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1 Contents
These notes summarize the lectures on homotopy type theory (HoTT) given by
Professor Robert Harper on September 9 and 11, 2013, at CMU. They start by
providing a introduction to HoTT, capturing its main ideas and its connection to
other related type theories. Then they present intuitionistic propositional logic (IPL),
giving both an proof-theoretic formulation as well an order-theoretic formulation.

2 Introduction to homotopy type theory
Homotopy type theory (HoTT) is the subject of a very active research community
that gathered at the Institute for Advanced Study (IAS) in 2012 to participate in
the Univalent Foundations Program. The results of the program have been recently
published in the HoTT Book [1].

2.1 HoTT in a nutshell
HoTT is based on Per Martin-Löf’s intuitionistic type theory, which provides a foun-
dation for intuitionistic mathematics and which is an extension of Brouwer’s program.
Brouwer viewed mathematical reasoning as a human activity and mathematics as
a language for communicating mathematical concepts. As a result, Brouwer per-
ceived the ability of executing a step-by-step procedure or algorithm for performing a
construction as a fundamental human faculty.

Adopting Brouwer’s constructive viewpoint, intuitionistic theories view proofs
as the fundamental forms of construction. The notion of proof relevance is thus a
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characteristic feature of an intuitionistic (or constructive1) approach. In the context
of HoTT, proof relevance means that proofs become mathematical objects [3]. To
fully understand this standpoint, it is necessary to draw a distinction between the
notion of a proof and the one of a formal proof [3, 2]. A formal proof is a proof given
in a fixed formal system, such as the axiomatic theory of sets, and arises from the
application of the inductively defined rules in that system. Whereas every formal
proof is also a proof (assuming soundness of the system) the converse is not true.
This fact immediately follows from Gödel’s Incompleteness Theorem, which precisely
states that there exist true propositions (with a proof), but for which there cannot
be given a formal proof, using the rules of the formal system. Unlike conventional
formally defined systems, HoTT does not surmise that all possible proofs can be fully
circumscribed by its rules, but accepts proofs that cannot be formalized in HoTT.
These are exactly the proofs that are considered to be relevant and, being treated as
mathematical objects, they can be formulated internally as objects of the type theory.

Being based on intuitionistic type theory, HoTT facilitates some form of axiomatic
freedom. This means in particular that there exist fewer assumptions that apply
globally. For instance, a typical such assumption that is missing in a intuitionistic
interpretation is the law of the excluded middle. As put forth by Brouwer, an
assumption like the law of the excluded middle does not need to be ruled out
entirely, but can be introduced locally, in a proof, if needed. Whether a particular
local assumption is needed or not is mainly determined by the actual proof (i.e.,
construction). A sparing use of global assumptions results in proofs that are based
on less assumptions and thus in stronger results overall.

Another distinguishing characteristics of HoTT is that it adopts a synthetic, rather
than an analytic reasoning approach. The differentiation goes back to Lawvere and
is best explained by an example. Euclidean geometry, for instance, represents a
synthetic approach to geometry as it treats geometric figures, like triangles, lines, and
circles, as “things” in themselves rather than sets of points. In an analytical approach
based on the Cartesian coordinate system, on the other hand, geometric figures are
treated as sets of points in the plane and thus are based on the real numbers. Whereas
traditional formulations of homotopy theory are analytic, HoTT is synthetic. The
differentiation between a synthetic and an analytic reasoning approach is mainly
relevant with regard to the approach’s amenability to mechanized reasoning. It turns
out that synthetic approaches are easier to mechanize than analytical approaches.
This holds true in particular for HoTT: since proofs of equality in HoTT correspond
to paths in a space, they are cleaner, shorter, and completely mechanizable.

1In this course, intuitionism and constructivism are used interchangeably.
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2.2 HoTT in type theory context
HoTT unites homotopy theory with type theory, by embodying Brouwer’s intuitionism
and drawing from Gentzen’s proof theory (see Section 3). It is based on the observation
that types classify the admissible forms of constructions and thus are programmatically
sufficient to encompass all known mathematical constructions. This section briefly
sketches how HoTT relates to other existing type theories.

2.2.1 Intensional type theory

Intensional type theory (ITT) is a intuitionistic type theory that serves as the core
theory for other type theories. Other type theories are merely extensions of ITT.

2.2.2 Extensional type theory

Extensional type theory (ETT) extends ITT with equality of reflection (ER) and
uniqueness of identity proofs (UIP):

ETT = ITT + ER + UIP

Since types are perceived as sets in ETT, ETT gives rise to a intuitionistic theory of
sets.

2.2.3 Homotopy type theory

HoTT extends ITT with higher inductive types (HIT) and the univalence axiom
(UA):

HoTT = ITT +HIT + UA

Since types are perceived as abstract spaces in HoTT, HoTT gives rise to a intuition-
istic theory of weak infinity groupoids.

3 Intuitionistic propositional logic
What is meant by intuitionistic logic? It is a proof-relevant logic. One might say its
slogan is “logic as if people matter”, alluding to Brouwer’s principle that mathematics
is a social process in which proofs are crucial for communication. Whenever a claim
of truth of a proposition is made, it must be accompanied by a proof.
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As advanced by Per Martin-Löf, a modern presentation of intuitionistic proposi-
tional logic (IPL) distinguishes the notions of judgment and proposition. A judgment
is something that may be known, whereas a proposition is something that sensibly
may be the subject of a judgment. For instance, the statement “Every natural number
larger than 1 is either prime or can be uniquely factored into a product of primes.” is
a proposition because it sensibly may be subject to judgment. That the statement is
in fact true is a judgment. Only with a proof, however, is it evident that the judgment
indeed holds.

Thus, in IPL, the two most basic judgments are A prop and A true:

A prop A is a well-formed proposition
A true Proposition A is intuitionistically true,

i.e., has a proof.

The inference rules for the prop judgment are called formation rules. The inference
rules for the true judgment are divided into classes: introduction rules and elimination
rules.

Following Martin-Löf, the meaning of a proposition A is given by the introduction
rules for the judgment A true. The elimination rules are dual and describe what may
be deduced from a proof of A true.

The principle of internal coherence, also known as Gentzen’s principle of inversion,
is that the introduction and elimination rules for a proposition A fit together properly.
The elimination rules should be strong enough to deduce all information that was
used to introduce A (local completeness), but not so strong as to deduce information
that might not have been used to introduce A (local soundness). In a later lecture,
we will discuss internal coherence more precisely, but we can already give an informal
treatment.

3.1 Negative fragment of IPL
3.1.1 Conjunction

One familiar group of propositions are the conjunctions. If A and B are well-formed
propositions, then so is their conjunction, which we write as A ∧ B. This is the
content of the formation rule for conjunction: it serves as evidence of the judgment
A ∧B prop, provided that there is evidence of the judgments A prop and B prop.

A prop B prop
A ∧B prop ∧F
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We have yet to give meaning to conjunction, however; to do so, we must say
how to introduce the judgment that A ∧ B is true. As the following rule shows, a
verification of A ∧B consists of a proof of A true paired with a proof of B true.

A true B true
A ∧B true ∧I

What may we deduce from the knowledge that A∧B is true? Because every proof
of A∧B true ultimately introduces that judgment from a pair of proofs of A true and
B true, we are justified in deducing A true and B true from any proof of A ∧B true.
This leads to the elimination rules for conjunction.

A ∧B true
A true ∧E1

A ∧B true
B true ∧E2

Internal coherence. As previously mentioned, the principle of internal coherence
says that the introduction and elimination rules fit together properly: the elimination
rules are strong enough, but not too strong.

If we mistakenly omitted the ∧E2 elimination rule, then there would be no way to
extract the proof of B true that was used in introducing A ∧B true—the elimination
rules would be too weak.

On the other hand, if we mistakenly wrote the ∧I introduction rule as

A true
A ∧B true ,

then there would be no proof of B true present to justify deducing B true with the
∧E2 rule—the elimination rules would be too strong.

3.1.2 Truth

Another familiar and simple proposition is truth, which we write as >. Its formation
rule serves as immediate evidence of the judgment > prop, that > is indeed a well-
formed proposition.

> prop >F

Once again, to give meaning to truth we must say how to introduce the judgment
that > is true. > is a trivially true proposition, and so its introduction rule makes
the judgment > true immediately evident.

> true >I
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We should also consider an elimination rule: from a proof of > true, what can we
deduce? Since > is trivially true, any such elimination rule would not increase our
knowledge—we put in no information when we introduced > true, so, by the principle
of conservation of proof, we should get no information out. For this reason, there
is no elimination rule for >, and we can see that its absence is coherent with the
introduction rule.

The nullary conjunction. An observation about > that often proves useful is that
> behaves as a nullary conjunction—a conjunction over the empty set of conjuncts,
rather than over a set of two conjuncts.

This observation is reflected in the inference rules. Just as the introduction rule
for binary conjunction has two premises (one for each of the two conjuncts), the
introduction rule for truth has no premises (one for each of the no conjuncts):

A true B true
A ∧B true ∧I > true >I

Likewise, just as there are two elimination rules for binary conjunction, there are no
elimination rules for truth:

A ∧B true
A true ∧E1

A ∧B true
B true ∧E2 (no >E rule)

3.1.3 Entailment

The last form of proposition in the negative fragment of IPL is implication. However,
to define implication, a different form of judgment is required: entailment (also known
as logical consequence or a hypothetical judgment). Entailment is written as

A1 true, . . . , An true︸ ︷︷ ︸
n≥0

` A true ,

and expresses the idea that the judgment A true follows from A1 true, . . . , An true.
You can think of A1 true, . . . , An true as being assumptions from which the conclusion
A true may be deduced. The metavariable Γ is typically used to stand for such a
context of assumptions.

We should note that, thus far, the inference rules have been presented in a local
form in which the context of assumptions was left implicit. It would also be possible
to make this context explicit. For example, the introduction rule for conjunction in
the two different forms is:

A true B true
A ∧B true ∧I Γ ` A true Γ ` B true

Γ ` A ∧B true ∧I
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In the remainder of these notes, we will write inference rules in local form whenever
possible.

As an entailment, the judgment form satisfies several structural properties: reflex-
ivity, transitivity, weakening, contraction, and permutation.

Reflexivity. If the entailment judgment is to express logical consequence, that is,
that a conclusion follows from some assumptions, then you must accept a principle of
reflexivity,

A true ` A true R
,

that an assumption is enough to conclude the same judgment. If you tried to deny
this principle, the meaning of an assumption would be unclear.

Transitivity. Dual to reflexivity is a transitivity principle that states that a proof
of a conclusion satisfies an assumption of the same judgment.

A true A true ` C true
C true T

Transitivity is a lemma rule. If you prove a lemma (A true), then you are justified in
using it to prove a theorem that explicitly depends (A true ` C true); taken together,
they are viewed as a direct proof of the theorem (C true).

Transitivity can also be thought of as proof inlining. Rather than pairing the
lemma with the theorem that depends upon it, we could inline the lemma’s proof at
every point at which the theorem refers to the lemma. The result is a truly direct
proof of the theorem.

Weakening. Reflexivity and transitivity are undeniable properties of entailment
because they give meaning to assumptions—assumptions are strong enough to prove
conclusions (reflexivity), but are only as strong as the proofs they stand for (tran-
sitivity). But there are also structural properties that can be denied: weakening,
contraction, and permutation. Logics that deny any of these properties are called
substructural logics.

The principle of weakening says that we can add assumptions to a proof without
invalidating that proof:

A true
B true ` A true W

Of course, the new proof is of a weaker statement, but it is nevertheless a valid proof.
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Denying weakening leads, in part, to relevance logic. It is called relevance logic
because the proofs may not contain the unnecessary, irrelevant assumptions that
weakening allows. In this course, we will always have the principle of weakening,
however.

Contraction. The principle of contraction says that we are unconcerned about the
number of copies of an assumption A true; one copy is as good as two:

A true, A true ` C true
A true ` C true C

Denying contraction (along with weakening) leads to linear logic, in which we
wish to reason about the number of copies of an assumption. This is a powerful way
to express consumable resources. In this course, we will always have the principle of
contraction, however.

Permutation. The principle of permutation, or exchange, says that the order of
assumptions does not matter; we can apply any permutation π to the assumptions
and still have a valid proof:

Γ ` C true
π(Γ) ` C true P

(Note that it is difficult to state the permutation principle in local rule form.)
Denying permutation (along with weakening and contraction) leads to ordered,

or noncommutative, logic. It is a powerful way to express ordered structures, like
lists or even formal grammars. In this course, we will always have the principle of
permutation, however.

3.1.4 Implication

With the entailment judgment in hand, we can give rules for implication.
Like conjunction, if A and B are well-formed propositions, then so is their

implication, which we write as A ⊃ B.
A prop B prop
A ⊃ B prop ⊃F

Once again, to give meaning to implication, we must say how to introduce the
judgment A ⊃ B true. To prove A ⊃ B true, we assume A true and prove B true.

A true ` B true
A ⊃ B true ⊃I
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In this way, implication internalizes the entailment judgment as a proposition, while
we nonetheless maintain the distinction between propositions and judgments. (As
an aside for those familiar with category theory, the relationship between entailment
and implication is analogous to the relationship between a mapping and a collection
of mappings internalized as an object in some categories.)

This introduction rule for implication is the key distinction between Gentzen-
style natural deduction calculus and a Hilbert-style axiomatic calculus. In a Hilbert
presentation of IPL, there is no separate notion of entailment, making it difficult
to reason hypothetically. Instead, one must contort proofs to make use of several
seemingly unmotivated axioms about implication.

Thankfully, we will work with natural deduction and be able to reason hypotheti-
cally using the introduction rule. But what does the elimination rule for A ⊃ B look
like? Because every proof of A ⊃ B true ultimately introduces that judgment from a
proof of the entailment A true ` B true, we might like to write the elimination rule as

A ⊃ B true
A true ` B true .

This is a valid principle of reasoning, but it turns out to be useful to instead adopt
an uncurried form as the actual elimination rule:

A ⊃ B true A true
B true ⊃E

.

This rule is sometimes referred to as modus ponens.

Internal coherence. These introduction and elimination rules are coherent. The
elimination rule is strong enough to recover the entailment that any proof of A ⊃ Btrue
ultimately uses in introduction, as the following derivation shows.

A ⊃ B true
A true ` A ⊃ B true W

A true ` A true R
A true ` B true ⊃E

On the other hand, the elimination rule is not too strong because it is just an
uncurrying of the inverted introduction rule.
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3.2 Positive fragment of IPL
3.2.1 Disjunction

As for conjunction and implication, the disjunction, A∨B, of A and B is a well-formed
proposition if both A and B are themselves well-formed propositions.

A prop B prop
A ∨B prop ∨F

A disjunction A ∨B may be introduced in either of two ways: A ∨B is true if A
is true or if B is true.

A true
A ∨B true ∨I1

B true
A ∨B true ∨I2

To devise the elimination rule, consider what may we deduce from the knowledge
that A ∨B is true. For A ∨B to be true, it must have been ultimately introduced
using one of the two introduction rules. Therefore, either A or B is true (or possibly
both). The elimination rule allows us to reason by these two cases: If C true follows
from A true and also follows from B true, then C is true in either case.

A ∨B true A true ` C true B true ` C true
C true ∨E

3.2.2 Falsehood

The unit of disjunction is falsehood, the proposition that is trivially never true, which
we write as ⊥. Its formation rule is immediate evidence that ⊥ is a well-formed
proposition.

⊥ prop ⊥F

Because ⊥ should never be true, it has no introduction rule. The elimination
rule captures ex falso quodlibet: from a proof of ⊥ true, we may deduce that any
proposition C is true because there is ultimately no way to introduce ⊥ true.

⊥ true
C true ⊥E

Once again, the rules cohere. The elimination rule is very strong, but remains
justified due to the absence of any introduction rule for falsehood.
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The nullary disjunction. We previously noted that > behaves as a nullary con-
junction. In the same way, ⊥ behaves as a nullary disjunction. For a binary disjunction,
there are two introduction rules, ∨I1 and ∨I2, one for each of the two disjuncts; for
falsehood, there are no introduction rules:

A true
A ∨B true ∨I1

B true
A ∨B true ∨I2 (no ⊥I rule)

Likewise, for a binary disjunction, there is one elimination rule with a premise for
the disjunction and one premise for each of the disjuncts; for falsehood, there is one
elimination rule with just a premise for falsehood:

A ∨B true A true ` C true B true ` C true
C true ∨E ⊥ true

C true ⊥E

4 Order-theoretic formulation of IPL
It is also possible to give an order-theoretic formulation of IPL because entailment
is a preorder (reflexive and transitive). We want A ≤ B to hold exactly when
A true ` B true. We can therefore devise the order-theoretic formulation with these
soundness and completeness goals in mind.

4.1 Conjunction as meet
The elimination rules for conjunction (along with reflexivity of entailment) ensure
that A ∧ B true ` A true and A ∧ B true ` B true. To ensure completeness of the
order-theoretic formulation, we include the rules

A ∧B ≤ A A ∧B ≤ B ,

which say that A ∧B is a lower bound of A and B.
The introduction rule for conjunction ensures that C true ` A ∧ B true if both

C true ` A true and C true ` B true. Order-theoretically, this is expressed as the rule

C ≤ A C ≤ B
C ≤ A ∧B ,

which says that A ∧ B is as large as any lower bound of A and B. Taken together
these rules show that A ∧B is the greatest lower bound, or meet, of A and B.
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Graphically, these order-theoretic rules can be represented with a commuting
product diagram, where arrows point from smaller to larger elements:

C

A ∧B

A B

4.2 Truth as greatest element
The introduction rule for > ensures that C true ` > true. Order-theoretically, we have

C ≤ > ,

which says that > is the greatest, or final, element.
In the proof-theoretic formulation of IPL, we saw that truth > is the nullary

conjunction. We should expect this analogy to hold in the order-theoretic formulation
of IPL as well, and it does—the greatest element is indeed the greatest lower bound
of the empty set.

4.3 Disjunction as join
The introduction rules for disjunction (along with reflexivity of entailment) ensure
that A true ` A ∨ B true and B true ` A ∨ B true. To ensure completeness of the
order-theoretic formulation, we include the rules

A ≤ A ∨B B ≤ A ∨B ,

which say that A ∨B is an upper bound of A and B.
The elimination rule for disjunction (along with reflexivity of entailment) ensures

that A∨B true ` C true if both Atrue ` C true and B true ` C true. Order-theoretically,
we have the corresponding rule

A ≤ C B ≤ C
A ∨B ≤ C ,

which says that A ∨B is as small as any upper bound of A and B. Taken together
these rules show that A ∨B is the least upper bound, or join, of A and B.
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Graphically, this is captured by a commuting coproduct diagram:

A B

A ∨B

C

4.4 Falsehood as least element
The elimination rule for falsehood (along with reflexivity of entailment) ensures that
⊥ true ` C true. The order-theoretic counterpart is the rule

⊥ ≤ C ,

which says that ⊥ is the least, or initial, element.
Once again, because we saw that falsehood is the nullary disjunction in the

proof-theoretic formulation, we should expect this analogy to carry over to the order-
theoretic formulation. Indeed, the least element is the least upper bound of the empty
set.

4.5 Order-theoretic IPL as lattice
As seen thus far, the order-theoretic formulation of IPL gives rise to a lattice as it
establishes a preorder with finite meets and joins. The definition of a lattice assumed
in this course may deviate from the one typically found in the literature, which
usually considers a lattice to be a partial order with finite meets and joins. In this
course, we deliberately ignore the property of antisymmetry. If we were to impose the
property of antisymmetry on the order defined by entailment, then we would need to
introduce equivalence classes of propositions, which requires associativity. As we will
see later in this course, the axiom of univalence provides an elegant way of dealing
with equivalence of propositions.

4.6 Implication as exponential
The elimination rule for implication (along with reflexivity of entailment) ensures
that A true, A ⊃ B true ` B true. For the order-theoretic formulation to be complete,

DeYoung and Balzer 2013/09/09 and 2013/09/11 13



Homotopy Type Theory

we include the rule
A ∧ (A ⊃ B) ≤ B

The introduction rule for implication ensures that C true ` A ⊃ B true if
A true, C true ` B true. Once again, so that the order-theoretic formulation is
complete, we have

A ∧ C ≤ B
C ≤ A ⊃ B ,

Taken together, these rules show that A ⊃ B is the exponential of A and B.
As we have seen previously, the order-theoretic formulation of IPL gives rise to a

lattice. Now we have just seen that it also supports exponentials. As a result, the
order-theoretic formulation of IPL gives rise to a Heyting algebra. A Heyting algebra
is a lattice with exponentials. As we will see later in this course, the notion of a
Heyting algebra is fundamental in proving completeness of IPL. The proof also relies
on the notion of a complement in a lattice. The complement A of A in a lattice is
such that
1. > ≤ A ∨ A;
2. A ∧ A ≤ ⊥.
It follows that a complement, if present, is a suitable notion of negation, but negation,
defined via the exponential, is not necessarily a complement.

References
[1] Institute for Advanced Study. Homotopy Type Theory: Univalent Founda-

tions of Mathematics. The Univalent Foundations Program, 2013. http:
//homotopytypetheory.org/book/.

[2] Robert Harper. Extensionality, intensionality, and Brouwer’s
dictum. http://existentialtype.wordpress.com/2012/08/11/
extensionality-intensionality-and-brouwers-dictum/, August 2012.

[3] Robert Harper. Constructive mathematics is not metamathe-
matics. http://existentialtype.wordpress.com/2013/07/10/
constructive-mathematics-is-not-meta-mathematics/, July 2013.

[4] Frank Pfenning. Lecture notes on harmony. http://www.cs.cmu.edu/˜fp/
courses/15317-f09/lectures/03-harmony.pdf, September 2009.

[5] Frank Pfenning. Lecture notes on natural deduction. http://www.cs.cmu.edu/
˜fp/courses/15317-f09/lectures/02-natded.pdf, August 2009.

DeYoung and Balzer 2013/09/09 and 2013/09/11 14

http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
http://existentialtype.wordpress.com/2012/08/11/extensionality-intensionality-and-brouwers-dictum/
http://existentialtype.wordpress.com/2012/08/11/extensionality-intensionality-and-brouwers-dictum/
http://existentialtype.wordpress.com/2013/07/10/constructive-mathematics-is-not-meta-mathematics/
http://existentialtype.wordpress.com/2013/07/10/constructive-mathematics-is-not-meta-mathematics/
http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/03-harmony.pdf
http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/03-harmony.pdf
http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/02-natded.pdf
http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/02-natded.pdf

	Contents
	Introduction to HoTT
	HoTT in a nutshell
	HoTT in type theory context
	ITT
	ETT
	HoTT


	IPL
	Negative fragment of IPL
	Conjunction
	Truth
	Entailment
	Implication

	Positive fragment of IPL
	Disjunction
	Falsehood


	Order-theoretic formulation of IPL
	Conjunction as meet
	Truth as greatest element
	Disjunction as join
	Falsehood as least element
	Order-theoretic IPL as lattice
	Implication as exponential


