
Week 3 Lecture Notes

Enoch Cheung and Clive Newstead

9/30/2013 and 10/2/2013

1 The β and η Rules

1.1 Gentzen’s Inversion Principles (β rules)

Recall the β rules:

∧1 : fst〈M,N〉 ≡M

∧2 : snd〈M,N〉 ≡ N

⊃1 : (λx.M)(N) ≡ [N/x]M

∨1 : case(inl(M);x.P, y.Q) ≡ [M/x]P

∨2 : case(inr(M);x.P, y.Q) ≡ [M/y]Q

The β rules can be expressed very compactly, and tells us that elimination rules
should “cancel out” introduction rules. The notation used here is inl(x) (inject left)
to mean using the proof x to prove A to prove A ∨ B, and inr(x) (inject right) to
mean using the proof x to prove B to prove A∨B. case(x, y, z) means “if x, then y,
else z.” This also expresses the idea of dynamics of proofs, meaning that proofs can
be viewed as programs.

1.2 Gentzen’s Unicity Principles (η rules)

Recall the η rules we have given so far:

Truth
Γ `M : >

Γ `M ≡ 〈 〉 : > η>

1

1.2 Gentzen’s Unicity Principles (η rules) 1 THE β AND η RULES

Conjunction
Γ `M : A ∧B

Γ `M ≡ 〈fst(M), snd(N)〉 : A ∧B
η∧

Implication
M : A ⊃ B

Γ `M ≡ λx.Mx : A ⊃ B
η⊃

The η rules on the other hand takes a little bit more to write out, and expresses
uniqueness (up to equivalence) of proofs of certain types.

The η conjunction rule can be expressed another way:

Γ `M : A ∧B Γ ` fst(M) ≡ P : A Γ ` snd(M) ≡ Q : B

Γ ` 〈P,Q〉 ≡M : A ∧B
η∧

This time we give equivalent proof terms P,Q to fst(M) and snd(N). This corre-
sponds to the product diagram (where A ∧B corresponds to the product A×B):

C

A×B

A B

(β)

P Q

(β)

〈P,Q〉

fst snd

which says that given any object C with maps P : C → A and Q : C → B, there
exists a unique map 〈P,Q〉 : C → A × B such that the β rules make each cell
commute, meaning P ≡ fst(〈P,Q〉) and Q ≡ snd(〈P,Q〉).

The η rule, on the other hand, gives uniqueness of the 〈P,Q〉 map, expressed as

C

A×B

A B

(β)

P Q

(β)

(η)M 〈P,Q〉

fst snd

2

1.3 η rule for Disjunction ∨ 1 THE β AND η RULES

where the η rule maks the center cell commute, meaning that given any map M :
C → A×B such that fst◦M ≡ P and snd◦M ≡ Q, we have M ≡ 〈P,Q〉, expressing
the uniqueness of the 〈P,Q〉 map.

While η rules gives the uniqueness of the product map, one can ask whether the
product object A × B is unique. In a Heyting algebra, we can show that if A ∧′ B
has the same properties (being a greatest lower bound of A and B) as A ∧B, then:

A ∧B ≤ A ∧′ B A ∧B ≥ A ∧′ B

If we think of them as objects, then we have maps F : A × B → A ×′ B and
G : A×B → A×′B such that F ◦G = id and G◦F = id, which gives A×B ∼= A×′B.
With the Univalence axiom, we identify equivalence things as being equal, so we can
say that A×B = A×′ B.

1.3 η rule for Disjunction ∨
We wish to give the η rule for ∨, but if we were to attempt to naively define it as we
did before for M : A∨B, then we might force M to be a proof of A or B, because a
proof of A also proves A∨B, but forcing proofs of A or a proof of B to be identified
with a proof of A ∨B would not make sense.

We will take inspiration from Shannon expansions, specifically the concept of
case analysing to give two different proofs. As a toy example, we consider a proof of
> ∨>

inl(〈 〉) = true

inr(〈 〉) = false

〈 〉 : > ∨>
case(M ;P,Q) = “if M then P else Q” : > ∨>

where we look at the variable M and decide to use P or Q (here P , Q does not have
an input because there is no data for proof of > anyways). The is an example of a
Binary Decision Diagram (BDD), because we are making a decision when examining
the variable M and branching to two cases.

In general, we can imagine a much bigger BDD which has many variables ex-
amined sequentially, and look at the Shannon expansion at some variable M in the
middle. The idea here is that M = true and M = false will lead to two different
subtrees. We write

[M/z]P ≡ if M then [true/z]P else [false/z]P

3

1.4 Coproduct 1 THE β AND η RULES

where when we look at the variable M which P uses, there are two cases: the case
where M is true, which gives [true/z]P and the case where M is false which gives
[false/z]P . The point is that [true/z]P and [false/z]P do not have M as a variable,
so M is fixed at a value.

Another notation for this is

Pz ≡ if z then [true/z]P else [false/z]P

To write the η rule for ∨, we will describe what happens when a proof P : C uses
a proof term z : A ∨ B, meaning that the C follows from A ∨ B. Now suppose we
have a proof M : A∨B, and we want to look at what happens when we make P : C
include M : A ∨B by doing the substitution [M/z]P : C.

Γ `M : A ∨B Γ, z : A ∨B ` P : C

Γ ` [M/z]P ≡ case(M ;x.[inl(x)/z]P, y.[inr(y)/z]P) : C
η∨

This can be thought of as a “generalized Shannon expansion,” where the Shannon
expansion can be recovered as a special case

M ≡ case(M ;x.inl(x); y.inr(y))

1.4 Coproduct

In the category theoretical view, the disjunction A∨B corresponds to the coproduct
A+B, with inl : A→ A+B and inr : B → A+B being the canonical injections.

To give some intuitions about the coproduct, if we were in the category of sets,
we can think of A + B = A t B = ({0} × A) ∪ ({1} × B) as a disjoint union, then
inl, inr would be the canonical embeddings inl : a 7→ (0, a) and inr : b 7→ (1, b). If
A,B are already disjoint, then we can let A + B = A ∪ B and inl, inr would be the
inclusion maps inl : a 7→ a and inr : b 7→ b.

The β rule for ∨ gives the following commutative diagram:

A B

A+B

C

inl

(β)

P

inr

Q

(β)

{P,Q}

4

1.5 Definitional equality vs. Propositional equality 1 THE β AND η RULES

Where given any object C with maps P : A → C and Q : B → C, there exists
a unique map {P,Q} : A + B → C that is the copair of maps P,Q, which in our
context corresponds to

{P,Q} ≈ case(−;x.P, y.Q)

The β rule makes the diagram commute, meaning that the composition of maps
P ≡ {P,Q} ◦ inl and Q ≡ {P,Q} ◦ inr. Written another way:

case(inl(−);x.P, y.Q) ≡ [−/x]P

case(inr(−);x.P, y.Q) ≡ [−/x]Q

The η rule expresses uniqueness, which is demonstrated by the following diagram

A B

A+B

C

inl

(β)

P

inr

Q

(β)

(η)M {P,Q}

where given a map M : A+B → C such that M ◦ inl ≡ P and M ◦ inr ≡ Q, the map
is in fact equivalent to M ≡ {P,Q}, so the η rule makes the center cell commute.

Just as we have done for η∧, we can rewrite the η∨ rule by explicitly naming
P : Q→ C and Q : B → C as follows

Γ, z : A+B `M : C
Γ, x : A ` [inl(x)/z]M ≡ P : C
Γ, y : B ` [inr(y)/z]M ≡ Q : C

Γ, z : A+B `M ≡ case(z;x.P, y.Q) : C
η∨

1.5 Definitional equality vs. Propositional equality

Our different treatments of β rules and η rules above suggests that there is something
fundamentally different between equivalence given by β rules and equivalence given
by η rules. Indeed, there is a distinction which we will make more clear later. For
now, note that

β rules Analytical (“self-evident”) Definitional equality
η rules Synthetic (“require proof”) Propositional equality

5

2 NATURAL NUMBERS

The β rules can be thought of as self-evident, or analytical, because it just says
that our notation such as fst, snd, 〈−,−〉, inl, inr, case should behave the way we expect
them to. On the other hand, the η rules are not so obvious, and expresses the
equivalence of two things that behaves the same way, so they are synthetic, or requires
proof instead of being self-evident.

The notion of equality produced by β rules is called definitional equality, or
judgemental equality, which is more basic. The notion of equality produced by η
rules is called propositional equality, which has to be expressed by a type (so it is
typical).

2 Natural numbers

We’d like to capture the idea of definition by recursion. We will do so in two ways.
First we will implement the natural numbers syntactically as a type, denoted Nat—
it is a ubiquitous example of an inductively defined type. Then we will implement
the natural numbers in a category theoretic context, as a so-called natural numbers
object (NNO), denoted N.

2.1 Syntactic definition: Nat

The type Nat has two introduction rules:

Γ ` 0 : Nat
Nat-I0,

Γ `M : Nat
Γ ` s(M) : Nat

Nat-Is

and one elimination rule, which can be thought of as a for loop or a recursion:

Γ `M : Nat Γ ` P : A Γ, x : A ` Q : A

Γ ` rec(P, x.Q)(M) : A
Nat-E

We call rec the recursor.
We can think of 0 as being zero and s as being the successor operation, which

takes a natural number n to its successor n+ 1.
The β-rules for Nat are what they ‘should be’:

Γ ` P : A Γ ` Q : A

Γ ` rec(P,Q)(0) ≡ P : A
β-Nat0

Γ ` P : A Γ ` Q : A

Γ ` rec(P,Q)(s(M)) ≡ [rec(P,Q)(M)/x]Q : A
β-Nats

6

2.2 Category theoretic definition: NNO 2 NATURAL NUMBERS

The η-rule for the NNO is somewhat ugly:

Γ, z : Nat `M : A Γ, z : Nat ` [s(z)/z]M ≡ [M/x]Q Γ ` [0/z]M ≡ P : A

Γ, z : Nat `M ≡ rec(P,Q)(z) : A
η-Nat

It says that ‘if something behaves like the recursor, then it is the recursor’.
Given n ∈ N, define the numeral n̄ = s(s(· · · s︸ ︷︷ ︸

n times

(0) · · ·)). With a slight abuse of

notation, the β then tells us that

rec(P,Q)(n̄) ≡ Q(Q(· · ·Q︸ ︷︷ ︸
n times

(P) · · ·))

That is, rec(P,Q)(0) ≡ P and rec(P,Q)(n+ 1) ≡ Q(rec(P,Q)(n̄)). This is precisely
a definition by recursion.

A special case of this is when P = 0 and Q is the successor operation. Then

z : Nat ` rec(0, s.s(y))(z) ≡ z : Nat

This is what we’d expect: if you apply the successor operation to 0 n times then
what you obtain is n.

2.2 Category theoretic definition: NNO

Fix a category C and suppose that C has a terminal object 1. A natural numbers
object in C is an object N equipped with arrows 0 : 1 → C and s : C → C satisfying
the following univeral property:

1 N N

A A

0

P

s

∃!r ∃!r

Q

That is, given any morphism P : 1 → A and Q : A → A there exists a unique
morphism r = rec(P,Q) : N→ A such that

rec(P,Q) ◦ 0 = P and rec(P,Q) ◦ s = Q ◦ rec(P,Q)

These two equations correspond precisely with the β rules for Nat.
The η rule corresponds with the uniqueness: if M : N→ A satisfies M ◦s = Q◦M

and M ◦ 0 = P then M = rec(P,Q).

7

2.2 Category theoretic definition: NNO 2 NATURAL NUMBERS

Concrete example

In the category of sets, take N to be the set of natural numbers. The terminal object
is any singleton {∗}, and we can define 0 : {∗} → N by 0(∗) = 0 ∈ N and s : N→ N
by s(n) = n+ 1. Then the triple (N, 0, s) defines a natural numbers object: if P ∈ A
and Q : A→ A then we can define rec(P,Q) : N→ A by

rec(P,Q)(0) = P and rec(P,Q)(n+ 1) = Q(rec(P,Q)(n))

It is then clear that the above diagram commutes, and we can prove that rec(P,Q)
is the unique such function by induction on its argument.

NNO as an initial algebra

There is an equivalent definition of a natural numbers object as an initial algebra.
Given an endofunctor (i.e. a functor F from a category C to itself), an F -algebra is

a pair (A,α), where A is an object in the category and α : F (A)→ A is a morphism.
A homomorphism of F -algebras f : (A,α)→ (B, β) is a map f : A→ B making

the following square commute:

F (A) F (B)

A B

F (f)

α β

f

That is, f respects α and β in the only way it can.
An initial F -algebra is an F -algebra (I, ι) such that given any other F -algebra

(A,α) there exists a unique F -algebra homomorphism (I, ι)→ (A,α).
With these definitions in mind, a natural numbers object is precisely an initial

F -algebra, where F is the functor 1 + (−).
To see how this functor acts on morphisms, consider the more general scenario

of having morphisms f : A→ A′ and g : B → B′. Then we have morphisms

inl ◦ f : A→ A′ +B′ and inr ◦ g : B → A′ +B′

Then the universal property of the coproduct gives rise to a map

f + g = {inl ◦ f, inr ◦ g} : A+B → A′ +B′

What this means more concretely is as follows. A natural numbers object is an
object N equipped with a morphism {0, s} : 1+N→ N such that if {P,Q} : 1+A→ A
is another morphism then there is a unique morphism rec(P,Q) : N → A such that
{P,Q} ◦ (1 + rec(P,Q)) = rec(P,Q) ◦ {0, s}.

8

3 INTENSIONAL AND EXTENSIONAL EQUALITY

3 Intensional and extensional equality

We can implement addition by

p = λxλy rec(x, z.s(z))(y)

Given numerals m̄ and n̄ it is clear that p m̄ n̄ = m+ n, so this definition does
implement +.

We could have recursed on x instead of y. Indeed, we can define q = λxλy pyx.
Again we can prove that q m̄ n̄ = m+ n, so q is another implementation of

addition.
Despite this fact, we will not in general be able to prove

x : Nat, y : Nat ` pxy ≡ qxy

This seems odd: for every m,n ∈ N (in the ‘real world’) we can prove that p m̄ n̄ =
q m̄ n̄. If we had a principle of induction then we’d be able to deduce that pxy = qxy
generically. However, we have no such principle!

Morally this should not be the case: that is, p and q are not definitionally equal.
This illustrates the distinction between intensional equality (a.k.a. definitional equal-
ity) and extensional equality. This distinction is very important in computer science
and philosophy: it captures the idea of two programmes having the same input–
output behaviour but different algorithms.

Extensional equality. We can think of the extension of a function as being
its graph, i.e. a set of ordered pairs of the form (input, output). Two programmes
may have the same input/output behaviour without being the same programme. In
Frege’s terminology, two types are extensionally equal if they have the same reference.

We cannot expect extensional equality to be computable; for instance, extensional
equality of elements of type (N → N) → (N → N) already has high quantifier
complexity.

Intensional equality. We can think of the intension of a function as being its
description, or an algorithm that computes the function. Thus two functions that
are intensionally equal must be extensionally equal, but the converse is not true.
Intensional equality is synthetic. In Frege’s terminology, two types are intensionally
equal if they have the same sense.

3.1 Equality in type theory

Recall Martin–Löf’s distinction between judgements and propositions. With this in
mind:

9

3.1 Equality in type theory3 INTENSIONAL AND EXTENSIONAL EQUALITY

• Intensional equality is an inductively defined judgement;
• Extensional equality is a proposition: it may be subject to judgement.
For example, the following is a proposition:

pxy =Nat qxy

It requires proof. We will attempt to develop a way of saying that, to prove this, it
is sufficient to prove for each m,n ∈ N that p m̄ n̄ = q m̄ n̄.

Under our propositions-as-types correspondence, we conclude that extensional
equality ‘is’ a family of types. For instance,

x : Nat, y : Nat ` x =Nat y type (1)

We’ll write the type x =Nat y as IdNat(x, y) to emphasise that we really want to think
of it as a type and not a proposition.

Instantiating by substitution from 1 gives

Γ `M : Nat Γ ` N : Nat
Γ ` IdNat(M,N) type

But we needn’t stop at Nat; we may replace it by an arbitrary type A (which may
itself—usefully—be an identity type!). For instance, given x : Nat we may obtain a
new type Seq(x), which can be thought of as the sequences of Nats of length x:

Γ ` x : Nat
Γ ` Seq(x) : type

Observe the following fact: given m,n ∈ N, it is true that

Seq(p m̄ n̄) ≡ Seq(q m̄ n̄)

because p m̄ n̄ ≡ q m̄ n̄. However we cannot generalise to

Seq(pxy) ≡ Seq(qyx)

because Seq(pxy) and Seq(qyx) are not definitionally equivalent. But they are related
in some way. Later, we will come to define what we mean by ‘related’ here. A good
guess might be along the lines of ‘isomorphism’, but this will turn out to be far too
strong. What we need is some kind of ‘equivalence’. This equivalence will tie itself
to both the notion of a homotopy and that of a categorical equivalence.

10

4 DEPENDENT TYPES: SETUP

4 Dependent types: setup

Dependent types are families of types. Atomic judgements are of the form

contexts / closed types: Γ ctx

Γ ≡ Γ′

open types / families of types: Γ ` A type

Γ ` A ≡ A′

elements of types: Γ `M : A

Γ `M ≡M ′ : A

The symbol ≡ denotes what we will interpret as definitional equality. We denote the
empty context by · when we need to. The introduction rules for contexts are:

· ctx
Γ ctx Γ ` A type

Γ, x : A ctx

Thus we have some notion of dependence; it allows us to make sense of expressions
like x : Nat, y : Seq(x) ` · · · , which was impossible before.

· ≡ · ctx
Γ ≡ Γ′ Γ ` A ≡ A′

Γ, x : A ≡ Γ′, x : A′

The following rule corresponds with reflexivity:

Γ, x : A,∆ ` x : A

The following rules (one for each judgement J) correspond with weakening:

Γ,∆ ` J Γ ` A type
Γ, x : A,∆ ` J

Exercise. What are the corresponding rules for exchange and contraction?
The following rule, called substitution or instantiation, corresponds with transi-

tivity:
Γ, x : A,∆ ` J Γ `M : A

Γ[M/x]∆ ` [M/x]J

The following rules together are called functionality

Γ, x : A,∆ ` N : B Γ `M ≡M ′ : A

Γ[M/x]∆ ` [M/x]N ≡ [M ′/x]N : [M/x]B

11

4 DEPENDENT TYPES: SETUP

Γ, x : A,∆ ` B type Γ `M ≡M ′ : A

Γ[M/x]∆ ` [M/x]B ≡ [M ′/x]B

Finally, the following rules are type equality, which tell us that definitionally equal
types classify the same things:

Γ `M : A Γ ` A ≡ A′

Γ `M : A′
Γ `M ≡M ′ : A Γ ` A ≡ A′

Γ `M ≡M ′ : A

Identity types

Given a type A and elements M : A and N : A we can form an identity type
IdA(M,N). The formation rule for Id is thus:

Γ ` A type Γ `M : A Γ ` N : A

Γ ` IdA(M,N)
Id-F

It will be useful in HoTT to consider the case when A is itself an identity type, i.e.
we have the type

IdIdA(A,B)(α, β)

This extends to any (finite) dimension.
We also have an Id-introduction rule, which tells us that any element M of a type

A is in some way ‘related’ to itself. Formally:

Γ ` A : M
Γ ` reflA(M) : IdA(M,M)

Id-I

Id-elimination will follow next week.

12

	The and Rules
	Gentzen's Inversion Principles (rules)
	Gentzen's Unicity Principles (rules)
	 rule for Disjunction
	Coproduct
	Definitional equality vs. Propositional equality

	Natural numbers
	Syntactic definition: Nat
	Category theoretic definition: NNO

	Intensional and extensional equality
	Equality in type theory

	Dependent types: setup

