
15-819 Homotopy Type Theory Lecture Notes

Robert Lewis and Joseph Tassarotti

October 21 and 23, 2013

1 Paths-over-Paths
Recall that last time we explored the higher groupoid structure of types, and showed
that for non-dependent maps, ap preserves this structure. Now, in the case where
we have a dependent function f : Πx : A.B, we would like to similarly state that f
maps equals to equals, so that given a path p : IdA(M,N), there is some map which
takes in p and gives a path between fM and fN . However, because f is dependent,
fM : [M/x]B and fN : [N/x]B. Although these types are related, they are not
equal, so we cannot talk about propositional equality between fM and fN .

In earlier lectures, we defined tr[x.B]p : [M/x]B → [N/x]B, often written as
p∗, which lifts the path p to a mapping between the fibers [M/x]B and [N/x]B.
Since p∗(fM) and fN share the same type, we can meaningfully talk about equality
between them. We can now define a map apdf : Πp : IdA(M,N).Id[N/x]B(p∗(fM), fN)
by

apdfp := J[m.n.z.Id[n/x]B(z∗(fm), fn)](p;m.refl[m/x]B(m))
This has the appropriate type because when the path is simply reflA(M), we have

that (reflA(M))∗ ≡ refl[M/x]B(fM). See figure 1 for a pictorial representation of this.
Now, since p−1

∗ gives a map between the fibers going the other way, we could just
as well have defined an analogous term apd′f : IdA(M,N)→ Id[M/x]B(fM, p−1

∗ (fN)).
Moreover, we have that

app−1
∗

(apdfp) : Id[M/x]B(p−1
∗ (p∗(fM)), p−1

∗ (fN))
≡ Id[M/x]B(fM, p−1

∗ (fN))

app∗(apdfp−1) : Id[N/x]B(p∗(fM)), p∗(p−1
∗ (fN)))

≡ Id[N/x]B(p∗(fM), fN)

which shows that these two theorems imply one another.

1

Homotopy Type Theory

p
M N

[M/x]B [N/x]B

f(M) p∗(f(M))
p∗

p−1
∗ (f(M)) f(N)

p−1
∗

apdfpapd′fp−1

Figure 1: Paths-over-paths

The lack of symmetry in the types of apdf and apd′f is somewhat awkward when
developing machine checked proofs. It’s more convenient to define a symmetric
notation, f(M) =x.B

p f(N) :≡ Id[N/x]B(p∗(fM), fN), which we read as “f(M) and
f(N) are correlated by p” . This corresponds to the type of paths over the path p.
Using this notation, we can prove theorems about this type like:

symcorr : Q =x.B
p R → R =x.B

p−1 Q

transcorr : Q =x.B
p R → R =x.B

q S → Q =x.B
p � q S

Lewis and Tassarotti 2013/10/21 and 2013/10/23 2

Homotopy Type Theory

2 Equivalence of Types

2.1 Motivation
We start by informally recalling some notions of equivalence that are commonly used
in mathematics:
1. Biconditional propositions: Given two propositions p and q such that p ⊃ q and
q ⊃ p, we might wish to say that p = q, because these two propositions are logically
equivalent. In classical logic, this makes sense, because p and q are both either
equal to true or equal false. To quote Whitehead and Russell [3, p.115]:

When each of two propositions implies the other, we say that the
two are equivalent, which we write “p ≡ q” . . . It is obvious that two
propositions are equivalent when, and only when, both are true or both
are false. . .

We shall give the name of a truth-function to a function f(p) whose
argument is a proposition, and whose truth-value depends only upon
the truth-value of its argument. All the functions of a proposition with
which we shall be specially concerned will be truth-functions, i.e. we
shall have

p ≡ q . ⊃ .f(p) ≡ f(q).

This means that for Whitehead and Russell, if p and q are logically equivalent,
then they are indiscernible. However, in the proof relevant setting of type theory,
this is not the case, because these types classify particular pieces of data. Although
terms of the type f : p→ q and g : q → p give us ways to interconvert proofs of p
and q, a proof of p is not by itself a proof of q. Moreover, it need not even be the
case that f and g are inverses of each other.

2. Isomorphic sets: In set theory, we say that two sets A and B are isomorphic if
there is a bijection between them. That is, there are functions f : A → B and
g : B → A such that g(f(a)) = a and f(g(b)) = b. In many contexts, it is not
relevant for us to distinguish between isomorphic sets. However, in ZF set theory,
just because two sets are isomorphic does not mean they are indiscernible, so we
cannot regard them as equal.
This is a larger symptom of the fact that although ZF set theory lets us encode
the structures of mathematics, it does not support abstraction. Propositions like
0 ∈ 1 are perfectly well-formed, and are even true for most encodings of the
natural numbers as sets. As de Bruijn points out [1], these artifacts of a particular

Lewis and Tassarotti 2013/10/21 and 2013/10/23 3

Homotopy Type Theory

encoding contradict the way we conceptually think of mathematics1:
In our mathematical culture we have learned to keep things apart.

If we have a rational number and a set of points in the Euclidean plane,
we cannot even imagine what it means to form the intersection. The
idea that both might have been coded in ZF with a coding so crazy that
the intersection is not empty seems to be ridiculous. . .

A very clear case of thinking in terms of types can be found in
Hilbert’s axiomatization of geometry. He started by saying that he
assumes there are certain things which will be called points and certain
things to be called lines. Nothing is said about the nature of these
things.

Type theory rules out statements like 0 ∈ 1 as ill-formed. As we shall see, this same
facility for abstraction allows us to give a more suitable treatment of equivalence.
Now, we turn to the question of equivalences of types. Applying our näıve intuition

of regarding types as sets, we might say that types are isomorphic precisely when
there is a bijection between them. In ITT, this will work for types corresponding to
first order data, but we encounter problems when considering functions.

More precisely, to show that A→ B is isomorphic to C → D, we need to construct
functions F : (A → B) → (C → D) and G : (C → D) → (A → B) such that for
all f : A → B and g : C → D, G(F (f)) = f and F (G(g)) = g. In a set-theoretic
setting, it would suffice to show that for all x ∈ A, G(F (f))(x) = f(x), and similarly
for F ◦G. However, in ITT we lack function extensionality, this is not enough. We
need to show that G ◦ F maps f precisely back to itself. One might try to resolve
this by quotienting by extensionality or adding in an axiom of extensionality.

However, the problem becomes even more difficult when considering universes.
We would need to show that for each type A in the universe, G(F (A)) = A. Just
as with functions, where we were really interested in showing that G ◦ F mapped a
function to something that was extensionally equivalent, here we want G(F (A)) to
itself be isomorphic to A not equal.

2.2 Homotopy Equivalence
We now introduce the notion the notion of a homotopy. Given two functions f, g :
A → B, a homotopy from f to g is a term with type Πx : A.IdB(fx, gx). We

1A portion of this passage is quoted in [2], which contains an interesting discussion about some
advantages and disadvantages of types and sets.

Lewis and Tassarotti 2013/10/21 and 2013/10/23 4

Homotopy Type Theory

introduce the notation f ∼A→B g for the type of homotopies from f to g. If this type
is inhabited, we say that f is “homotopic to” g.

Now, given H : f ∼A→B, we have that for all x : A, fx =B gx. But in fact there
is something more going on: H is dependently functorial in x : A. That is, H respects
paths between inhabitants in A and B. This property is also called naturality; we
can say that H is a sort of polymorphism in x : A. This means that the following
diagram commutes:

f(a) g(a)

f(a′) g(a′)

H(a)

apf (p)

H(a′)

apg(p)

2.3 Basic Properties of Equivalence
For a function f : A→ B, we define an equivalence between A and B, by

isequiv(f) :≡ (Σg : B → A.f ◦ g ∼ idB)× (Σh : B → A.h ◦ f ∼ idA).

The proposition expressing that two types A and B are equivalent, written A ' B
b, is

A ' B :≡ Σf : A→ B.isequiv(f).
Since we are in a proof-relevant setting, the information that A ' B consists of

five things:
• A function f : A→ B
• A function g : B → A
• A proof α : Πy : B.f(g(y)) =B y
• A function h : B → A
• A proof β : Πx : A.h(f(x)) =A x

To prove that A ' B, we need to provide all of these as evidence, and from
evidence that A ' B, we can extract all of these.

We will also be interested in the notion of a quasi-inverse:

qinv(f) :≡ Σg : B → A.(f ◦ g ∼ idB × g ◦ f ∼ idA).

As one might hope, the notions of equivalence and quasi-inverse are very closely
related. One can prove the following properties:

Lewis and Tassarotti 2013/10/21 and 2013/10/23 5

Homotopy Type Theory

1. For every f : A→ B, there is a function qinv(f)→ isequiv(f).
2. For every f : A→ B, there is a function isequiv(f)→ qinv(f).

This means that the two notions are logically equivalent: a function is an equiva-
lence if and only if it has a quasi-inverse. In addition, we can show that isequiv(f)
expresses an HPROP: that is, up to higher homotopy, there is only one proof of this
fact. This will become important later.

2.4 Function extensionality
The axiom of function extensionality allows us to show that the (f =A→B g) '
(f ∼A→b g). Even without the axiom, we can define the map

happly : f =A→B g → f ∼A→B g

Now, the axiom says that the above map is an equivalence: if we have a proof
of f ∼A→B g, we may assume that we have a proof of f =A→B g. This is not
necessarily provable without the axiom. For example, in the natural number type,
λx.0 + x ∼N→N λx.x, but since addition was defined inductively on the second
argument, we cannot find a path between them.

2.5 Exercises
The following propositions are left as exercises, with the first one begun for explanatory
purposes:
1. Show that idA : A→ A is an equivalence.

To do this, we need four pieces of information:
(a) g : A→ A. Take this to be idA.
(b) A proof α : Πy : A.idA(g(y)) =A y.
(c) h : A→ A. Again, take this to be idA.
(d) A proof β : Πx : A.h(idA(x)) =A x.

2. If f : A → B is an equivalence, then there is f−1 : B → A (given by the
quasi-inverse of f) that is also an equivalence.

3. If f : A→ B and g : B → C are equivalences, then so is g ◦ f : A→ C.

3 Structure of Paths in Types
We want to examine the paths inside certain types. For the negative types, this will
be relatively simple. For the positive types, it will be much harder. There are many
outstanding open problems within the positive types.

Lewis and Tassarotti 2013/10/21 and 2013/10/23 6

Homotopy Type Theory

3.1 Product Types
We start by examining the paths in IdA×B(,).

There is a function f such that

f : IdA×B(x, y)→ (IdA(π1x, π1y)× IdB(π2x, π2y)).

Specifically,

f :≡ λp.〈apπ1(p), apπ2(p)〉
Roughly speaking, if x =A×B y, then π1x =A π1y and π2x =B π2y.

Proposition. f is an equivalence: IdA×B(x, y) ' IdA(π1x, π1y)× IdB(π2x, π2y).

Proof. As noted in Section 2, it suffices to produce a quasi-inverse for f . We need to
construct three objects:
1. g : (IdA(π1x, π1y)× IdB(π2x, π2y))→ IdA×B(x, y)
2. α : g(f(p)) =IdA×B(x,y) p
3. β : f(g(q)) =IdA(π1x,π1y)×IdB(π2x,π2y) q
We construct these as follows:
1. We define two auxiliary functions

pair :≡ λxλy〈x, y〉 : A→ B → A×B

and
ap2f : Id(x, x′)→ Id(y, y′)→ Id(fxy, fx′y′)

Using these, we can then define

g :≡ λ〈p, q〉.ap2pairpq

.
2. To define α, it suffices (by FUNEXT) to show:
• η : Πp(ap2pair(apπ1(p), apπ2(p)) = p)
• β1 : ΠpΠq(apπ1(ap2pairpq) = p)
• β2 : ΠpΠq(apπ2(ap2pairpq) = q)
By path induction, we need to find R such that

x : A×B ` R : (ap2pair(apπ1(refl(x)), apπ2(refl(x)))) = refl(x)

Then,
η :≡ J [](p;x.R).

Lewis and Tassarotti 2013/10/21 and 2013/10/23 7

Homotopy Type Theory

By our earlier definition of ap2, we have that

apπ1(refl(x)) ≡ refl(π1(x))
apπ2(refl(x)) ≡ refl(π2(x)), and from these,

ap2pair(refl(π1(x)))(refl(π2(x))) ≡ refl〈π1(x), π2(x)〉
≡ refl(x)

3. The constructions of β1 and β2 are similar and left as exercises.

3.2 Coproduct Types
Similarly, we can look into IdA+B(x, y). Intuitively speaking, we would like to say
that any path in the space A + B is either a path in A or a path in B; we would
never expect to have a path (equation) between an inl(a) and an inl(b).

We would like to prove the following facts:

IdA+B(inl(a), inl(a′)) ' IdA(a, a′)
IdA+B(inr(b), inr(b′)) ' IdB(b, b′)
IdA+B(inl(a), inr(b)) ' 0
IdA+B(inr(a), inl(b)) ' 0

Proving this requires a bit of a trick.
Suppose we wanted to prove the first equivalence alone. The right-to-left direction

is simple. For the left-to-right direction, we need to exhibit

p : IdA+B(inl(a), inl(a′)) ` R : IdA(a, a′).

R must be a path induction on p, of the form R = J [C](p,) for some motive
C. The conclusion of this path induction will be of the form C(inl(a), inl(a′), p). But
what we need is IdA(a, a′) (note the lack of inl). One might try to define something
like D(u, v) = IdA(outl(u), outl(v)), but this cannot exist, since outl cannot be a total
function.

2 This is a striking example of anti-modularity. One has no reason to expect that this equality
should hold definitionally; it depends essentially on how ap was defined, not just on its type. It
would be nice to avoid this kind of code-on-code dependency, since “the proof should not have to
know about the computation.”

Lewis and Tassarotti 2013/10/21 and 2013/10/23 8

Homotopy Type Theory

This approach, then, will not work. Instead, we must take a different approach.
We will find a motive F : (A+B)× (A+B)→ U such that:

F (inl(a), inl(a′)) ≡ IdA(a, a′)
F (inr(a), inr(a′)) ≡ IdB(b, b′)
F (inl(a), inr(b)) ≡ 0
F (inr(a), inl(b)) ≡ 0

Such an F expresses all of the desired properties of the coproduct.
Exercise. Define such an F by “double induction.”

The following lemma expresses the subgoal of our path induction with motive F :
Lemma. x : A+B ` : F (x, x).
Proof. Our proof of this will be a case statement:

case[z.F (z, z)](x;m : A.reflA(m), n : B.reflB(n)) : F (x, x)

Note that reflA(m) : [inl(m)/z]F (z, z), since

IdA+B(m,n) ≡ F (inl(m), inl(m)) ≡ [inl(m)/z]F (z, z).

To complete the proof, we must define something of the type

Πx : A+BΠx′ : A+B(IdA+B(x, y)→ F (x, x′)).

This is our task for next time!

References
[1] N. G. de Bruijn. On the roles of types in mathematics. In Philippe de Groote,

editor, The Curry-Howard Isomorphism, volume 8 of Cahiers du Centre de Logique.
Academia, 1995.

[2] Leslie Lamport and Lawrence C. Paulson. Should your specification language be
typed. ACM Trans. Program. Lang. Syst., 21(3):502–526, 1999.

[3] Alfred North Whitehead and Bertrand Russell. Principia Mathematica, volume 1.
Cambridge University Press, 1963. Reprint of the 1927 second edition. Accessed
at https://archive.org/details/PrincipiaMathematicaVolumeI.

Lewis and Tassarotti 2013/10/21 and 2013/10/23 9

https://archive.org/details/PrincipiaMathematicaVolumeI

	Paths-over-Paths
	Equivalence of Types
	Motivation
	Homotopy Equivalence
	Basic Properties of Equivalence
	Function extensionality
	Exercises

	Structure of Paths in Types
	Product Types
	Coproduct Types

