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Foreword
These will undergo substantial revision and expansion in the coming week.

Recall from last time that we can think of the judgement A true as meaning ‘A
has a proof’ and of A false as ‘A has a refutation’, or equivalently ‘¬A has a proof’.
These atomic judgements give rise to hypothetical judgements of the form

A1 true, A2 true, . . . , An true ` A true

The inference rules of intuitionistic propositional logic then give rise to the structure
of a Heyting algebra, called the Lindenbaum algebra.

1 Lindenbaum algebras
Recall that IPL has the structure of a preorder, where we declare A ≤ B if and only
if A true ` B true. Let T be some theory in intuitionistic propositional logic and
define a relation ' on the propositions in T by

A ' B if and only if A ≤ B and B ≤ A

The fact that ' is an equivalence relation follows from the more general fact if
(P,≤) is a preorder and a relation ≡ is defined on P by declaring p ≡ q if and only if
p ≤ q and q ≤ p, then ≡ is an equivalence relation on P .

Definition. The Lindenbaum algebra of T is defined to be the collection of '-
equivalence classes of propositions in T . Write A∗ = [A]'. The ordering on the
Lindenbaum algebra is inherited from ≤.
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Theorem. The judgement Γ ` A true holds if and only if Γ∗ ` A∗ holds in every
Heyting algebra.

Proof. Exercise.

2 Decidability and stability
Definition. A prop is decidable if and only if A ∨ ¬A true.

Decidability is what separates constructuve logic from classical logic: in classical
logic, every proposition is decidable (this is precisely the law of the excluded middle),
but in constructive logic, this is not so.

A sensible first question to ask might be: ‘do decidable propositions exist?’
Fortunately, the answer is affirmative.
• > and ⊥ are decidable propositions;
• We would expect m =N n to be a decidable proposition, where =N denotes equality

on the natural numbers;
• We would not expect x =R y to be a decidable proposition, where =R denotes

equality on the real numbers, because real numbers are not finite objects.

Definition. A prop is stable if and only if (¬¬A) ⊃ A true.

Again, in classical logic, every proposition is stable; in fact, the proposition
(¬¬A) ⊃ A true is often taken as an axiom of treatments of classical propositional
logic! A natural question to ask now is ‘do there exist unstable propositions?’ Consider
the following lemma.

Lemma. ¬¬(A ∨ ¬A) true

Proof. We must show ¬(A ∨ ¬A) ⊃ ⊥ true.
Suppose A true. We then have

A true
A ∨ ¬A true ∨I1 ¬(A ∨ ¬A) true

⊥

So in fact ¬A true. But then once again

¬A true
A ∨ ¬A true ∨I2 ¬(A ∨ ¬A true)

⊥
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Hence
¬(A ∨ ¬A) true ` ⊥
¬(A ∨ ¬A) ⊃ ⊥ true ⊃I

We can think of this lemma as saying that ‘the law of the excluded middle is
not refutable’. Presuming that there exist undecidable propositions, we obtain the
following corollary.

Corollary. In intuitionistic propositional logic, not every proposition is stable.

3 Disjunction property
A theory T has the disjunction property (DP) if T ` A ∨B implies T ` A or T ` B.

Theorem. In IPL, if ∅ ` A ∨B true then ∅ ` A true or ∅ ` B true.

Näıve attempt at proof. The idea is to perform induction on all possible derivations
∇ of ∅ ` A ∨ B true, with the hope that somewhere along the line we’ll find a
derivation of A true or of B true. Our induction hypothesis is that inside ∇ is enough
information to deduce either ∅ ` A true or ∅ ` B true.

Since ∅ ` A ∨ B true cannot be obtained by assumption or from the rules, ∧I,
⊃I or >I, we need only consider ∨I1, ∨I2 and the elimination rules.

If ∅ ` A ∨B true is obtained from ∨I1 then

∇
A true

∅ ` A ∨B true ∨I1

so there is a derivation ∇ of A true and we’re done. Likewise if ∅ ` A ∨ B true is
obtained from ∨I2 then there is a derivation of B true.

If ∅ ` A ∨B true is obtained from ⊃E then the deduction takes the form
∇1

∅ ` C ⊃ (A ∨B) true
∇2

∅ ` C true
∅ ` A ∨B true ⊃E

We (dubiously1) assume that ` C ⊃ (A∨B) true must have been derived in some way
from C true ` (A ∨ B) true. Suppose that this happens and that ∇′1 is a deduction

1In fact, this ‘dubious’ assumption is true in constructive logic.
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of C true ` (A ∨B) true. We can then ‘substitute’ ∇2 for all the occurrences of the
assumption C true appearing in ∇′1 to obtain a smaller derivation ∇3 of ∅ ` A∨B true.
Our induction hypothesis then gives us that inside ∇3 is enough information to deduce
∅ ` A true or ∅ ` B true.

A similar approach works (we hope) for ∧E and ⊃E, thus giving the result.

4 Admissible properties
The sketch proof of the previous theorem relied on transitivity of `; namely, that the
following rule is true:

Γ, A true ` B true Γ ` A true
Γ ` B true T

This leads us naturally into a discussion of the structural properties of `.

Definition. A deduction rule is admissible (in IPL) if nothing changes when it is
added to the existing rules of IPL.

To be clear about which logical system we use, we may write `IPL to denote
deduction in IPL rather than in some new logical system.

The goal now is to prove that the structural rules for entailment (reflexivity,
transitivity, weakening, contraction, exchange) are admissible.

Theorem. The structural properties of `IPL are admissible.

Proof. R, C, X: Reflexivity, contraction and exchange are all primitive notions, in
that they follow instantly. For instance:

Γ ` A true
Γ ` A ∧ A true ∧I

Γ ` A true ∧E1

so if we were to introduce
Γ ` A true
Γ ` A true R

as a new rule, then nothing would change. (Likewise for contraction and exchange.)
W: For weakening we use the fact that the structural rules are polymorphic in Γ.

We can thus prove that weakening is admissible by induction: if the following rules
are admissible

Γ ` B2 true
Γ, A true ` B1 true and

Γ ` B2 true
Γ, A true ` B1 true

C. Newstead, E. Cheung 2013/09/16, 2013/09/18 4



Homotopy Type Theory

then we obtain
Γ ` B1 ∧B2 true

Γ ` B1 true ∧E1

Γ, A true ` B1 true Ind

Γ ` B1 ∧B2 true
Γ ` B2 true ∧E2

Γ, A true ` B2 true Ind

Γ, A true ` B1 ∧B2 true ∧I

Likewise for the other introduction rules.
T: The admissibility of transitivity is left as an exercise.

5 Proof Terms
We wish to study propositions along with their proof as mathematical objects. In the
type theoretic framework, we can use the notation M : A where A is a proposition
and M is a proof of A. We will see that this corresponds to the category theoretic
notion of a mapping M : A→ B. Another important notion is the identity of proofs,
which will be denoted M ≡ N : A where M,N are equivalent proofs of A. This will
correspond in the category theoretic contex to two maps form A to B being equal
M = N : A→ B.

5.1 Proof Terms as Variables
We can combine the idea of keeping track of proofs with our previous notion of
entailment. If A1, . . . , An entails A, meaning that A1, . . . , An ` A, there will be a
proof M of A that uses the propositions A1, . . . , An. Thus, we will write

x1 : A1, . . . , xn : An `M : A
where each xi : Ai is a proof term. We can think of the proof terms x1, . . . , xn as
hypothesise for the proof, but what we really want is for them to behave as variables.
M then uses the variables x1, . . . , xn to prove A, so M would encapsulate the grammar
a proof that uses variables x1, . . . , xn.

Instead of proving a proposition A from nothing, most of the time A will rely on
other propositions A1, . . . , An.

5.2 Structural Properties of Entailment with Proof Terms
Now that we have proof terms, we can see how they act as variables by examining
their interaction with the structural properties of entailment. We will also keep track
of other assumptions/context Γ,Γ′ to demonstrate that the structural properties will
hold in the presence of assumptions.
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Reflexivity / Variables Rule Reflexivity tells us that A should entail A, so now
that we have a variable x : A that proves A, the variable should be carried through.
We can think of this as the variables rule.

Γ, x : A,Γ′ ` x : A R/V

Transitivity / Substitution Transitivity tells us that if A is true and B follows
from A, then B is true. In terms of proofs, if we have a proof N : A and a proof
N : B which uses a variable x that is supposed to prove A, then we can substitute
the proof M : A into N : B to prove B. Since we are substituting M into x inside N ,
we denote this substitution [M/x]N : B.

Γ, x : A,Γ′ ` N : B Γ ` A
Γ,Γ′ ` [M/x]N : B T/S

Weakening
Γ `M : A

Γ,Γ′ `M : A W

Contraction If N : B follows from A using two different proofs x : A, y : A for A,
can just pick one z = x or z = y as the proof of z : A and use it in the instances of
variables x, y in N : B

Γ, x : A, y : A,Γ′ ` N : B
Γ, z : A,Γ′ ` [z, z/x, y]N : B C

Exchange
Γ, x : A, y : B,Γ′ ` N : C
Γ, y : B, x : A,Γ′ ` N : C X

5.3 Negative Fragment of IPL with Proof Terms
We want to look at what happens to the Negative Fragment of IPL when we consider
proof terms. Here are the important ones:

Truth Introduction Truth is trivially true, so we have

Γ ` 〈 〉 : > >I
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Conjunction Introduction We combine the proofs M : A and N : B into 〈M,N〉 :
A ∧B

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A ∧B ∧I

Conjunction Elimination We can recover from a proof M : A ∧ B proofs of A
and B

Γ `M : A ∧B
Γ ` fst(M) : A ∧E1

Γ `M : A ∧B
Γ ` snd(M) : B ∧E2

Implication Introduction If we have a proof M : B that uses x : A as a variable,
then we can consider λx.M as a function that maps x a variable to a proof of B that
uses x, which proves that B ⊃ A

Γ, x : A `M : B
Γ ` λx.M : A ⊃ B

⊃I

Implication Elimination By applying an actual proof N : A to the function
described above, we obtain a proof M(N) : B

Γ `M : A ⊃ B Γ ` N : A
Γ `M(N) : B ⊃E

6 Identity of Proofs

6.1 Definitional Equality
We want to think about when two proofs M : A and M ′ : A are the same. We
will introduce an equivalence relation called definitional equality that respects the
proof rules, denoted M ≡ M ′ : A. We want definitional equality ≡ to be the least
congruence containing (closed under) the β rules. We will define what this means:

A congruence is an equivalence relation that respects our operators. Being an
equivalence relation that it is reflexive (M ≡ M : A), symmetric (M ≡ N : A
implies that N ≡M : A), and transitive (M ≡ N : A and N ≡M ′ : A implies that
M ≡M ′ : A).

For the equivalence relation to respect our operators basically means that if
M ≡ M ′ : A, then that their image under any operator should be equivalent. In
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other words, we should be able to replace M with M ′ everywhere. For example
Γ `M ≡M ′ : A ∧B

Γ ` fst(M) ≡ fst(M ′) : A
There can be many congruences that contains the β rules. Given two congruences

≡ and ≡′, we say ≡ is finer than ≡′ if M ≡′ N : A implies that M ≡ N : A. The
least congruence that contains the proof rules is the finest congruence that contains
the β rules. We will define the β rules in the next section.

We will give a more explicit definition to definitional equality later.

6.2 Gentzen’s Inversion Principle
Gentzen’s Inversion Principle captures the idea that “elim is post-inverse to intro,”
which is the informal notion that the elimination rules should cancel the introduction
rules, modulo definitional equality. The following are the β rules for the negative
fragment of IPL:

Conjunction When we introduce a conjunction, we combine proofs M : A and
N : B to produce a proof 〈M,N〉 : A ∧ B. When we eliminate a conjunction, we
retrieve M : A or N : B. We do not want this process to alter our original M or N

Γ `M : A Γ ` N : B
Γ ` fst(〈M,N〉) ≡M : A β∧1

Γ `M : A Γ ` N : B
Γ ` snd(〈M,N〉) ≡ N : A β∧2

Implication When we introduce an implication, we convert a proof M : B which
uses some variable x : A to a function which uses a variable x to produce a proof of
B. When we eliminate implication, we apply the proof of A ⊃ B to N : A to produce
a proof of B.

Γ, x : A `M : B Γ ` N : A
Γ ` (λx.M)(N) ≡ [N/x]M : B β⊃

6.3 Gentzen’s Unicity Principle
Gentzen’s Unicity Princples on the other hand captures the idea that “intro is post-
inverse to elim.” Another way to think about it is that there should be only one
way modulo definitional equivalence to prove something, which is the way we have
described. They are the η rules, which are the following
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Truth
Γ `M : >

Γ `M ≡ 〈 〉 : > η>

Conjunction
Γ `M : A ∧B

Γ `M ≡ 〈fst(M), snd(N)〉 : A ∧B
η∧

Implication
M : A ⊃ B

Γ `M ≡ λx.Mx : A ⊃ B
η⊃

7 Proposition as Types
There is a correspondence between propositions and types:

Propositions Types
> 1

A ∧B A×B
A ⊃ B function A→ B or BA

⊥ 0
A ∨B A+B

For now, note that meets like > and A ∧ B corresponds to products like 1 and
A×B, and joins like ⊥ and A∨B corresponds to coproducts like 0 and A+B. This
correspondence should become more apparent as we go along. We will now introduce
the objects on the right column.

8 Category Theoretic Approach
In a Heyting Algebra, we have a preorder A ≤ B when A implies B. However, we
now wish to keep track of proofs, so if M is a proof from A to B, we want to think of
it as a map M : A→ B.

Identity There should be an identity map

id : A→ A
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Composition We should be able to compose maps

g : B → C f : A→ B

f ◦ g : A→ B

Coherence Conditions The identity map and composition of maps should behave
like functions

idB ◦f = f : A→ B

f ◦ idA = f : A→ B

f ◦ (g ◦ h) = (f ◦ g) ◦ h : A→ D

Now we can think about objects in the category that corresponds to propostions
given in the correspondence.

Terminal Object 1 is the terminal object, also called the final object, which
corresponds to >. For any object A there is a unique map A→ 1. This corresponds
to > being the the greatest object in a Heyting Algebra, meaning that for all A,
A ≤ 1).

Existence:
〈 〉 : A→ 1

Uniqueness:
M : A→ 1

M = 〈 〉 : A→ 1 η>

Product For any objects A and B there is an object C = A×B that is the product
of A and B, which corresponds to the join A ∧ B. The product A × B has the
following universal property:

D

A×B

A B

M N
〈M,N〉

fst snd

where the diagram commutes.
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First, the existence condition means that there are maps

fst : A×B → A

snd : A×B → B

The universal property says that for every object D such that M : D → A and
N : D → B, there exists a unique map 〈M,N〉 : D → A×B such that

M : D → A N : D → B
〈M,N〉 : D → A×B

and the diagram communtes meaning

fst ◦〈M,N〉 = M : D → A (β×1)
snd ◦〈M,N〉 = N : D → B (β×2)

Furthermore, the map 〈M,N〉 : D → A×B is unique in the sense that

P : D → A×B fst ◦P = M : D → A snd ◦P = N : D → B
P = 〈M,N〉 : D → A×B

η×

so in other words 〈fst ◦P, snd ◦P 〉 = P .
Another way to say the above is

〈fst, snd〉 = id
〈M,N〉 ◦ P = 〈M ◦ P,N ◦ P 〉

Exponentials Given objects A and B, an exponential BA (which corresponds to
A ⊃ B) is an object with the following universal property:

C C × A

BA BA × A B

λ(h) hλ(h)×idA

ap

such that the diagram commutes.
This means that there exists a map ap : BA × A → B (application map) that

corresponds to implication elimination.
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The universal property is that for all object C that has a map h : C × A → B,
there exists a unique map λ(h) : C → BA such that

(λ(h)× idA) ◦ ap = h : C × A→ B

This means that the diagram commutes. Another way to express the induced map is
λ(h)× idA = 〈λ(h) ◦ fst, snd〉.

The map λ(h) : C → BA is unique, meaning that

ap ◦(g × idA) = h : C × A→ B

g = λ(h) : C → BA
η
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