
1 Co-product Paths

As in the HoTT book, we wish to prove the following characterization of paths
in a coproduct type A + B:

1. inl(M) =A+B inl(M′) ' M =A M′;

2. inr(N) =A+B inr(N′) ' N =B N′;

3. inl( ) =A+B inr( ) ' void;

4. inr( ) =A+B inl( ) ' void.

Define the family

u : A + B, v : A + B ` F[u, v] : U

so that the following definitional equivalences hold:

1. F[inl(M), inl(M′)] ≡ M =A M′;

2. F[inr(M), inr(M′)] ≡ M =A M′;

3. F[inl( ), inr( )] ≡ void;

4. F[inr( ), inl( )] ≡ void.

This is easily achieved by a nested case analysis on u and v, respectively, with
motive U in each case. The correspondence between the defnition of F and the
desired theorem is evident. The point is that F cancels the injections definition-
ally, so that no particular mention need be made of this in the proof.

Lemma 1. There is a term L of type ∏z:A+B F[z, z] such that L(inl(x)) ≡ reflA(x)
and L(inr(y)) ≡ reflB(y).

Proof. Construct L by abstracting over z, then performing a case analysis on z:

1. x : A ` reflA(x) : F[inl(x), inl(x)].

2. y : B ` reflA(y) : F[inr(y), inr(y)].

We wish to show that

∏
z,z′ :A+B

z =A+B z′ ' F[z, z′],

from which the desired result follows immediately by definition of F.
First we exhibit the function

f : ∏
z:A+B

∏
z′ :A+B

z =A+B z′ → F[z, z′]

1



given as follows:
λz.λz′.λp.J[u.v. .F[u, v]](p; x.L(x)).

Lemma 1 does all the work: if M : A + B, then

f (M)(M)(reflA+B(M)) ≡ L(M).

We then exhibit a quasi-inverse for f ,

g : ∏
z:A+B

∏
z′ :A+B

F[z, z′]→ z =A+B z′

given by a nested case analysis on z and z′ based on the following data:

1. x : A, x′ : A, z : F[inl(x), inl(x′)] ` apinl(−)(z) : inl(x) =A+B inl(x′);

2. x : A, y′ : B, z : F[inl(x), inr(y′)] ` abort(z) : inl(x) =A+B inr(y′).

3. y : B, y′ : B, z : F[inr(x), inr(x′)] ` apinr(−)(z) : inr(x) =A+B inr(x′);

4. x : A, y′ : B, z : F[inr(x), inl(y′)] ` abort(z) : inr(x) =A+B inl(y′).

Here we are relying on the definitional properties of the family F to justify the
given typings. Notice that the λ-abstraction of the third argument to g must oc-
cur inside the case analysis in order to propagate the correct branch information
(cf. the hacky treatment of this issue in Haskell’s so-called GADT’s.)

Lemma 2. The following types are inhabited:

1. x : A ` : g(inl(x))(inl(x))(reflA(x)) =A+B reflA+B(inl(x));

2. y : B ` : g(inr(x))(inr(x))(reflB(y)) =A+B reflA+B(inr(y)).

To complete the proof we need only exhibit witnesses to the fact that for
z, z′ : A + B, the function g′ = g(z)(z′) is right and left inverse to the function
f ′ = f (z)(z′), up to higher homotopy.

1. z : A + B, z′ : A + B, w : F(z, z′) ` α : f ′(g′(w)) =F[z,z′ ] w.

2. z : A + B, z′ : A + B, w : z =A+B z′ ` β : g′( f ′(w)) =z=A+Bz′ w.

The first is proved by a nested case analysis on z and z′, using the defini-
tional equivalences governing F, either aborting, or performing a path induc-
tion on w, appealing to Lemma 2 to complete the proof. The second is proved
by induction on w, using a case analysis on the generic u : A + B so that we
may appeal to Lemma 2 to complete the proof.
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2 Application to Paths

The idea is to adapt the above proof for coproducts, except using propositional
equivalences for the family F obtained from the assumption that f has a quasi-
inverse.

We are given f : A→ B and the following data showing that f has a quasi-
inverse:

1. f−1 : B→ A;

2. α : ∏a:A f−1( f (a)) =A a;

3. β : ∏b:B f ( f−1(b)) =B b.

We are to show that ap f has a quasi-inverse, which amounts to giving the
following data:

1. ap−1
f , which is taken to be λq.α(a)−1 · ap f−1(q) · α(a′);

2. α′ : ∏a:A ∏a′ :A ∏p:a=Aa′ ap−1
f (ap f (p)) =a=Aa′ p;

3. β′ : ∏a:A ∏a′ :A ∏q: f (a)=B f (a′) ap f (ap−1
f (q)) = f (a)=B f (a′) q.

The construction of α′ takes the form of a path induction on p, reducing the
problem to the case of reflexivity for a generic x of type A. This presents no
difficulties, because the end points of the path in question are variables that
also occur in the motive.

The construction of β′ is more difficult, because the evident source of path
induction, q, has as end points f (a) and f (a′), which will appear in the conclu-
sion of the proof. More precisely, if F is the motive for a path induction on q,
then the conclusions will be of the form F[ f (a), f (a′), q], whereas the desired
conclusion involves just a, a′, and q.

We must choose the path on which to induct and the motive for the induc-
tion in such a way that the desired conclusion follows from the corresponding
instance of the motive. One approach is to induct on ap f−1(q), which has type

f−1( f (a)) =A f−1( f (a′)).

Using the quasi-inverse for f this type may be shown to be propositionally
equal to the type a=A a′, so any element of the former type may be transported
to the latter, and vice versa.

An appropriate motive for the induction is the type family u:A, v:A, w:u=A
v ` F : U defined by the equality type

ap f (α(u)
−1 · ap f−1(ap f (w)) · α(v)) = f (u)=B f (v) ap f w.

With F as motive the path induction on ap f−1(q) yields an inhabitant of the
type

F[ f−1( f (a)), f−1( f (a′)), ap f−1(q)],
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which is equal to

ap f (α( f−1( f (a)))−1 · ap f−1(ap f (ap f−1(q))) · α( f−1( f (a′)))) = ap f (ap f−1(q)).

Using the quasi-inverse for f , we may show that this equation is equal to the
equation

ap f (α(a)−1 · ap f−1(q) · α(a′)) = q,

which is the desired conclusion.
It remains to show, then, that

x:A ` : F[x, x, reflA(x)],

which is to say that

x:A ` : ap f (α(x)−1 · ap f−1(ap f (reflA(x))) · α(x)) = ap f (reflA(x)).

Now ap f (reflA(x)) ≡ reflB( f (x)), and ap−1
f (reflB( f (x))), so this amounts to

showing

x:A ` : ap f (α(x)−1 · reflB( f−1( f (x))) · α(x)) = reflB( f (x)).

Using the unit laws for path concatenation this reduces to showing

y : B ` : ap f (α(y)
−1 · α(y)) =B reflB(y).

Applying the inverse law for paths, this is just

y : B ` : ap f (reflB( f−1(y))) =B reflB(y).

Finally, ap f (reflB( f−1(y))) ≡ reflB( f ( f−1(y))), and we have

y : B ` : reflB( f ( f−1(y))) =B reflB(y),

using the quasi-inverse of f , which completes the argument.
Throughout I am tacitly using the principle that

trans[x.x](p) : A→ A′

whenever p : A =U A′, which is to say that one may transport objects of a type
A to an object of an equal type A′ in the same universe. This move corresponds
to the implicit uses of definitional equality of types in the characterization of
the paths in a coproduct type.
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