
15-819 Homotopy Type Theory

Lecture Notes

Evan Cavallo and Stefan Muller

November 18 and 20, 2013

1 Reconsider Nat in simple types

As a warmup to discussing inductive types, we first review several equivalent presentations
of the simple type Nat seen earlier in the course. The introduction forms for Nat are 0 and
succ(M) for any M : Nat. The elimination form is the recursor rec.

1.1 Traditional Form

Γ ` 0 : Nat
NatIz1

Γ `M : Nat
Γ ` succ(M) : Nat

NatIs1

Γ `M : Nat Γ `M0 : A Γ, x : A `M1 : A

Γ ` rec[A](M ;M0;x.M1) : A
NatE1

We include the motive A in the recursor to motivate the dependently-typed presentation
to come although it is not necessary in the simply-typed setting. The dynamic behavior of
rec is defined by the following β rules.

rec[A](0;M0;x.M1) ≡M0

rec[A](succ(M);M0;x.M1) ≡ [rec[A](M ;M0;x.M1)/x]M1

The recursor on 0 returns the base case M0. On succ(M), it substitutes the recursive
result on M for x in M1. The η rule states that any object that “behaves like” the recursor
is definitionally equal to the recursor on the appropriate arguments.

[0/y]N ≡M0 Γ, z : Nat ` [succ(z)/y]N ≡ [[z/y]N/x]M1 : A

Γ, y : Nat ` N ≡ rec[A](y;M0;x.M1)
η
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1.2 As elements of the exponential

The introduction forms of Nat may be treated as exponentials in the absence of a context.

· ` 0 : 1→ Nat (NatIz3)

· ` succ : Nat→ Nat (NatIs3)

Note that the type 1→ Nat is equivalent to the type Nat. There are two ways to present
the elimination form in this format. The first moves the Nat on which the recursion is done
to the argument position, implying that rec has exponential type.

· `M0 : A x : A `M1 : A

z : Nat ` rec[A](M0;x.M1)(z) : A
NatE3a

This can be presented in a more direct way by omitting the argument.

· `M0 : A x : A `M1 : A

· ` rec[A](M0;x.M1) : Nat→ A
NatE3b

We can derive rules NatIz1, NatIs1 and NatE1. For example,

Γ,M : Nat `M : Nat Γ,M : Nat ` succ : Nat→ Nat
NatIs3

Γ,M : Nat ` succ(M) : Nat

2 Nat-algebras

We now motivate the idea of Nat-algebras, which are maps of the form 1 + A→ A. From
the name, one would expect there to be a Nat-algebra where A is Nat. Indeed, there is.

z : 1 + Nat ` case(z; .0;x.succ(x)) : Nat

We can write case(z; .0;x.succ(x)) above as { .0;x.succ(x)}(z) or, somewhat abusively,
{0, succ}(z). This gives

· ` {0, succ} : 1 + Nat→ Nat

as desired. More generally, we can write any Nat-algebra as α = {α0, α1} where α0 :
1→ Nat (or, equivalently, α0 : Nat) and α1 : Nat→ Nat. We call α0 the basis or pseudo-zero
and α1 the inductive step or pseudo-successor.

In fact, {0, succ} holds a special position among Nat-algebras. The Nat-algebras form
a category and {0, succ} is the initial object in this category. Recall that this means it
has a unique morphism to any other object in the category. This requires us to define

Muller and Cavallo 2013/11/18 and 2013/11/20 2



Homotopy Type Theory

morphisms between Nat-algebras, which we will call Nat-homomorphisms. Given two Nat-
algebras, α : 1 +A→ A and β : 1 +B → B, h : A→ B is a Nat-homomorphism if it makes
the following diagram commute.

1 +A 1 +B

A B

α

1+h

β

h

The map 1 + h : 1 +A→ 1 +B is defined in the natural way:

1 + h :≡ { .inl 〈〉; a.inr h(a)}

To show that Nat is an initial algebra, we must show that for every Nat-algebra α :
1 + A→ A, there exists a unique Nat-homomorphism ! : Nat→ A such that the following
diagram commutes (note that the order of quantifications expressed in the previous sentence
is not inherently clear in the diagram, and must be considered to get a full understanding
of the diagram.)

1 + Nat 1 +A

Nat A

{0,succ}

1+!

α

!

Let’s consider the requirements on ! for the diagram to commute.

!0 = α0

!succ(x) = α1(!x)

where the left sides correspond to following the path ! ◦ {0, succ} and the right sides
correspond to following α ◦ 1+!. Note that these two equations match the β rules for rec,
so we can define ! :≡ rec[A](α0;α1) or simply ! :≡ rec[A](α). As we see above, the β rules
for rec imply commutation of the diagram. Uniqueness of ! follows from the η rule for rec.

It’s worth noting that commuting diagrams hide exactly the type of equality that is
being discussed, which is quite important in HoTT. For Nat, for example, uniqueness of !
holds “on the nose,” while, in general, uniqueness may be only up to higher homotopy.

3 F -algebras

The above discussion can be generalized to any functor F . A functor is a mapping between
categories C and D. Functors act on objects in a category and the morphisms between
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them, i.e. for all objects X ∈ C, F (X) ∈ D, and for all morphisms f : X → Y between
objects X and Y in C, F (f) : F (X)→ F (Y ). Functors respect identity and composition:
1. For every object X ∈ C, F (idX) = idF (X)

2. For all morphisms f : X → Y and g : Y → Z, F (g ◦ f) = F (g) ◦ F (f)
[1]

For example, FNat(C) :≡ 1 + C is a functor. We check that FNat preserves identities
and composition. Let X be an object of C.

FNat(idX) = 1 + idX = {〈〉, idX}

which is indeed an identity on 1 + X. Let f : X → Y, g : Y → Z be morphisms between
objects of C.

FNat(g ◦ f) = 1 + g ◦ f = {〈〉, g ◦ f} = {〈〉, g} ◦ {〈〉, f} = (1 + g) ◦ (1 + f) = F (g) ◦ F (f)

For any functor F , an F -algebra is a mapping F (X) → X. Thus, a Nat-algebra is an
FNat-algebra. F -algebras form categories as Nat-algebras do. For a functor F , objects A
and B, two F -algebras α : F (A)→ A and β : F (B)→ B, and a morphism h : A→ B, the
following diagram commutes.

F (A) F (B)

A B

α

F (h)

β

h

An initial F -algebra is an F -algebra i : F (I) → I such that for all other F -algebras
α : F (A) → A, there exists a unique map ! : I → A such that the following diagram
commutes.

F (I) F (A)

I A

i

F (!)

α

!

There also exists the notion of an F -coalgebra, which, dual to the above, is a map
α : A → F (A). A final F -coalgebra is a mapping j : J → F (J) such that for all other
F -coalgebras α : A → F (A), there exists a unique map ! : A → J making the following
diagram commute.

A J

F (A) F (J)

α

!

j

!
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Lemma 1 (Lambek). If i : F (I) → I is an initial F -algebra, then i is an isomorphism.
That is, F (I) ≡ I.

Proof. To show that i is an isomorphism, we must exhibit an inverse i−1 : I → F (I) such
that i ◦ i−1 = idI and i−1 ◦ i = idF (I). Consider the F -algebra F (i) : F (F (I)) → F (I).
We now treat i as homomorphism between the F -algebras F (i) and i making this diagram
commute.

F (F (I)) F (I)

F (I) I

F (i)

F (i)

i

i

Since i is an initial F -algebra, however, we also have a unique mapping ! : I → F (I)
making the top half of this diagram commute.

F (I) I

F (F (I)) F (I)

F (I) I

F (!)

i

!

F (i)

F (i)

i

i

There is also a unique mapping from I to I, which must be the identity. This indicates
that the mapping i◦! along the right side of the diagram must be equal to idI :

i◦! = idI

We also have
! ◦ i = F (i) ◦ F (!) = F (i◦!) = F (idI) = idF (I)

where the first equality follows from the commutativity of the upper half of the diagram,
the second and fourth follow from the properties of functors and the third follows from the
result above.

This shows that for any functor F , the initial F -algebra I is a fixed point of F . A
dual result can be proven showing that, if J is the final F -coalgebra of a functor F , then
F (J) ≡ J .
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4 Internalizing Nat-Algebras

Inside type theory, we can define the notion of Nat-algebra as

NatAlg :≡ ΣA:U . ((1 +A)→ A)

We can define the type of Nat-homomorphisms between two Nat-algebras (A,α) and (B, β)
as

NatHom(α, β) :≡ Σh:A→ B. (β ◦ (1 + h) = h ◦ α)

The fact that ν :≡ (Nat, {0, succ}) is initial in the category of Nat-algebras is expressed
by the fact that NatHom(ν, α) is contractible for all α: this means that there exists a
Nat-homomorphism from ν to α which is unique up to higher homotopy.

5 W-types

We’d like to be able to take a functor F and define the initial F -algebra within HoTT (if
one exists). For the class of polynomial functors, we can do this using Brouwer ordinals,
also called W-types.

W-types are inspired by the mathematical concept of well-founded induction. In classi-
cal mathematics, a partially ordered set 〈A,<〉 is said to be well-founded if every subset of
A has a <-minimal element (equivalently, there are no infinite descending chains). Well-
founded sets are useful because they admit an induction principle:

Proposition (Well-Founded Induction):
Let 〈A,<〉 be a well-founded set and P (x) be a proposition. If for any a ∈ A we
can prove P (a) by assuming P (b) for all b < a, then P (a) holds for all a ∈ A.

The set of natural numbers 〈N, <〉 together with its usual ordering is an example of a
well-founded set, and the induction principle is the familiar mathematical induction.

Classically, the proof that induction holds goes by contradiction, so this definition is
unsatisfactory for a constructive theory. We will instead characterize well-founded sets as
those for which we have a (constructive) induction principle.

To better understand what we mean by this, we will define W-types. To form a W-type,
we require a type A and a type family B over A:

Γ ` A : U Γ, x:A ` B : U
Γ `Wx:A.B : U WF

A is the type of node sorts. Each node sort represents a different way of forming an element
of Wx:A.B. For example, in the case of the natural numbers, the node sorts are 0 and
succ. We can think of each element of the natural numbers as a tree built from these two
sorts of nodes. For example, the numbers 0 through 2 can be represented as
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0 succ succ

0 succ

0

Another natural example is the type of binary trees. This type can be defined by two node
sorts node and leaf, with the elements taking the form of trees such as this:

node

leaf leaf

In order to fully specify these two types, we need to have some notion of a node’s arity.
This is given by the type family B. For each node sort a : A, B(a) describes the branching
factor of a, the index type to specify the predecessors of a node of sort a. For example, the
branching factor of the sort 0 or leaf would be 0, the branching factor of succ would be 1,
and the branching factor of node would be 1+1. Thus we can write Nat as Wx:2. if(x; 0; 1),
where tt represents 0 and ff represents succ.

Now that we have the purposes of A and B in hand, we can see how to define the
introduction rule for Wx:A.B.

a : A x:B(a) ` w : Wx:A.B

Γ ` sup[a](x.w) : Wx:A.B
WI

In other words, in order to construct a node of sort a, we must give an element Wx:A.B
for each predecessor as specified by the branching factor B(a). Note that when B(a) is 0
we can construct a new node without any predecessor information. For example, we can
construct elements of the naturals as follows:

0 :≡ sup[tt](x.abortWx:2. if(x;0;1)(x))

1 :≡ sup[ff]( .0)

2 :≡ sup[ff]( .1)

The recursor for Wx:A.B follows the idea of well-founded recursion: in order to define
the result of a function f on an element w : Wx:A.B, we can assume we’ve already computed
f for all of w’s predecessors.

Γ ` C : U Γ, a : A, r : B(a)→ C `M : C

Γ, z : Wx:A.B ` wrec[C](a, r.M)(z) : C
WR
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In the hypothesis, we assume that we are dealing with a node of type a and that we have the
value r(b) for each b : B(a) indexing a predecessor. We use this information to construct
the value M of the recursor at the current node. The recursor comes with the compuation
rule

wrec[C](a, r.M)(sup[a](w)) ≡ [a, λz.wrec[C](a, r.M)(w(z))/a, r]M

which, as expected, gives the value of wrec[C](a, r.M) on sup[a](w) in terms of the value
on each predecessor w(z) for z : B(a).

The dependent eliminator has a similar form, expressing the idea of well-founded in-
duction.

Γ, z : Wx:A.B ` P : U Γ, a:A, p : B(a)→Wx:A.B, h :
∏
b:B(a) P (p(b)) `M : P (sup[a](p))

Γ, z : Wx:A.B ` wind[x.P ](a, p, h.M) : P (z)
WE

Here, in order to formulate the hypothesis, we need to assume the additional data p :
B(a) → Wx:A.B which gives us the predecessors of the element we are considering. The
computation rule takes the form

wind[x.P ](a, p, h.M)(sup[a](w)) = [a,w, λz.wind[x.P ](a, p, h.M)(w(z))/a, p, h]M

In general, we can only assert that this computation rule holds propositionally.
Each W-type determines a functor, in particular a polynomial functor. This is a functor

of the form F (X) = Σa:A.(B(a) → X) for some type A and type family B. We can see
that the W-type Wx:A.B defines an F -algebra where F (X) :≡ Σa:A.(B(a)→ X): we have
λ(a,w). sup[a](w) : F (X)→ X. The map λ(a,w). sup[a](w) is in fact an equivalence, and
Wx:A.B is a homotopy-initial F -algebra.

In the case of our W-type definition of Nat, observe that the functor determined by
Wx:2. if(x; 0; 1) is F (X) = Σb:2.(if(b; 0; 1) → X). One can check that Σb:2.(if(b; 0; 1) →
X) ' 1 +X. Thus, this type satisfies the equation F (X) = 1 +X, our original definition
of a Nat-algebra.
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