
15-819 Homotopy Type Theory

Lecture Notes

Kristina Sojakova and Joseph Lee

November 25, 2013

1 Higher Inductive Types

Recall last week we discussed (lower) inductive types and their definitions. This week,
we move on to discussing higher inductive types. Intuitively, a higher inductive type (i.e.
HIT) can be seen as a type with inductive definitions along with equational laws.

A higher order type then is a generalization of a free algebraic structure, which would
have generators and equational laws that should be fulfilled. For example, a group given
by a set of generators and relations (e.g. commutativity).

This gives a full higher-dimensional structure which allows us to impose relations in
multiple dimensions. In a proof-relevant environment, this means we get generators and
more generators. Or in other words, because of proof-relevance, equational laws can be
seen as generators at a higher dimension.

For example, at the 0-type level, the generators are elements or points. These are called
the 0-cells. Identities between 0-cells would be 1-cells, identities between 1-cells would be
2-cells, and so on. This allows for a type to be defined over multiple dimensions by the use
of n-cells.

2 The Interval Type I

Recall that the interval type I is defined by two points, 0I and 1I , along with an identity
seg. That is, I is defined by the 0-cells

0I : I

1I : I

and the 1-cell
seg : 0I =I 1I

1



Homotopy Type Theory

The recursor is defined as

Γ `M : I Γ ` a : A Γ ` b : A Γ ` β : a =A b

Γ ` rec[A](a; b;β)(M) : A
Irec

where the β0-rules that should hold (i.e. β-rules for 0-cells) are

rec[A](a; b;β)(0I) ≡ a
rec[A](a; b;β)(1I) ≡ b

and the β1-rule is
(aprec[A](a;b;β)(seg) =a=Ab β) true

That is to say, that the propositional equality above is inhabited.
From here, we can define the induction principle, which is similar to the recursor:

Γ, z : I ` A(z) : U Γ `M : I Γ ` a0 : A(0I) Γ ` a1 : A(1I) Γ ` p : a0 =z.A
seg a1

Γ ` ind[z.A](a0; a1; p)(M) : A(M)
I ind

Recall that a0 =z.A
seg a1 is defined as tr[z.A](seg)(a0) =A(1I) a1. This is because a0 and a1

no longer necessarily have the same type, so we need to use ”path over” to express the
desired equational law.

The β0-rules for induction are

ind[z.A](a0; a1; p)(0I) ≡ a0
ind[z.A](a0; a1; p)(1I) ≡ a1

and the β1-rule is
(dapind[z.A](a0;a1;p)(seg) =a0=z.A

seg a1
p) true

There is also a unicity rule, or η-rule, that states ”if a function behaves like the recursor
of I, then it must be the recursor.” There is a similar rule for the induction principle of I.

Exercise. Define the η-rules for Irec and I ind.

3 The Circle Type S1

Another example of a higher inductive type is the circle type S1. The S1 type is defined
by the 0-cell (point)

base : S1

and the 1-cell (path)
loop : base =S1 base

Sojakova and Lee 2013/11/25 2



Homotopy Type Theory

The recursor is defined as

Γ `M : S1 Γ ` a0 : A Γ ` l : a0 =A a0
Γ ` rec[A](a0; l)(M) : A

S1rec

with the β0-rule is
rec[A](a0; l)(base) ≡ a0

and the β1-rule is
(aprec[A](a0;l)(loop) =a0=Aa0 l) true

The induction principle is defined as

Γ, z : S1 ` P (z) : U Γ `M : S1 Γ ` b : P (base) Γ ` l : b =z.P
loop b

Γ ` ind[z.P ](b; l)(M) : P (M)
S1ind

with β0-rule
ind[z.P ](b; l)(base) ≡ b

and β1-rule
(dapind[z.P ](b;l)(loop) =b=z.P

loopb
l) true

Be careful with the type of l, because it is easy to write a type that “typechecks” but is
not correct. l should express that taking b around the loop path over P returns to b.

Exercise. Define the η-rules for S1rec and S1ind.

4 Total Space of Loops as a Function from S1

Recall that we previously characterized the total space of paths,∫
IdA :≡

∑
x,y:A

x =A y

as being equivalent to the function type from I to A, i.e.

(I → A) '
∫

IdA

We can similarly characterize the total space of loops∫
ΩA :≡

∑
x:A

x =A x

as being equivalent to the function type from S1 to A. i.e.

(S1 → A) '
∫

ΩA

Sojakova and Lee 2013/11/25 3



Homotopy Type Theory

Proof. Define f : (S1 → A)→
∫

ΩA as

f = λg.〈g(base), apg(loop)〉

Exercise. Show that f has a quasi-inverse.

5 Suspensions

Another example of a higher inductive type is the suspension type, which subsumes the
interval and circle types (up to homotopy). For a type A : U , the suspension of A, denoted
by susp(A) : U , is the higher inductive type given by two 0-cell constructors

N : susp(A)

S : susp(A)

which will be referred to as the north and south poles, respectively, and a family of 1-cell
constructors

mer : A→ (N =susp(A) S)

which can be understood as a collection of meridians, i.e., paths from the north to the
south pole.

Based on the above data, we can deduce the appropriate recursion schema: given any
other type B : U which ”looks like the suspension of A”, there should be a function, called
the recursor, from susp(A) to B, which preserves all the constructors. Expressing this
formally, we have the following recursion rule

Γ ` B : U Γ `M : susp(A) Γ ` bN : B Γ ` bS : B
Γ, x : A ` m(x) : bN =B bS

Γ ` rec[B](bN ; bS ;x.m(x))(M) : B
(susp(A)rec)

Furthermore, the recursor behaves according to the following computation rules:

rec[B](bN ; bS ;x.m(x))(N) ≡ bN : B

rec[B](bN ; bS ;x.m(x))(S) ≡ bS : B

aprec[B](bN ;bS ;x.m(x))(−)(mer(a)) =bS=BbN m(a)

The first two computation rules can be considered as β-rules for the 0-cells and the last
one a β-rule for the 1-cells. Since we do not care about the specific witness term for the
propositional equality in the conclusion of the last rule, we simply omit the witness.

We have an analogous induction schema, where instead of simple types B : U we
consider dependent types E : susp(A) → U . The induction rule states that in order to

Sojakova and Lee 2013/11/25 4



Homotopy Type Theory

construct a dependent function mapping z : susp(A) to an element of E(z), it suffices to
give elements eN : E(N) and eS : E(S) such that for each x : A, eN and eS are associated
over the path mer(x). Formally, this means we have the following induction rule:

Γ, z : susp(A) ` E(z) : U
Γ `M : susp(A) Γ ` eN : E(N) Γ ` eS : E(S)

Γ `, x : A ` m(x) : eN =
z.E(z)
mer(x) eS

Γ ` ind[z.E(z)](eN ; eS ;x.m(x))(M) : E(M)

Likewise, we have the following computation rules:

ind[z.E(z)](eN ; eS ;x.m(x))(N) ≡ eN : E(N)

ind[z.E(z)](eN ; eS ;x.m(x))(S) ≡ eS : E(S)

dapind[z.E(z)](eN ;eS ;x.m(x))(−)(mer(a)) =
eN=

z.E(z)
mer(x)

eS
m(a)

where the conclusion of the last rule refers to the application of a dependent function to a
path, denoted by dap. We can state and prove a useful uniqueness principle, also known
as the η-rule, asserting that ”if a function behaves like the inductor, then it must be the
inductor”. We leave the exact statement of this principle and its proof as an exercise.

Why are we interested in suspensions in the first place? Interestingly, many familiar
(and also not so familiar) inductive types can be characterized as suspensions. For example:

Exercise. Show that the type susp(0) is equivalent to the type 2.

Exercise. Show that the type susp(1) is equivalent to the interval type I.

What is susp(2)? Since the type 2 contains only two elements (up to homotopy), we
can picture susp(2) as a type generated by the two points N and S with two distinct paths
between them, called w and e:

N

S

w e

This of course looks very much like a circle - and indeed it is!

Exercise. Show that the type susp(2) is equivalent to the circle type S1.

Now we can ask the question, what is susp(susp(2))? The type susp(susp(2)) will of
course have to contain the two points N and S. A function from susp(2) to the path space
N = S can then be thought of as a quadruple (w, e, γ, δ), where w,e are two distinct paths
from N to S and γ, δ are two distinct paths from w to e. The type susp(susp(2)) generated
by all this data can then be visualized as in Fig. 1:

This looks very much like a sphere - hence we can simply make the definition S2 :≡
susp(S1). We can iterate this and set Sn+1 :≡ susp(Sn).

Sojakova and Lee 2013/11/25 5



Homotopy Type Theory

Figure 1: S2

Sojakova and Lee 2013/11/25 6


	Higher Inductive Types
	The Interval Type I
	The Circle Type S1
	Total Space of Loops as a Function from S1
	Suspensions

