support/DataTypesh Ivm/Support type_traits.h]\Ivm/ADT/StringRef,h
\ﬁk cassert estring
infrastructure. EVeryusg svess =

utilty

string
— s 15000 0T Alias Anal\,- P ——

P viurls Lattne -
sis in LLVY ?

Jianzhou Zhao

LLVM IR = Vminus

e Vastly Simplify! (For now...)

e Throw out:

— types, complex & structured data
— local storage allocation, complex pointers
— functions

— undefined values & nondeterminism

e What's left?
— basic arithmetic
— control flow

— global, preallocated state (a la Imp)

Vminus by Example

entry:

Control-flow Graphs:
+ Labeled blocks

loop:

exit:

Vminus by Example

entry:

Control-flow Graphs:
+ Labeled blocks
+ Binary Operations

H
=
i u

K
(8]
mnonon
K
w
v+ %
K
1.8

2]
©
nu
K .
.
"
(]
N

Vminus by Example

entry:

A
[
i nu

/ br r, loop exit

loop:
r, =
r, = r, Xxr,
ry = r; + r,
r, = r, 2 100

br r, loop exit

r'7=..
rg = r, X r,
r9=r7+r8

Control-flow Graphs:
+ Labeled blocks

+ Binary Operations
+ Branches/Return

Vminus by Example

br r, loop exit

Ve

loop:

r, r,
r, r,
re 100

br r, loop exit

v + %

Control-flow Graphs:

+ Labeled blocks

+ Binary Operations

+ Branches/Return

+ Static Single Assignment

(each local identifier
assigned only once,
statically)

local identifier a.k.a.
uid or SSA variable

Vminus by Example

entry:
£, = Control-flow Graphs:
. = + Labeled blocks

+ Binary Operations
+ Branches/Return

br r, loop exit

loop: + Static Single Assignment
ry = ¢[0;entry] [r;;1loo0p] + CI) nodes
r, =r, xr,
s = I; + r,
r, = r, 2 100

br r, loop exit

exit:
r, = ¢[0;entry] [r;;1loop]
r¢ = r, x r,
ry = r, + rg

ret r,

Vminus by Example

entry:

H
=
i u

/ br r, loop exit

1oop:l (/\

¢[0;entry] [r;;1loop]
r, X r,

\;ex1t
r, = ¢[0;entry] [r;;1loop]
r¢ = r, x r,
r{ = r, + rg

Control-flow Graphs:

+ Labeled blocks

+ Binary Operations

+ Branches/Return

+ Static Single Assignment
+ @ nodes

(choose values based
on predecessor blocks)

Static Single Assignment (SSA)

Compiler intermediate representation developed in the late
1980’s early 1990’s:

— Detecting Equality of Values in Programs
[Alpern, Wegman, Zadeck 1988]

— Global Value Numbers and Redundant Computations
[Rosen, Wegman, Zadeck 1988]

— An Efficient Method of Computing Static Single Assignment Form
[Cytron, Ferrante, +RWZ, 1989]

— Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph
[Cytron, et. al, TOPLAS 1991]
Makes optimizing imperative programming languages clean
and efficient.
— Used in gcc, clang, intel, Jikes, HotSpot, Open64, ...

SSA IR’s in Practice

e SSA simplifies register allocation:

— The left-hand sides of SSA assignments can be thought of as “registers”

— Renaming corresponds to “live range splitting” (decouples false
dependencies)

— register allocation is (arguably) the most important optimization for
performance on modern processors

Critical Optimization in LLVM

250%

200%

150%

100%

Speedup Over LLVM-00

50%

0%

W LLVM-03
W LLVM-01

LLVM-mem?2reg

17, - +— (S { G T v
g v ®o 5 2ELLEERYES T S
] Y o pp > 0 c 2 2 g § £ 3 € o 0
) o = e Eg_c o © 2 < €
E gy} o Q. s
o ¢ 3 S
o S G

01 speeds up the program by 101%.

mem2reg speeds it up by 81%

SSA Construction by Example

I := 0;;
J := 0;;
WHILE J < 100 DO
IF I < 10 THEN

I I + 1;;
J J + I
ELSE
I :=1 + 2;;
J :=J + 1;
FI
END; ;

RETURN J

SSA Construction by Example

A T =0
J =0
I := 0;;
J := 0;;
WHILE J < 100 DO B if J < 100

IF T < 10 THEN

I :=1I+ 1;;

J:=J+1
ELSE C if I < 10 G ret J

I :=1 + 2;;

J :=Jd + 1; D I =1I+1 E I =1+ 2
FI J=J+ I J=J+ 1
END; ;

RETURN J

Step 1: Convert to a control-flow graph.

SSA Construction by Example

A 11 =0
Jl =0
I := 0;;
J := 0;;
WHILE J < 100 DO B I2 = ?2?
IF T < 10 THEN J2 = 2?2
I :=1+ 1;; if J2 < 100
J :=J + 1
ELSE
I :=1 + 2;; C if I2 < 10 G ret J2
J :=J + 1;
FI D I3 =12 +1 E T4 = I2 + 2
END; ;
J3 = J2 + I J4 = J2 + 1
RETURN J
F I5 = 2?2
J5 = 2?27

Step 2: Rename variables to satisfy single assignment.

SSA Construction by Example

I :=20;;
J := 0;;
WHILE J < 100 DO
IF I < 10 THEN
I :=1+ 1;;
J :=dJd + 1
ELSE
I :=1I + 2;;
J :=J + 1;
FI
END; ;
RETURN J

A Il
J1

f Yo

B I2 = ¢[A:I1, F:I5]
J2 = ¢[A:J1l, F:J5]
if J2 < 100

—

C if I2 < 10 G ret J2

>

D I3 =1I2 + 1 E I4 = 1I2 + 2
J3 = J2 + I J4 = J2 + 1

F I5 = ¢[D:I3, E:I4]

- J5 = $[D:J3, E:J4]

Step 3: Insert “@” functions that capture control dependence.

SSA IR’s in Practice (2)

SSA yields an efficient representation

Simplifies Def-Use information needed in dataflow analysis
Imperative data structure to map a definition to its uses

However: Real SSA IRs still retain mutable state

SSA uid’s don’t have addresses...
memory operations: explicit pointer manipulation, allocation

example (in C): int foo() {
int x;
init(&x); // pointer escapes
return Xx;

}

suggests the idea of “promoting” some imperative variables to SSA-
style (those whose addresses don’t “escape”)

Vminus.Vminus.v

Up to the CFG module

Vminus Operational Semantics

* Only 5 kinds of instructions:
— Binary arithmetic
— Memory Load
— Memory Store
— Terminators
— Phi nodes

 What is the state of a Vminus program?

Subtlety of Phi Nodes

* Phi-Nodes admit “cyclic” dependencies:

pred:

br

loop:

o
X

$b
br

loop

¢[0;pred] [y;loop]
¢[1;pred] [x;1loop]

$x < %y
b loop exit

Semantics of Phi Nodes

The value of the RHS of a phi-defined uid is relative to the
state at the entry to the block.

Option 1:
— Require all phi nodes to be at the beginning of the block

— Execute them “atomically, in parallel”
— (Original Vellvm followed this model)

Option 2:
— Keep track of the state upon entry to the block

— Calculate the RHS of phi nodes relative to the entry state
— (Vminus follows this model)

Vminus.Vminus.v

Opsem module

End of Part |

1

Recap

* Yesterday:

— Defined a simple language called Vminus.
— Five types of instructions:

* binary arithmetic / load / store / phi nodes / terminators
— Static Single Assignment

— Operational semantics
e Small step, relational

* Today: Static Semantics for Vminus
— Scoping for SSA variables

Key SSA Invariant

/entry : \

S ﬁiDeﬁnition of rz.}

A br‘Lr0 loop exit /
~

/loop:) Uses of r,. }
s o ¢[0;entr

r, = r :<:t>
r5=r3+
r6=r52100

_ br r, loop exit
N\

l J
\(exit: / N
r; = 1 [z5;1loop]

ry =
ry, = r7 + Iy

. ret r, J

Key SSA Invariant

Definition of rz.}

/ br r, loop exit

N

1<,<,p;l “ Uses of r,. }

r, = d)[o;ttW

r, = o

re = r; + %, « ege

= . > 100 The definition of a

br r, kloop exit) variable must dominate

l its uses.

\>exit: /

r, = ¢[0©] [r5;loop]

rs =

r{ = r, + g

Defining SSA Variable Scope

Entry
Graph: g corresponds to e

a “fine grained” CFG

Edges: “fallthroughs”, \
jump and branch

instructions ° o

Distinguished entry

Nodes: program points
(maybe more than one per block)

Paths

* Paths: Entry
Path g a d [a;b;d]

Reachability

* Paths: Entry
Path g a d [a;b;d] e
e Reachability:
Reachable g x °
iff Unreachable

dvs. Path g e x vs °

o \0

Reachable

Domination

* Paths: Entry
Path g a d [a;b;d] e
* Reachability:
Reachable g x a
* Domination:
Dom g b c

iff every path from e ° °

to c goes through b.

Domination

* Paths: Entry
Path g a d [a;b;d] e

* Reachability:
Reachable g x

* Domination:
Dom g b c

iff every path from e
to c goes through b.

Domination

* Paths: Entry
Path g a d [a;b;d] e
* Reachability:
Reachable g x °
* Domination:
Dom g b c

iff every path from e o °

to c goes through b.

another path

Domination

* Paths: Entry
Path g a d [a;b;d] e

* Reachability:
Reachable g x

* Domination:
Dom g b c

Nodes dominated by b.

Strict Domination

Paths: Entry
Path g a d [a;b;d] e
Reachability:

Reachable g x a

Domination:

Dom g b c

Strict Domination: G

Shom g b c \
K3 KD

Nodes strictly
dominated by b.

Domination Tree

* Order the reachable nodes by (immediate) dominators, and

you get a tree:
Entry

e

* This is an inductive data structure (unlike CFG) = better for
certain proofs. (e.g. those that have to do with scoping).

Vminus.Dom.v

Coq

Dominator Algorithm Tradeoffs

A Lengauer-Tarjan (LT) (LLVM and GCC)
Cooper-Harvey-Kennedy (CHK) X Based ~~ tricky ar~n~h theory

/ Extended from AC
/Nearly as fastas LT ip

cases o
“Although proving its correctness and

verifying its running time require rather
complicated analysis, the algorithm is
quite simple to program...”

Efficiency

Alre... T \.

/ Based on Kildars-argorithm
e X Large asymptotic complexity

>

Difficulty of Verification

Dominator Algorithm Tradeoffs

A Lengauer-Tarjan (LT) (LLVM and GCC)
Cooper-Harvey-Kennedy (CHK) X Based on tricky graph theory
/Extended from AC / O(E x log(N))

/Nearly as fast as LT in common
cases
o
7y
c []
Q
0
L

Allen-Cocke (AC)
/ Based on Kildall’'s algorithm
e X Large asymptotic complexity

Vellvm implements both.

-

>

Difficulty of Verification

Safety Properties

A well-formed program never accesses undefined variables.

If —f and fro,—* 0 then o isnot stuck.

- f program f is well formed
o program state
fro—*0o evaluation of f

Initialization:
If =f then wf(f, o).

Preservation:
If -f and f+ o+~ 0o and wf(f, o) then wf(f, o)

Progress:
If -f and wf(f, o) then fo+— 0o

Safety Properties

* A well-formed program never accesses undefined variables.

If —f and fro,—* 0 then o isnot stuck.

- f program f is well formed
o program state
fro—*0o evaluation of f

* |nitialization:
fFf then

e Preservation:

f vf and f+o+—— 0’ andthen

* Progress:

If ~f andthen done(f,o) or stuck(f,c) or f+o+— 0’

Well-formed States

br r, loop exit

loop:
r; = ¢[0;entry] [r;1loop]
r, =r, x r,
>r5 =r, + r,
r, = r, 2 100

br r, loop exit

exit:
r, = ¢[0;entry] [r;;loop]
r¢ = r, x r,
ry = r, + rg

ret r,

State o is:

pc = program counter

&

= local values

Well-formed States (Roughly)

entry:

A
[
i n

/ br r, loop exit

Vs

loop:
r; = |p[0;entry] [r;1loop]
r, =|r; x r,
>r5 =r, + r,

r, = r, 2 100
br r, loop exit

l\

>exit:
r, = ¢[0;entry] [r;;loop]
r¢ = r, x r,
r{ = r, + rg

State o is:
pcC = program counter
O =local values

sdom(f,pc) = variable defns.
that strictly dominate pc.

Well-formed States (Roughly)

entry:
r, = State o contains:
r., =
v, = pC = program counter

O =local values

br r, loop exit

loop: sdom(f,pc) = variable defns.
r; = |0[0;entry] [z;;loop] that strictly dominate pc.
r, =|r;, x r,
>r5 =r, + r,
re = rg 2 100 wf(f,o0) =
br r, loop exit
¢ Vresdom(f,pc). Av. 8(r) = |v/|
exit: A “All variables in scope
r, = ¢[0;entry] [r.;1loop] e e qe ”
rz ey > are initialized.
ry = r, + rg

ret r,

Vminus.Vminus.v

Typing

Compiler Verification

1967: Correctness of a Compiler for Arithmetic Expressions
[McCarthy, Painter]

1972: Proving Compiler Correctness in a Mechanized Logic
[Milner, Weyhrauch]

... many interesting developments

See: Compiler Verification, A Bibliography [Dave, 2003]

2006-present: CompCert [Leroy, et al.]
— (Nearly!) fully verified compiler from C to Power PC, ARM, etc.

— Randomized compiler testing found no bugs (in the verified
components — the original, unverified parser had a bug)

Others: Verified Software Toolchain [Appel, et al.]

Vminus.Imp.v

Coq

Execution Models

* [nterpretation:
— program represented by abstract syntax
— tree traversed by interpreter

 Compilation to native code:
— program translated to machine instructions
— executed by hardware

 Compilation to virtual machine code:
— program translated to “virtual machine” instructions
— interpreted (efficiently)
— further translated to machine code
— just-in-time compiled to machine code

Correct Execution?

 What does it mean for an Imp program to be executed
correctly?

* Even at the interpreter level we could show equivalence

between the small-step and the large-step operational
semantics:

cmd / st —* SKIP / st’
iff

cmd /st U st’

Compiler Correctness?

We have to relate the source and target language semantics
across the compilation function C[-] : source = target.

cmd /st —* SKIP /st
iff

Clemd] / C[st] +—* C[st’]

Is this enough?

What if cmd goes into an infinite loop?

Comparing Behaviors

Consider two programs P and P’ possibly in different
languages.

— e.g.Pisan Imp program, P’ is its compilation to Vminus

The semantics of the languages associate to each program a
set of observable behaviors:

»5(P) and 25(P’)

Note: |B(P)| = 1 if P is deterministic, > 1 otherwise

What is Observable?

* For Imp-like languages:

observable behavior ::=

terminates(st) (i.e. observe the final state)
diverges

goeswrong

* For pure functional languages:

observable behavior ::=

terminates(v) (i.e. observe the final value)
diverges

goeswrong

What about I/0?

* Add a trace of input-output events performed:

t =] | et (finite traces)
coind. T ==1] | exT (finite and infinite traces)

observable behavior ::=

terminates(t, st) (end in state st after trace t)
diverges(T) (loop, producing trace T)
goeswrong(t)

Examples

P1:
print(1l); /st = terminates(out(1)::[],st)
P2:
print(1l); print(2); /st
= terminates(out(1)::out(2)::[],st)
P3:
WHILE true DO print(1l) END /st
= diverges(out(1)::out(1)::...)

So B(P1) # B(P2) # B(P3)

Bisimulation

 Two programs P1 and P2 are bisimilar whenever:

B(P1) = XB(P2)

 The two programs are completely indistinguishable.

e But... this is often too strong in practice.

Compilation Reduces Nondeterminism

 Some languages (like C) have underspecified behaviors:

— Example: order of evaluation of expressions f() + g()

* Concurrent programs often permit nondetermism

— Classic optimizations can reduce this nondterminism

— Example:
a=x+1;b:=x+1 || X :=x+1
VS.
a:=x+1;b:=a | | X = x+1

 As we’ll see, LLVM explicitly allows nondeterminism.

Backward Simulation

Program P2 can exhibit fewer behaviors than P1:

B(P1) =2 B(P2)

All of the behaviors of P2 are permitted by P1, though some
of them may have been eliminated.

Also called refinement.

What about goeswrong?

 Compilers often translate away bad behaviors.

x:=1/y; x:=42 VS. X =42
(divide by O error) (always terminates)

e Justifications:

— Compiled program does not “go wrong” because the program type
checks or is otherwise formally verified

— Or just “garbage in/garbage out”

Safe Backwards Simulation

Only require the compiled program’s behaviors to agree if the
source program could not go wrong:

goeswrong(t) & B(P1) = B(P1) 2 B(P2)

Idea: let S be the functional specification of the program:
A set of behaviors not containing goeswrong(t).
— A program P satsifies the specif 3(P) & S

Lemma: If P2 is a safe backwards simulation of P1 and P1
satisfies the spec, then P2 does too.

Building Backward Simulations

out(1)

Source: o > 0,

A 2 A

: g

I R / [

: -~ // :

Cl| ! S HCH

[Pid / I

I »7 / |

[R / I

i o s

i out(1) -
Target: T T, 2Ty > T,

ldea: The event trace along a (target) sequence of steps originating from a
compiled program must correspond to some source sequence.
Tricky parts:

- Must consider all possible target steps

- If the compiler uses many target steps for once source step, we have
invent some way of relating the intermediate states to the source.

- the compilation function goes the wrong way to help!

End of Part 2

2

Safe Backwards Simulation

Only require the compiled program’s behaviors to agree if the
source program could not go wrong:

goeswrong(t) & B(P1) = B(P1) 2 B(P2)

Idea: let S be the functional specification of the program:
A set of behaviors not containing goeswrong(t).
— A program P satsifies the specif 3(P) & S

Lemma: If P2 is a safe backwards simulation of P1 and P1
satisfies the spec, then P2 does too.

Safe Forwards Simulation

Source program’s behaviors are a subset of the target’s:

goeswrong(t) & B(P1) = B(P1) S B(P2)

P2 captures all the good behaviors of P1, but could exhibit
more (possibly bad) behaviors.

But: Forward simulation is significantly easier to prove:
— Only need to show the existence of a compatible target trace.

Determinism!

Lemma: If P2 is deterministic then forward simulation implies
backward simulation.

Proof: 9 C B(P1) © »5(P2)= {b} so X(P1)={b}.

Corollary: safe forward simulation implies safe backward
simulation if P2 is deterministic.

Forward Simulations

Source: o > 0,

Target: Clo,] - > T, ~mmm- > 1, > ([o,]

ldea: Show that every transition in the source program:
- is simulated by some sequence of transitions in the target
- while preserving a relation ~ between the states

Imp: A Refresher

id := X|Y|Z].. Variables
aexp :=n | id | aexp + aexp | Arithmetic Expressions
aexp — aexp | aexp * aexp
bexp := true | false | aexp = aexp Boolean Expressions
Ilbexp | bexp && bexp
cmd :=
SKIP Do nothing
id ::= aexp Assignment
cmd ;; cmd Sequence
IFB bexp THEN cmd ELSE cmd FI Conditional
WHILE bexp DO cmd END Loop

See Vminus/Imp.v for the Coq formalism

Vminus.Compillmp.v

Lock-step Forward Simulation

Source: o > 0,

Target: Clo,] - > (Clo,]

A single source-program step is simulated by a single target step.

(Solid = assumptions, Dashed = must be shown)

“Plus”-step Forward Simulation

Source: o > 0,

Target: Clo,] >Tg > Ty T > T

A single source-program step is simulated by one or more target
steps. (But only finitely many!)

(Solid = assumptions, Dashed = must be shown)

Optional Forward Simulation

Source: (o >0,

Target: Clo,]

A single source-program step is simulated by zero steps in the
target.

Problem with “Infinite Stuttering”

Source: o,— >0, —>0;— >0, >0

Target: Clo,]

An infinite sequence of source transitions can be “simulated” by O
transitions in the target!

(This simulation doesn’t preserve nontermination.)

Solution: Disallow such “trivial” simulations

Source: o > 0,
~J
~Ny
|o,| < |oy|
Target: Clo,]

Equip the source language with a measure |o| and require that
|0,] < |oy].

The measure can’t decrease indefinitely, so the target program
must either take a step or the source must terminate.

The target diverges if the source program does.

Vminus.Compillmp.v

|s Backward Simulation Hopeless?

Suppose the source & target languages are the same.
— So they share the same definition of program state.

Further suppose that the steps are very “small”.

— Abstract machine (i.e. no “complex” instructions).

Further suppose that “compilation” is only a very minor change.
— add or remove a single instruction

— substitute a value for a variable

Then: backward simulation is more achievable

— it’s easier to invent the “decompilation” function because the
“compilation” function is close to trivial

Happily: This is the situation for LLVM optimizations

Lock-Step Backward Simulation

o is either an “observable event” or a “silent event”
o:=e|e¢

Example use: proving variable subsitution correct.

Right-Option Backward Simulation

S, —---- > S, S, ----- > S,
@)
T, T,
1S,| < |S,]

e Either:

— the source and target are in lock-step simulation.

Or

— the source takes a silent transition to a smaller state

Example use: removing an instruction in the target.

Right-Option Backward Simulation

S, —---- > S, S, ----- > S,
@)
T, T,
1S,| < |S,]

e Either:

— the source and target are in lock-step simulation.

Or

— the source takes a silent transition to a smaller state

Example use: removing an instruction in the target.

Left-Option Backward Simulation

~ OR ~ ~
— L
T1 T2 Tl TZ

|T,| <|T,]
e Either:

— the source and target are in lock-step simulation.

Or

— the target takes a silent transition to a smaller state

Example use: adding an instruction to the target.

Generalizing Safety

e Definition of wf:

wf(f,(pc, 6)) = Vresdom(f,pc). 3v. 8(r) = |v]

e Generalize like this:

Wf(fl(pcl 6)) = P f (5 | sdom(f,pc))

where P :Program — Loca

 Methodology: for a given P prove t

Initialization(P)

— Prop

N

Consider only variables in

Preservation(P)
Progress(P)

(&

scope = P defined
relative to the dominator
tree of the CFG.

)

Instantiating

* For usual safety:

Pesrery T & = Vredom(8). Av. §(r) = |v|

* For semantic properties:

P..f& = Vr f[r] =|rhs| = &(r) = [rhs]

sem

* Useful for creating the simulation relation for correctness of:

— code motion, dead variable elimination, common expression
elimination, etc.

End of Part 3

3

Strategy for Proving Optimizations

 Decompose the program transformation into a sequence of
“micro” transformations

— e.g. code motion =
1. insert “redundant” instruction

2. substitute equivalent definitions
3. remove the “dead” instruction

e Use the backward simulations to show each “micro”

transformation correct.
— Often uses a generalization of the Vminus safety property

 Compose the individual proofs of correctness

mem2reg in LLVMM

* Promote stack allocas to temporaries
* Insert minimal ¢-nodes

w/o SSA w/o ¢-nodes mem2reg
construction

The LLVM IR in the | Backends
minimal SSA form

] { \)
' . Os) '
,; ~

SSA-based
optimizations

J

* imperative variables = stack allocas
* N0 @-nodes
* trivially in SSA form

return Xx;

mem2reg Example

l,: %p = alloca 132
store 0, %p
b = %y > 0
br %b, %1,, %1,

1L, &
store 1, %p
br 31,

¥x = load %p
ret 3x

The LLVM IR in the trivial SSA form

mem2reg Example

~
int x = 0
if (y > 0
x = 1;
return Xx;

)

l,: 3p—=-altleoca—332 L6
store—0+—5p
b = %y > 0 &b = %y > 0
br %b, %1,, %1, br %b, %1,, %1,
1L, & 1L E
store—1+—3p
br %1, br %1,
1, 1,
%—= % sx = ¢[1,%l,][0,%l,]
ret 3x ret 3%x

The LLVM IR in the trivial SSA form

Minimal SSA after mem2reg

<

mem2reg Algorithm

* Two main operations
— Phi placement (Lengauer-Tarjan algorithm)
— Renaming of the variables

* Intermediate stage breaks SSA invariant

— Defining semantics & well formedness non-trivial

vmem?2reg Algorithm

Find .
alloca

Incremental algorithm

* Pipeline of micro-transformations
— Preserves SSA semantics

max s — Preserves well-formedness
LAS/
LAA
- * Inspired by Aycock & Horspool 2002.
DAE

elim s

1,:

Example of vmem?2reg Algorithm

3%p = Find 132

to
5“9 alloca

LAS/

LAA
store 1V %o
br DSE

DAE

X 7)

ret| elim ¢s

Example of vmem?2reg Algorithm

: %p = alloca 132 i .
siore 0, %p L A } * How to place phi
r ©]
b = 3y > 0 alloca nodes without

— breaking SSA?
br %b, %11, 31, max ¢s
| - LAS/ 1:)
 LAA
N

store 1, %p p v
br %1, DSE
-
l v
P
DAE
</
7

ret %x elim (I)S

Example of vmem?2reg Algorithm

1,: %p = alloca i32 [Find } « How to place phi
store 0, %p
b = 2y > 0 alloca nodes without
— breaking SSA?
max s
e ®
- LAS/ Insert
i LAA — Loads at the end
\ J
store 1, %p p \ 2 N of each block
3x, = load 3%p
br 51, DSE
\
l v
p
1,)) DAE
7
¥x = load %p
ret %x elim (I)S

Example of vmem?2reg Algorithm

l,: %p = alloca 132 Find e How to pIace phi
store 0, %p alloca .
sb = 3y > 0 nodes without
%%, = load %p breaking SSA?
br %b, %12, %13 max cl)s
l 4 * |nsert
1,: I8%; = O[%%;,%1,] LAS/
LAA — Loads at the end
J
store 1, %p \ 2 of each block
¥x, = load %p
br2%13 DSE — Insert ¢-nodes
l v at each block

Example of vmem?2reg Algorithm

l,: %p = alloca 132 Find e How to pIace phi
store 0, %p alloca .
sb = 3y > 0 nodes without
3%, = load 3%p — breaking SSA?
br %b, %12, %13 max d)s
l 2: * |nsert
1,0 %%, = O[%x,,%1,] LAS/ d h d
store %x., %p LAA — Loads at the en
store 1, %p \ 2 of each block
%$x, = load %
be %1, = DSE — Insert ¢d-nodes
l v at each block
— Insert stores
l s X = ¢[9X 091 X 091] DAE
38 3%, 3K, 731., ¥Xp:%L,] after d-nodes
store %x,, 3P v
3x = load %p
ret %x elim (I)S

Example of vmem?2reg Algorithm

l,: %p = alloca 132
store 0, %p
b = %y > 0
3x; = load %p
br %b, %1,, %1,

1,: %x; = ¢[%x,,%1,]
store %x;, %p
store 1, %p

3x, = load %p
br %1,
1,: %3x, = ¢[%x,;%1,, %x,:%1,]

store %x,, 3%p
¥x = load %p
ret 3x

Find
alloca

max s

LAS/ 4
LAA

DSE

DAE

elim ¢s

For loads after
stores (LAS):

— Substitute all uses
of the load by the
value being stored

— Remove the load

Example of vmem?2reg Algorithm

1,: %p = alloca i32 Find e For loads after
_
store 0 alloca

Vv stores (LAS):

— — Substitute all uses
max s of the load by the

value being stored

LAS/ ' — Remove the load
%p LAA

stord %x;,
storée 1, %p

‘1 g 4 N
%X, = jload %p
br 31,0 DSE
\ l P 7
1,: %x, = cb%ll, 3x,:81,]) | DAE
store %X,,; 3%p Vv
$x = load %p (
ret %x elim (I)S

Example of vmem?2reg Algorithm

1,: %x; = ¢[0,
store %xs,
store 1} %p
$x, = ldad %p
br %1, |

3

1,: %3x, = ¢[0;%1,, %

store %x,, 3%p
¥x = load %p
ret 3x

Find .
alloca

v

==

For loads after
stores (LAS):

— Substitute all uses
of the load by the

value being stored

LAS/ ' — Remove the load
LAA

4)

DSE
v

DAE
Vv

elim ¢s

Example of vmem?2reg Algorithm

L,z #p = alloca 132 Find * For loads after
store 0, %p alloca
b = 3y > 0 v stores (LAS):
br 2b. 81, . 81) — Substitute all uses
A max @s of the load by the
l value being stored
1,: 3 LAS/ ' — Remove the load
LAA
4 2
DSE
~ N
\\$ p \ 2
\\
1,: %x, = c])[O;%ll,%lz] | DAE
store %x,, 3%p "
$x = load %p (
ret %x elim (I)S

Example of vmem?2reg Algorithm

1,: ®p = alloca 132 Find For loads after
store 0, %p alloca
b = 3y > 0 v stores (LAS):
) — Substitute all uses
max s of the load by the
value being stored
1,: LAS/ ' — Remove the load
LAA
4 v N\
DSE
\ 2

1,: %x, = [0;81,, 1:31,] . DAE

Q Q pN
store %xX,, %P vV
$x = load %p (
ret %x elim (I)S

Example of vmem?2reg Algorithm

it ®p = alloca 132 Find * For loads after

store 0, %p alloca

b = 3y > 0 v stores (LAS):

S O Sl oA) — Substitute all uses
TR0y Blar Bl max ¢s of the load by the

l value being stored
1,: %%, = $[0,%1;] LAS/ ' — Remove the load
store %x;, %p LAA
store 1, %p 4

store %x,, 3P

re G

s

\

DSE
v

DAE
Vv

elim ¢s

Example of vmem?2reg Algorithm

: %%, = P[0

: %p = alloca i32

store 0, %p

14
4
store 1, %p

Find
alloca

v

J :
==

For loads after
stores (LAS):
— Substitute all uses

of the load by the
value being stored

LAS/ ' — Remove the load
LAA

s

DSE

\

v

DAE

Vv

elim ¢s

1,:

Example of vmem?2reg Algorithm

: %3p = alloca i32 Find « Dead Store
store 0, 3%p o]
ab = 3y > 0 alloca Elimination (DSE)
e sb. 31 a1 — Eliminate all
T oPy Blar B33 max ¢s stores with no
subsequent loads.
: %%, = ¢[0,%1,] I:;i‘/
store %x;, %p
e e Dead Alloca
Elimination (DAE)
br %1 DSE o
: — Eliminate all
allocas with no
subsequent loads/
¥x, = $[0;%1,, 1:%1,] DAE storesq

store %x,, 3%p

ret 3%x, elim (I)S

Example of vmem?2reg Algorithm

Find J Dead Store

b = 3y > 0 L aIIoca Elimination (DSE)
e sb. 31 a1 — — Eliminate all
T ePr Shar B4 Max ¢5 stores with no
l subsequent loads.
b, = 610,51, [LL’Zi/ ’D
Q - Q
srore ;9,530 °F Dead Alloca
Elimination (DAE)
br %1,

— Eliminate all
allocas with no

subsequent loads/
stores.

Example of vmem?2reg Algorithm

1,: Find
|l
b = %y > 0 allocd
br %b, %12, %13 maX d)s
1,: %x; = ¢[0,%1,] LAS/
LAA
br %1, DSE
1, %3x, = ¢[0;%1,, 1:%1,] DAE

* Eliminate ¢ nodes:
— Singletons

— With identical
values from each
predecessor

— See Aycock &
Horspool, 2002

Example of vmem?2reg Algorithm

alloca _
i . 2 — Singletons
br %b, %l,, %1, _\Emax CIDSJ — With identical
l v values from each
.
e S = 31, LAS/ predecessor
_ LAA — See Aycock &
v Horspool, 2002
br %1, DSE
-
| v
B
L;: %%, = 0[0;81;, 1:81,] /| DAE)

ret %x, e“m (bs

Example of vmem?2reg Algorithm

Find .

; Done!
b = %y > 0 dlloca
br %b, %12, %13 max d)s

LAS/

LAA
br %1, DSE

DAE

: %%, = ¢[0;%1;, 1:%1,]

ret %x, elim ¢

How to Establish Correctness?

Find
alloca

v

==

v

©LAS/ 1:)
CLAA
3

v

DSE
v

DAE
Vv

elim ¢

How to Establish Correctness?

Find 1. Simple aliasing properties
alloca Aliasing (e.g. to determine promotability)
Properties 2. Instantiate proof technique for
max ¢s — Substitution
— Dead Instruction Elimination

LAS/ Poe = oo
LAA Initialize(Pp,g)
[subst } Preservation(Pp,g)
Progress(Ppe)

DSE .
4. Put it all together to prove

composition of “pipeline”
DAE correct.

S

elim ¢

vmema2reg is Correct

Theorem: The vmem2reg algorithm
preserves the semantics of the source

program.

Proof:

Composition of simulation relations from the “mini”
transformations, each built using instances of the sdom
proof technique.

(See Coq Vellvm development.) [

Runtime overhead of verified mem2reg

Speedup Over LLVM-00

200%
180%
160%
140%
120%
100%

W LLVM's mem2reg M Extracted mem2reg

80%
60%
40%
20%

0%

eng
go
ss

g
Zip
;

Vmemz2reg: 77% LLVM’s mem2reg: 81%
(LLVM’s mem2reg promotes allocas used by intrinsics)

Plan

Vminus: a highly simplified SSA IR based on LLVM
— What is SSA?

Verified Compilation of Imp to Vminus
— What does it mean to “verify compilation”?

Scaling up: Vellvm
— Taste of the full LLVM IR

— Operational Semantics

— Metatheory + Proof Techniques
Case studies:

— SoftBound memory safety
Conclusion:

— challenges & research directions

Other Parts of the LLVM IR

op ::= %uid | constant | undef
bop ::= add | sub | mul | shl |
cmpop ::= eq | ne | slt | sle |

| %uid = alloca ty

| %uid = load ty opl

| store ty opl, op2

| %uid = getelementptr ty opl ..
| %uid = call rt fun(..args..)

|

phi ::=
| ¢[opl;lbll]...[opn;1lbln]

terminator ::=
| ret %ty op
| br op label %1bll, label %1bl2
| br label %1bl

Operands
Operations
Comparison

Stack Allocation
Load

Store

Address Calculation
Function Calls

123

Structured Data in LLVM

e LLVM’s IR is uses types to describe the structure of data.

ty ::=

il | i8 | 132 |.. N-bit integers

[<H#elts> x t] arrays

r (ty,, ty,, - , ty,) function types

{ty,, ty,, « , ty,} structures

ty* pointers

$Tident named (identified) type
r s:= Return Types

ty first-class type

void no return value

e <#elts>is an integer constant>=0
* (Recursive) Structure types can be named at the top level:

$T1 = type {tY1, tYZI U tyn}

124

Example LLVM Types

An array of 341 integers:

A 2D array of integers:

C-style linked lists:

[341 x i32]

[3 X [4 x 132 1]

$Node = type { 132, %Node*}

Structs: %Rect

{

$Point = {

$Point, %Point,
$Point, %$Point }
132, 132 }

ic CIS 341: Compilers

125

GetElementPtr

* LLVM provides the getelementptr instruction to
compute pointer values

— Given a pointer and a “path” through the structured data
pointed to by that pointer, getelementptr computes
an address

— This is the abstract analog of the X86 LEA (load effective
address). It does not access memory.

— It is a “type indexed” operation, since the size
computations involved depend on the type

insn ::= ..
| %uid = getelementptr t*, %val, tl idxl, t2 idx2

I °°°

struct RT {
int A;

int B[10][207];

int C;

}

struct ST {
struct RT X;
int Y;
struct RT Z;

}

int *foo(struct ST *s

return &s[lj-

Example

1. %sis a pointer to an (array of) ST structs,
suppose the pointer value is ADDR

2. Compute the index of the 1%t element by adding
sizeof (struct ST).

3. Compute the index of the Z field by
adding sizeof (struct RT) +
sizeof (int) to skip past X and Y.

4. Compute the index of the B field by
adding sizeof (int) to skip past A.

\ \5 Index into the 2d array.

$RT =
$ST =

type { i32,
type { %RT,

define i32* @foo(%ST* %s) {

entry:
$arrayidx =

| |
getelementptr %ST* %s, i32 1, i32 2, i32 1,
ret i32* %arrayidx

[10 x [20 x i32]],
i32, S$RT }

i32 }

Y

1
i32 5, i32 13

Final answer: ADDR + sizeof(struct ST) + sizeof(struct RT) + sizeof(int)

+ sizeof(int) + 5*20*sizeof(int) + 13*sizeof(int)

*adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

LLVM’s memory model

$ST = type {110,[10 x 18*]}

High-level Manipulate structured types.
Representation

i10

sval = load %ST* 3ptr

store %ST* 3ptr, 3Inew

LLVM’s memory model

High-level
Representation
i10

i8*

$ST = type {110,[10 x 18*]}

Low-level
Representation

b(10, 136)

b(10, 2)

uninit

uninit
ptr(Blk32,0,0)
ptr(Blk32,0,1)
ptr(Blk32,0,2)
ptr(Blk32,0,3)
ptr(Blk32,8,0)
ptr(Blk32,8,1)
ptr(Blk32,8,2)
ptr(Blk32,8,3)

0

1

2

10

11

12

 Manipulate structured types.

sval = load %ST* 3ptr

store 3IST* 3Iptr, %new

 Semantics is given in terms of
byte-oriented low-level
memory.
— padding & alignment
— physical subtyping

Adapting CompCert’s Memory Model

BIS0 Blk1

b(10, 136)

b(10, 2)

uninit

uninit

ptr(Blk32,0,0)

ptr(Blk32,0,1)

ptr(Blk32,0,2)

ptr(Blk32,0,3)
ptr(Blk32,8,0)

ptr(Blk32,8,1)

ptr(Blk32,8,2)

ptr(Blk32,8,3)

Data lives in blocks

Represent pointers abstractly
— block + offset

Deallocate by invalidating
blocks

Allocate by creating new
blocks

— infinite memory available

Dynamic Physical Subtyping

[Nita, et al. POPL '08]

BIkO Blk1 Blk32

uninit

uninit

uninit

uninit

uninit

uninit

load il6* X

Sources of Undefined Behavior

Target-dependent Results

e Uninitialized variables:

v = add i32 %x, undef

* Uninitialized memory:

$ptr = alloca 132
v = load (132*) S%ptr

* |ll-typed memory usage

Fatal Errors

Out-of-bounds accesses

Access dangling
pointers

Free invalid pointers

Invalid indirect calls

Nondeterminism

]

Sources of Undefined Behavior

Target-dependent Results

Uninitialized variables:

v = add i32 %x, undef

* Uninitialized memory:
$ptr = alloca i32
\'4

load (1i32*) %ptr

* |ll-typed memory usage

Nondeterminism

Defined by a predicate on
the program configuration.

Stuck(f, o) = BadFree(f, o)
¥ BadLoad(f, o)
¥ BadStore(f, o)

v

\4

]

undef

* What is the value of %y after running the following?

or i8 undef, 1
XOr 18 %X %X

9
|

o° o©
N
1

* One plausible answer: 0
* Not LLVM’s semantics!

(LLVM is more liberal to permit more aggressive optimizations)

undef

Partially defined values are interpreted
nondeterministically as sets of possible values:

%X = or 18 undef, 1

%y = XOor 18 %X %X

[18 undef] = {0,..,255}
[18 1] = {1}

[¢x] = {a or b | a€[i8 undef], b €[1]}
= {1,3,5,..,255}

[3y] = {a xor k acl[%x], be[3x]}
“8.24 251D

Nondeterministic Branches

~

11:

~

\\ br undef 12 13 //

T

12:

A /iZ:

LLVM,, Operational Semantics

* Define a transition relation:
fr-o,— 0,
— fis the program
— o is the program state: pc, locals(d), stack, heap

e Nondeterministic

— & maps local $uids to sets.
— Step relation is nondeterministic

e Mostly straightforward (given the heap model)
— One wrinkle: phi-nodes exectuted atomically

Operational Semantics

Nondeterministic LLVMND

Deterministic

Deterministic Refinement

Nondeterministic LLVMND
W
Deterministic LLVMD

Instantiate ‘undef’ with default value (0 or null) = deterministic.

Big-step Deterministic Refinements

Nondeterministic LLVMND
W
Deterministic LLVMInterp = LLVMD

Bisimulation up to “observable events”:
e external function calls

Big-step Deterministic Refinements

Nondeterministic

Deterministic

LLVM,5

W

LLVM

Interp

LLVM,,

> LLVM g, = LLVM' o5

Simulation up to “observable events”:
e useful for encapsulating behavior of function calls
* |arge step evaluation of basic blocks

[Tristan, et al. POPL ’08, Tristan, et al. PLDI '09]

SoftBound

SoftBound * Implemented as an LLVM pass.

* Detect spatial/temporal memory
CETS safety violations in legacy C code.

* Good test case:
— Safety Critical = Proof cost warranted
— Non-trivial Memory transformation

C Source LLVM LLVM Other
SoftBound Target
Loge -» Optimizations

SoftBound

p = call malloc [10 x i8] p = call malloc [10 x 18]

O o©

[e)

p base = gep %p, 132 0
Maintain base and bound for all pointers F%p_bound = gep %p, i32 0, i32 10

o©

q = gep %p, i32 0, i32 255 2q = gep %p, 132 0, 132 255

3g_base
Propagate metadata on assignment S

q bound = %p bound
Check that a pointer is within its assert %g base <= %q
bounds when being accessed > /\ %g+l < %g bound
store 18 0, %g store 18 0, %g

C Source LLVM LLVM Other
T t
Code - IR SoftBound IR -ﬂ Optimizations e

Disjoint Metadata

* Maintain pointer bounds in a separate memory space.

* Key Invariant: Metadata cannot be corrupted by bounds

violation.

User memory Disjoint metadata

(e | T 0T e)
o o o

| sP 5Ppase 5Ppound)
%1,

(a1 | o 1T .. il
o o o

| °q 5Upase 5Jpound)
Tl
%1,

Proving SoftBound Correct

1. Define SoftBound(f,o0) = (f,,0,)
— Transformation pass implemented in Coq.
2. Define predicate: MemoryViolation(f,o)
3. Construct a non-standard operational semantics:
frort o
— Builds in safety invariants “by construction”

froE* g’ = -MemoryViolation(f,o’)

4. Show that the instrumented code simulates the “correct”
code:

SoftBound(f,0) = (f,0,) = [fror5*0'] = [f. o, —%* 0]

Memory Simulation Relation

L

Frame simulation

o Fdrar oo airo <
< [oailo|>|alalo|>
o S L. I”_II_
e g 3
_e“ _e“ o
_ __| -
EXEERE, =
_b“ _b“
I__| I_ | nru
SRS 2
Q> Q> W
lllllllllllllllllllllllll |
................. oo
£/l
o
P \ ..Dlu-
|
5 - 8
.I X O
r —
|
L <
N
B d
Ll -——-
A
N L
-)
|
' n
N ©
Ll yb
_1|“ b
b Q)
_r|“ Yy,

(MM
M)
o

Memory simulation

Lessons About SoftBound

* Found several bugs in our C++ implementation

— Interaction of undef, ‘null’, and metadata initialization.

e Simulation proofs suggested a redesign of SoftBound’s
handling of stack pointers.
— Use a “shadow stack”
— Simplify the design/implementation
— Significantly more robust (e.g. varargs)

Runtime overhead

Competitive Runtime Overhead

The performance of extracted SoftBound is competitive

250% . Extracted with the non-verified original
200%

150%

100%

N L I

«e® \0\60 o o‘\)a‘(*e st® W

Related Work

CompCert [Leroy et al.]
CompCertSSA [Barthe, Demange et al. ESOP 2012]
— Translation validate the SSA construction
Verified Software Toolchain [Appel et. al]
Verifiable SSA Representation [vienon et al. POPL 2006]
— ldentify the well-formedness safety predicate for SSA
Specification of SSA

— Temporal checking & model checking for proving SSA
transforms [\Vansky et al, TP 2010]

— Matrix representation of ¢ nodes [vakobowski, INRIA]
— Type system equivalent to SSA [Matsuno et al]

Conclusions

Proof techniques for verifying SSA transformations
— Generalize the SSA scoping predicate

— Preservation/progress + simulations. P T —
— Simulation proofs ”

Verified: VC ,]c‘\gm
— Softbound & vmem?2reg VEITV'EA

— Similar performance to native implementations

See the papers/coq sources for details!

Future:

— Clean up + make more accessible

— Alias analysis? Concurrency?

— Applications to more LLVM-SSA optimizations

http://www.cis.upenn.edu/~stevez/vellvm/

