
15-819 Homotopy Type Theory Lecture Notes

Joseph Lee and Kristina Sojakova

October 28 and 30, 2013

1 The Path Spaces of Coproducts
Recall from last week that we intend to characterize paths in coproducts by showing∏

x:A+B

∏
x′:A+B

IdA+B(x, x′) ' F (x, x′)

where F : (A+B)→ (A+B)→ U is defined by nested case-analysis so that
F (inl(a), inl(a′)) ≡ IdA(a, a′)
F (inr(a), inr(a′)) ≡ IdB(b, b′)
F (inl(a), inr(b)) ≡ 0
F (inr(a), inl(b)) ≡ 0

To this end we define a function f : ∏x:A+B
∏
x′:A+B IdA+B(x, x′)→ F (x, x′) by

f := λx.λx′.λp. J[F](p; z. case(z; a.reflA(a); b.reflB(b)))
Next we need to define a function g : ∏x:A+B

∏
x′:A+B F (x, x′) → IdA+B(x, x′) such

that g(x, x′) is a quasi-inverse of f(x, x′). We put
g := λx.λx′. case(x;a. case(x′; a′.λz : F (inl(a), inl(a′)).apinl(z); b′.λz : F (inl(a), inr(b′)).abort(z));

b. case(x′; a′.λz : F (inr(b), inl(a′)).abort(z); b′.λz : F (inr(b), inr(b′)).apinr(z)))

We then have to exhibit terms
α :

∏
x:A+B

∏
x′:A+B

∏
u:F (x,x′)

f(g(u)) =F (x,x′) u

β :
∏

x:A+B

∏
x′:A+B

∏
v:IdA+B(x,x′)

g(f(v)) =IdA+B(x,x′) v

These terms are left as homework exercises.
Exercise. Characterize the path space of the empty type 0.

1

Homotopy Type Theory

2 The Path Spaces of Identity Types
For a given type A, we would like to characterize the types IdA(,), IdIdA(,)(,),
IdIdIdA(,)(,)(,), and so on. While this is possible for certain specific types such as
0,1, A × B,A → B,A + B and Nat, it can be very difficult for other types, even
seemingly simple ones. For example, determining the loop-spaces of n-spheres - i.e.,
path spaces based at a single point, denoted by Ω(Sn) - is a famous open problem in
algebraic topology.

What we can say, however, is that if two types are equivalent then so are their
path spaces:

Lemma. If f : A→ B is an equivalence, then so is apf : IdA(a, a′)→ IdB(f(a), f(a′)).

Proof. Because f is an equivalence, it has a quasi-inverse f−1 : B → A and we have
the following coherences:
• α : ∏a:A f

−1(f(a)) =A a
• β : ∏b:B f(f−1(b) =B b

In order to show that apf is an equivalence, it suffices to give a quasi-inverse
ap−1

f : IdB(f(a), f(a′))→ IdA(a, a′), which we define by

ap−1
f (q) := α(a)−1 · apf−1(q) · α(a′)

We now need to construct coherences

γ :
∏

p:IdA(a,a′)
ap−1

f (apf (p)) =IdA(a,a′) p

δ :
∏

q:IdB(f(a),f(a′))
apf (ap−1

f (q)) =IdB(f(a),f(a′)) q

This will imply that ap−1
f is indeed a quasi-inverse of apf and thus both are equivalences

We leave these as exercises.

Exercise. Define the coherence γ in the above proof by path induction.

Exercise. Define the coherence δ in the above proof as follows:
1. Use the naturality of β to show that

β(f(a))−1 · apf (apf−1(q)) · β(f(a′)) =IdB(f(a),f(a′)) q

2. Use the naturality of α to show that

α(f−1(f(a)))−1·apf−1(apf (apf−1(q)))·α(f−1(f(a′))) =IdA(f−1(f(a)),f−1(f(a′))) apf−1(q)

Lee and Sojakova 2013/10/28 and 2013/10/30 2

Homotopy Type Theory

3. Use the naturality of α to show that

α(f−1(f(a))) =IdA((f−1(f(f−1(f(a))))),f−1(f(a))) apf−1(apf (α(a)))

and similarly for a′.
4. Use 1), 2), 3) and the naturality of β to obtain the desired conclusion

apf (α(a)−1 · apf−1(q) · α(a′)) =IdB(f(a),f(a′)) q

3 Transport Properties of Identity
The identity type family on a type A can be thought of as a function IdA(,) : A→
A→ U . Keeping the first argument x : A fixed yields a type family IdA(x,) : A→ U .
For any path q : y =A y

′, the fibers IdA(x, y) and IdA(x, y′) are related by the transport
function

tr[z.IdA(x, z)](q) : IdA(x, y)→ IdA(x, y′)
Can we give an explicit description of this function? Clearly we can construct a
function of the desired type ”manually” by taking a p : x = Ay and concatenating it
with q to obtain p · q : x =A y

′. Fortunately, it turns out this is precisely characterizes
the behavior of the transport function, up to a propositional equality:

Lemma. For any term x : A, and paths q : y =A y
′, p : x =A y we have

tr[z.IdA(x, z)](q)(p) =IdA(x,y′) p · q

We have a similar characterization of transport in the case when the second
argument is fixed:

Lemma. For any term y : A, and paths q : x =A x
′, p : x =A y we have

tr[z.IdA(z, y)](q)(p) =IdA(x′,y) q
−1 · p

We notice that in the first case, we use the path q as-is whereas in the second
case we first have to invert it. This can be described in category-theoretic terms as
saying that the type family IdA is covariant in the second argument and contravariant
in the first.

Finally, we can consider the case of loops when the base point is allowed to vary:

Lemma. For any paths q : x =A y, p : x =A x we have

tr[z.IdA(z, z)](q)(p) =IdA(y,y) q
−1 · p · q

All these lemmas follow by straightforward path induction.

Lee and Sojakova 2013/10/28 and 2013/10/30 3

Homotopy Type Theory

4 Justifying the Identity-Elimination Rule
Recall the identity elimination rule:

Γ ` P : IdA(M,N) Γ, x:A, y:A, z:IdA(x, y) ` C type Γ, x:A ` Q : [x, x, reflA(x)/x, y, z]C
Γ ` J[x.y.z.C](P, x.Q) : [M,N,P/x, y, z]C Id-E

In Extensional Type Theory (ETT), this rule is a consequence of the identity
reflection and UIP rules and thus has no special status.

In Intensional Type Theory (ITT), this rule can be understood as an induction
principle: since the only way we can construct a proof of equality P : M =A N is
by reflexivity in the case when M ≡ N , in order to prove C[M,N,P] it is sufficient
to prove C[x, x, reflA(x)] for an arbitrary x : A. This intuition is justified by the
following very important (and highly nontrivial) theorem:

Theorem 1. In an empty context, two terms are propositionally equal if and only if
they are definitionally equal and any identity proof is necessarily a reflexivity. In other
words, if ` P : IdA(M,N), then `M ≡ N : A and ` P ≡ reflA(M,M) : IdA(M,N).

In HoTT, it is no longer the case that every proof of equality is a reflexivity. For
example, we have the following non-trivial identity proofs:
• funext(H) : f =A→B g, where H : ∏a:A f(a) =B g(a)
• ua(E) : A =U B, where E : ∑f :A→B isequiv(f)
• seq : 0 =I 1, where I is the interval type
• loop : b =S1 b, where S1 is the circle type

This suggests that in HoTT, terms of an identity type should not be thought
of purely as proofs of identity but rather as paths between terms. Since there can
be potentially many distinct paths between two terms, the identity elimination rule
should no longer be thought of as an induction principle.

The presence of nontrivial paths, however, poses a serious problem with the
computational interpretation of HoTT: for example, what should J[](funext(H);x.Q),
J[](ua(E)), or J[](seq) compute to?

Even leaving aside univalence and higher inductive types, the addition of the
function extensionality axiom to ITT poses a problem with computation. In ETT, we
get function extensionality for free from the identity reflection rule. In Observational
Type Theory (OTT), which combines intensional and extensional aspects, we get
function extensionality with some special arrangements. Both ETT and OTT admit
a computational interpretation, albeit by different means.

The computational interpretation of HoTT is currently a principal open problem.
So how do we justify the J-rule as a suitable identity elimination rule? Given

Lee and Sojakova 2013/10/28 and 2013/10/30 4

Homotopy Type Theory

• C : ∏x:A
∏
y : A, IdAxy → U

• M,N : A and P : M =A N
• x : A ` Q : C[x, x, reflA(x)]
why should there exist a term J[x.y.z.C](P ;x.Q) : C[M,N,P]?

Plugging M into Q, we obtain a term Q[M] : C[M,M, reflA(M)]. Similarly,
plugging M into C yields a type family C[M] : ∏y:A(p : M =A y)→ U , which can be
equivalently understood as the function

λz.C[M,π1(z), π2(z)] :
(∑
y:A

IdA(M, y)
)
→ U

Since functions are supposed to be functorial, constructing a path γ from (M, reflA(M))
to (N,P) in the type ∑y:A IdA(M, y) would give us a term

apλz.C[M,π1(z),π2(z)](γ) : C[M,M, reflA(M)] =U C[M,N,P]

We could thus obtain our desired conclusion of the J-rule as

tr[x : U .x](apλz.C[M,π1(z),π2(z)](γ))(Q[M]) : C[M,N,P]

In order to construct a path γ : (M, reflA(M)) =∑
y:A IdA(M,y) (N,P), we need a charac-

terization of path spaces of Σ-types, outlined in the following exercise:

Exercise. Characterize the path space of the type Σx:AB by constructing a term of
type ∏

p,p′:
∑

x:A B(x)

(
Id∑

x:A B(x)(p, p
′) '

∑
q:π1(p)=Aπ1(p′)

π2(p) =x.B
q π2(p′)

)

The above exercise tells us that in order to construct a path from (M, reflA(M))
to (N,P) in the type ∑y:AM =A y, it is sufficient to construct an element of the type∑
q:M=AN reflA(M) =y.M=Ay

q P . The natural choice for the first component of the pair
is the path P : M =A N itself. It thus remains to show that reflA(M) =y.M=Ay

P P . In
particular, this means showing that

tr[y.M =A y](P)(reflA(M)) =IdA(M,N) P

By the first lemma in Section. 3, we have tr[y.M =A y](P)(reflA(M)) =IdA(M,N)
reflA(M) · P . Since the left-hand evaluates to P , we are done.

Lee and Sojakova 2013/10/28 and 2013/10/30 5

Homotopy Type Theory

5 Introduction to Homotopy Types
One way to see HoTT is that Homotopy Type Theory is Homotopy Type Theory.
That is, HoTT can be thought of as the theory of homotopy types. We have already
encountered several examples of the homotopy type set, also sometimes called an
h-set or a 0-type; however, we have not explicitly labeled them as such. We have the
following definition:

Definition. A type A is called a set (or a 0-type), if for all x, y : A and p, q : x =A y,
we have that p =IdA(x,y) q. In other words, the following type is inhabited:

isSet(A) :≡
∏
x,y:A

∏
p,q:IdA(x,y)

p =IdA(x,y) q

Intuitively, the type A can be viewed as ”discrete up to homotopy”. The familiar
example of the type Nat of natural numbers (unsurisingly) turns out to be a set.
More about this and other Homotopy Types next week!

Lee and Sojakova 2013/10/28 and 2013/10/30 6

	The Path Spaces of Coproducts
	The Path Spaces of Identity Types
	Transport Properties of Identity
	Justifying the Identity-Elimination Rule
	Introduction to Homotopy Types

