
15-819 Homotopy Type Theory Lecture Notes

Nathan Fulton

October 9 and 11, 2013

1 Contents
These notes summarize and extend two lectures from Bob Harper’s Homotopy Type
Theory course. The cumulative hierarchy of type universes, Extensional Type theory,
the ∞-groupoid structure of types and iterated identity types are presented.

2 Motivation and Overview
Recall from previous lectures the definitions of functionality and transport. Function-
ality states that functions preserve identity; that is, domain elements equal in their
type map to equal elements in the codomain. Transportation states the same for
type families. Traditionally, this means that if a =A a′, then B[a] true iff B[a′] true.
In proof-relevant mathematics, this logical equivalence is generalized to a statement
about identity in the family: if a =A a′, then B[a] =B B[a′].

Transportation can be thought of in terms of functional extensionality. Un-
fortunately, extensionality fails in ITT. One way to recover extensionality, which
comports with traditional mathematics, is to reduce all identity to reflexivity. This
approach, called Extensional Type theory (ETT), provides a natural setting for
set-level mathematics.

The HoTT perspective on ETT is that the path structure of types need not be
limited to that of strict sets. The richer path structure of an ∞-groupoid is induced
by the induction principle for identity types. Finding a type-theoretic description of
this behavior (that is, introduction, elimination and computation rules which comport
with Gentzen’s Inversion Principle) is an open problem.

1



Homotopy Type Theory

3 The Cumulative Hierarchy of Universes
In previous formulations of ITT, we used the judgement A type when forming types.
In this setting, many types are natural to write down but impossible to form. As a
running example for the section, consider the following: ifM, 17, tt : ifM,Nat,Bool.
Assuming the well-formedness of the type, elimination rules behave as expected:
17 : if tt,Nat,Bool ≡ Nat and tt : if ff,Nat,Bool ≡ Bool.

Forming this type is not possible using the current formation rule for if. Type
universes address this shortcoming by generalizing type formation rules. A recursively
generated cumulative hierarchy of universes (Ui) is introduced. Instead of defining
type formation in terms of a judgement A type, formation rules state the relative
location of relevant types in the hierarchy; that is, judgements that Atype are replaced
with judgements of the form A : Ui.

The definition of type universes includes three new rules1

Γctx
Γ ` Ui : Ui+1

U -intro Γ ` A : Ui

Γ ` A : Ui+1
U -cumul A ≡ B : Ui

A ≡ B : Ui+1
U - ≡

The U -intro rule introduces an unbounded hierarchy of universes, each of which
inhabits the next universe. The second rule states that these universes are cumulative,
and the third ensures that equality is preserved in higher universes. The U - ≡ rule is
a derived rule in the HoTT book presentation.

In addition to these rules, every type formation rule establishes relative positions
of relevant types. For example2:

A : Ui M,N : A
IdAM,N : Ui

UId-F
A : Ui x : A ` B : Ui

Πx:AB : Ui
UΠ-F

Γctx
1 : Ui

U1-F Γctx
0 : U U0-F A : U B : U

A+B : U U + -F

The addition of universes to ITT solves the problem identified by the running
example. As the example suggests, these hierarchies increase the expressiveness of
ITT. This is established by identifying a statement that cannot be proven only in the
presence of universes.

1See A1.1 and A2.3 of the HOTT book for discussion.
2See appendix 2 of [2] for a full formulation

Nathan Fulton 2013/10/14 and 2013/10/16 2



Homotopy Type Theory

example: Jan Smith established that without universes, it is not provable that
succ(−) 6= 0 [5]. However, in Martin-Löf’s Type Theory, it is provable that n : Nat,
succ(n) 6≡ 03. In fact, Smith proved that any negation of an equivalence cannot be
proven without universes.

exercise: Show that the operators fst and snd can be defined from split.

3.1 Typical Ambiguity
In the examples above, subscripts on each universe create significant notational
overhead. Therefore, these indices are elided whenever intent is obvious. When
implemented with pen and paper, this is called typical ambiguity. Its mechanization
in Coq is referred to as universe polymorphism.

3.2 Alternatives to the Hierarchy
The introduction of an infinite hierarchy of universes complicates the theory. An
uninitiated reader might wonder whether an infinite, cumulative hierarchy is really
necessary. This section presents three alternatives. The first alternative works,
but has some disadvantages. The other two alternatives have significant problems,
demonstrating that the complexity induced by type universes is essential to a consistent
and sufficiently expressive definition of ITT.

3.2.1 Large Elimination

Intensional Type Theory can be consistently formulated without a hierarchy. The
approach, called Large Elimination, rules the correct types into the theory by hand.
In the case of the running example, the rule would be:

M : Bool A type B type
ifM,A,B type LE-If

Similar rules must be provided for each type formation rule. The universal
approach is preferred because it is less ad hoc —large elimination requires the
addition of new rules for each affected type.

3See page 86 of Programming in Martin-Löf’s Type Theory [1].

Nathan Fulton 2013/10/14 and 2013/10/16 3



Homotopy Type Theory

3.2.2 A Single Universe

The running example may be addressed without introducing a recursively defined
hierarchy of universes. One alternative is to replace the U rules above with a single
universe. In this case, the important choice is whether U : U .

If the universe is not self-inclusive, The formulation problem discussed above re-
emerges. For instance, the type ifM,U ,U → U is not formable without a recursively
defined hierarchy. The same observation applies at the top of any finite hierarchy.

3.2.3 The Inconsistent Approach

An insightful reader might observe that this problem can be resolved by patching the
single universe system with a rule which allows the universe to contain itself:

Γ ` U : U U -inconsistent

This system allows the formation of ifM,U ,U → U . However, it also destroys the
consistency of the theory.

Exercise: Reproduce the Burali-Forte Paradox within a system equipped with
U-cumul-inconsistent4.

4 Proof-relevance and Extensionality
Martin-Löf’s Type Theory is significant because it introduces the notion of proof rele-
vance. Intuitively, this expresses the idea that proofs can be treated as mathematical
objects.

4.1 The Theorem of Choice
It is well-known that the Axiom of Choice is independent of the axioms of set theory.
However, choice can be derived in ITT. The derivation provides an excellent example
of proof relevance in action.

The theorem of choice states that if xCy is total, then there must exist a function
(f) which associates each x with a chosen y = f(x). We can state this formally in
ITT.

Theorem of Choice. ` e : Πx:AΣy:BC(x, y)→ Σf :A→B.Πx:AC(x, f(x)).
4This formulation of the paradox is due to Girard 1972, and is referred to as Girard’s Paradox.

Nathan Fulton 2013/10/14 and 2013/10/16 4



Homotopy Type Theory

The proof, provided in [4], involves finding a derivation of:

F : Πx:AΣy:BC(x, y) ` λF. < λx.fstF (x), λx.sndF (x) >: Σf :A→B.Πx:AC(x, f(x))

In the proof, F is both an assumption and a mathematical object (namely, a
product). Therefore, the proof may rely upon not only the inhabitation of the type
of F , but also F itself.

Note: In future lectures, banana brackets will be used to recover a more traditional
reading of F by suppressing the ability to use it as a piece of data in the proof. For
now, the significant observation is that proof irrelevance can be recovered within ITT.

4.2 Failure of Extensionality
Marin-Löf demonstrated that the Axiom of Extensionality fails in ITT; in ITT, it is
not the case that if p : IdA(M,N) for closed M,N,A, then M ≡ N : A.

Extensional Type theory (ETT) addresses the failure of extensionality in ITT by
endowing the theory with the principle of equality of reflection. Concretely, ETT
introduces two new rules which reduce identity to equivalence. Therefore, all identity
paths on a type are the reflexive path.

Γ ` p : IdA(M,N)
Γ `M ≡ N : A Eq-Refl

p : IdA(M,N)
Γ ` p ≡ refl(M) : IdA(M,M) UIP

The first rule, equality of reflection, states that proof of an identification is
sufficient to show judgemental equality in the type. The second rule, Uniqueness of
Identity Proofs, states that any path is the reflexive path.

Although extensionality does not hold generally for ITT, uniqueness of identity
proofs may be recovered for a large class of types.

Hedberg’s Theorem. Any set with decidable identities has collapsed identity sets
[3]5.

4.2.1 ETT vs ITT

The essential difference between ETT and ITT is the algebraic structure of types.
ETT reduces all identity paths to reflexivity. As a result, the path structure of types

5There is a Coq proof by Nicolai Kraus online: http://www.cs.nott.ac.uk/˜ngk/hedberg direct.v

Nathan Fulton 2013/10/14 and 2013/10/16 5

http://www.cs.nott.ac.uk/~ngk/hedberg_direct.v


Homotopy Type Theory

in ETT is homotopically discrete. ITT admits a much richer path structure on types:
two paths p : IdA(A,B) and q : IdA(B,C) may by equal but not trivially equal.

The two other major differences between ETT and ITT are decidability of type
checking and fitness for set-level mathematics.

The UIP rules introduces proof search as a valid mode of operation for the type
checker. Therefore, type checking is not decidable in ETT6. Decidability is not an
important criterion for two reasons. First, the standard mode of operation in a
mechanized ETT (e.g. NuPRL) does not result in proof search. Second, type checking
in ITT quickly becomes intractable.

A more important secondary distinction between ETT and ITT is fitness for
set- level mathematics. Types in ETT have the structure of an h-set; therefore,
set-level mathematics is much nicer in NuPRL than in Coq. Whereas extensionality
and transport come for free in NuPRL, Coq users must induce this structure by
programming in terms of a setoid. However, the convienance of ETT comes at a cost:
the path structure of its types in necessarily limited due to Hedberg’s Theroem.

Just as proof-relevant mathematics subsumes proof-irrelevant mathematics as a
special case, the∞-groupoid structure of types in ITT may be forgotten so that ETT
is recovered as a special case. In fact, this is essentially what happens with Setoid in
Coq.

5 Algebraic Structure of Identity Types
Recall that the induction principle for identity types states that for x, y : A, there
exists an identity type x =A y. Furthermore, proving a property for these elements
and a path p : x =A y consists of proving the property in the reflexive case (that is,
for x, x, reflx).

The full implications of this principle were not understood when it was first
introduced. A realization central to Homotopy Type Theory is that the induction
principle for identity types gives rise to an entire hierarchy of iterated identity types.
That is, due J, we can form the type p =IdA(x,y) q and so on. Homotopy Type Theory is
so-called, in part, because these types form the same structure as iterated homotopies:
that of an ∞−groupoid.

Whereas the universes provide a mechanism for reasoning about size in an iterative
fashion, the iterated identities provide an account of dimension. In the example above,
x and y are start and end points. The first identity corresponds to a path between

6Type checking for ITT is decidable

Nathan Fulton 2013/10/14 and 2013/10/16 6



Homotopy Type Theory

the elements. Paths between p, q : IdIdA(x,y) are homotopies, or 2-dimensional paths.
Each iteration corresponds to an increase in dimension7.

Before proceeding with a presentation of the groupoid axioms in terms of ITT, it
is useful to recall the derivable equivalence relation:
(1) idA(M) := reflA(M) : IdA(M,M)
(2) p : IdA(M,N) ` p−1 : IdA(N,M)
(3) p : IdA(M,N), q : idA(N,P ) ` p � q : IdA(M,P )

The second and third are theorems provable by path induction, since composition
and inversion are both defined in terms of J. Therefore, we may read identity types
propositionally as witnesses of an equivalence, and computationally as abstract daata
types upon which we may operate. The two notations for identity types, x =A y and
IdA(x,y), typically elucidate the intended reading. While the former reading comports
with more traditional interpretations of equality, the latter gives rise to the iterated
identity types.
Remark. Despite the correspondence with classical (analytic) homotopy theory, maps
should be thought of synthetically. As a result, path concatenation is not defined in
terms of function composition; hence, the � notation.

5.1 The Groupoid Laws
The groupoid laws may be forumated as coherence theorems, each proven by path
induction using J:

inv-right p � p−1 =IdA(M,M) id(M)
inv-left p−1 � p =IdA(N,N) id(N)
unit-right p � id(N) =IdA(M,N) p
unit-left id(M) � p =IdA(M,N) p
assoc (p � q) � r =IdA(M,P ) p � (q � r)

Before proceeding an explanation of how these are proven, some motivation may
be helpful. Consider the following diagram for the associativity theorem:

A B C D

This diagram illuminates the weak nature of the path structure: associativity
holds only because it holds at yet higher type. Iterated identity types are given
structure by this higher coherence.

7Dimension is also referred to as homotopy level.

Nathan Fulton 2013/10/14 and 2013/10/16 7



Homotopy Type Theory

Theorem 1. The groupoid laws hold.

Full proofs are available in chapter 2 of [2]. We outline portions of the argument
here for the sake of later discussion. For the first inverse theorem, perform path
induction on p. It suffices to consider that p = reflx. We have by the definition of
refl−1

x that reflx � refl−1
x = reflx. The other inverse argument follows similarly. The cases

for the unit theorems and associativity are similar. Each follows by path induction
on p, considering the case where p = reflx.

5.2 Maps preserve structure
Given this structure, it is natural to ask whether mappings preserve the groupoid
structure. Recall that ap preserves identities.

Theorem 2. If f : A→ B and p : M =A M ′ then apf (p) : fM =B fM ′.

Mappings preserve not just identity, but the entire groupoid structure. Proving
this requires showing that ap preserves identity, inversion and composition. That is,

Theorem 3. For a function f : A → B and paths p : x =A y, q : y =A z
1) apf (refl(x)) ≡ refl(f(x))
2) apf (p−1) = apf (p)−1

3) apf (p � q) =Ida(x,z) apf (p) � apf (q)

Exercse: Prove that maps preserve functoriality. A formal proof will be included
in a coming revision of these notes.

5.3 Does Homotopy Type Theory have a Computational In-
terpretation?

In the sketch of the groupoid proofs, the general case of p is reduced to the case of reflx.
Currently, this is justified by a categorical model. This is not natural or desirable
because the distinguishing characteristic of type theory is its computational content
characterized by Gentzen’s Inversion Principle. The model-based justification is
insufficient, in part, because it does not provide a way of running HoTT programs. The
constructivity of Homotopy Type Theory is important because Hedberg’s Theorem
collapses the dimensional tower developed in this section. However, determining
whether there is a computational interpretation of Homotopy Type theory is a
principle open problem.

Nathan Fulton 2013/10/14 and 2013/10/16 8



Homotopy Type Theory

References
[1] Jan M. Smith Bengt Nodström, Kent Petersson. Programming in martin-

löf’s type theory. http://www.cse.chalmers.se/research/group/logic/book/
book.pdf, 1990.

[2] Institute for Advanced Study. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. The Univalent Foundations Program, 2013. http:
//homotopytypetheory.org/book/.

[3] Michael Hedberg. A coherence theorem for martin-löf’s type theory. J. Funct.
Program., 8(4):413–436, July 1998.

[4] Per Martin-Löf. Intuitionistic type theory. http://intuitionistic.files.
wordpress.com/2010/07/martin-lof-tt.pdf, 1980.

[5] Jan M. Smith. An interpretation of martin-lof’s type theory in a type-free theory
of propositions. J. Symb. Log., 49(3):730–753, 1984.

Nathan Fulton 2013/10/14 and 2013/10/16 9

http://www.cse.chalmers.se/research/group/logic/book/book.pdf
http://www.cse.chalmers.se/research/group/logic/book/book.pdf
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
http://intuitionistic.files.wordpress.com/2010/07/martin-lof-tt.pdf
http://intuitionistic.files.wordpress.com/2010/07/martin-lof-tt.pdf

	Contents
	Motivation and Overview
	The Cumulative Hierarchy of Universes
	Typical Ambiguity
	Alternatives to the Hierarchy
	Large Elimination
	A Single Universe
	The Inconsistent Approach


	Proof-relevance and Extensionality
	The Theorem of Choice
	Failure of Extensionality
	ETT vs ITT


	Algebraic Structure of Identity Types
	The Groupoid Laws
	Maps preserve structure
	Does Homotopy Type Theory have a Computational Interpretation?


