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Homework 2: Kindom of Kittens
15-819 Homotopy Type Theory
TA: Favonia (favonia@cmu.edu)

Out: 4/Sep/13
Due: 18/Oct/13

1 Sequal of Heyting Algebra

This time we will play a little bit with categorical semantics. Although
not the absolutely essential part of this course, category provides a nice
way to think about various properties diagrammatically. In particular, in
this section you have to justify various type-theoretical rules in IPL in a
category-theoretical manner.

Similar to Heyting Algebra, a bicartesian closed category also models the
IPL. Intuitively, a bicartesian closed category is a category with (binary)
products, (binary) coproducts and exponentials as described in class. Ac-
tually, a Heyting algebra can be viewed as a bicartesian closed category
where there is at most one morphism between any two objects, where
there is a morphism from A to B iff A ≤ B. In other words, a Heyting
Algebra can only keep track of provability that is represented by the sole
morphism. Here we are considering a more general case where one can
have multiple morphisms between objects, which correspond to different
proofs of the same proposition.

Again, let (–)∗ be the (lifted) translation function from propositions to
objects, and (–)− be the comprehension of this function for Γ. To make
your life easier, let’s agree that in Homework 2 the function (–)+ does not
swap the order of propositions in Γ, which is to say (Γ, x:A)+ = 〈Γ+, A∗〉.
M∗

Γ means the translation of the proof M into morphisms. The correspon-
dence, in a nutshell, is that

Γ `M : A
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iff the morphism
M∗

Γ : Γ+ → A∗

exists for any bicartesian closed category and any assignment for atomic
propositions,

1.1 Structural Safety

The critical part of the argument is a proper translation of proofs into mor-
phisms. We will not go through the whole construction here; instead, write
down the morphisms in terms of these constructs: id, A ◦ B, 〈A,B〉, fst,
snd, inl, inr, {A,B}, λ(A) and ap.

Task 1. What morphisms justify these structural properties of the IPL?

• x∗Γ,x:P . This is to implement reflexivity Γ, x:P ` x : P .

• Suppose Γ, x:P, y:Q ` M : R. Write down M∗
Γ,y:Q,x:P in terms of A =

M∗
Γ,x:P,y:Q. This is to implement the exchange rule

Γ, x:P, y:Q `M : R

Γ, y:Q, x:P `M : R
.

• Suppose Γ ` M : P and Γ, x:P ` N : Q. Write down a morphism in
terms of A = M∗

Γ and B = N∗
Γ,x:P that is supposed to be equivalent to

([M/x]N)∗Γ. (You do not have to show the equivalence.) This is to imple-
ment substitution.

Solution:

• snd.

• A ◦ 〈〈fst ◦ fst, snd ◦ fst〉, snd ◦ snd〉.

• B ◦ 〈id, A〉
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1.2 β and η rules

Task 2. Show that β and η rules are justified by the universal property of expo-
nentials.

Solution: ap ◦ 〈λ(B), A〉 = ap ◦ 〈λ(B) ◦ fst, snd〉 ◦ 〈id, A〉 = B ◦ 〈id, A〉.
A = λ(ap ◦ 〈A ◦ fst, snd〉)

2 η for Coproducts in IPL

Solution:

M ≡ [z/z]M ≡ [case(z;x.inl(x); y.inr(y))/z]M

and then

[case(z;x.inl(x); y.inr(y))/z]M ≡ case(z;x.[inl(x)/z]M ; y.[inr(y)/z]M)
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