
15-819 Homotopy Type Theory

Lecture Notes

Evan Cavallo and Chris Martens

November 4 and 6, 2013

1 Contents

These notes cover Robert Harper’s lectures on Homotopy Type Theory from
November 4 and 6, 2013. Discussions include the interval type and classical
homotopy theory, classification of sertain types as sets, proof irrelevance,
and the embedding of classical into constructive logic.

2 The Interval

Definition

Homotopy type theory takes full advantage of the latent ∞-groupoid struc-
ture of ITT’s identity types by adding new paths. One way we add paths is
via the univalence axiom, which introduces new paths between types. We
can also directly postulate the existence of types with higher path structure.
We will eventually develop a general theory of these higher inductive types.
For the moment, we consider a simple example, the interval type.

0I 1I
seg

The interval I is defined inductively with two traditional constructors,
0I and 1I . We think of these as two endpoints of an continuum of points,
analogous to the interval [0, 1] of classical analysis. With these points alone,
the interval is no different from the type 2. In order to complete the defini-
tion, we also define a path seg which connects the two endpoints. We thus
have the following introduction rules:

1

Homotopy Type Theory

Γ ` 0I : I
I-I-0

Γ ` 1I : I
I-I-1

Γ ` seg : IdI(0I , 1I)
I-I-seg

In order to find the correct elimination rule for this type, we ask the
same question we asked in defining the coproduct: how do we map out of
this type? For any type A, what is the form of a map f : Πz:I.A? For the
sake of simplicity, let’s first consider how to define a map f : I → A. We
expect the recursor to have the form

Γ `M : A Γ ` N : A ?

Γ, x : I ` recI [.A](x;M ;N ; ?) : A

with computation rules

recI [.A](0I ;M ;N ; ?) ≡ M

recI [.A](1I ;M ;N ; ?) ≡ N

So far, this is just the recursor for 2. To see what additional information we
need, notice that for any map f : I → A we have apf (seg) : IdA(f(0I), f(1I))
– the values f(0I) and f(1I) have to be related in some way. In other
words, we need to specify the way that f acts on the path seg. The full
(nondependent) recursor therefore has the form

Γ `M : A Γ ` N : A Γ ` P : IdA(M,N)

Γ, x : I ` recI [.A](x;M ;N ;P) : A

with the computation rules

recI [.A](0I ;M ;N ;P) ≡ M

recI [.A](1I ;M ;N ;P) ≡ N

aprecI [.A](1I ;M ;N ;P)(seg) ≡ P

For a dependent function f : Πz:I.A, the values f(0I) and f(1I) may have
different types. Here, we have apdf (seg) : 0I =z.A

seg 1I , so the dependent
eliminator has the form

Γ `M : A Γ ` N : A Γ ` P : 0I =z.A
seg 1I

Γ, x : I ` recI [z.A](x;M ;N ;P) : A[x/z]

Martens and Cavallo 2013/11/04 and 2013/11/06 2

Homotopy Type Theory

with the computation rules

recI [z.A](0I ;M ;N ;P) ≡ M

recI [z.A](1I ;M ;N ;P) ≡ N

apdrecI [z.A](1I ;M ;N ;P)(seg) ≡ P

One question we should ask ourselves is whether this last computation
rule should be definitional. Postulating a definitional equality involving
an internally-defined function, apd, is highly unnatural. On the other hand,
adding new propositional ruins the computational interpretation of the the-
ory. At this point, we have no satisfactory answer to this question. We will
use definitional equality; the HoTT book uses propositional equality. The
formal developments in Coq and Agda both use propositional equality, but
this is largely an artifact of technical restrictions: it is impossible to add
axioms for definitional equalities in these languages.

Describing Paths With the Interval

In classical homotopy theory, paths in a space A are defined as continuous
mappings f : I → A where I is the interval [0, 1]. f(0) is the left endpoint of
the path, f(1) the right endpoint, and the function gives a way of traveling
continuously from one endpoint to the other. In homotopy type theory,
paths are a primitive notion, but we can show that the classical definition
is equivalent. For any type A, the path space Σx:A.Σy:A.IdA(x, y) is equal
to I → A, as shown by the following equivalence:

f : (Σx:A.Σy:A.IdA(x, y))→ (I → A)

f 〈x, 〈y, p〉〉 :≡ λz.recI [.A](z;x; y; p)

g : (I → A)→ (Σx:A.Σy:A.IdA(x, y))

g h :≡ 〈h(0I), 〈h(1I), aph(seg)〉〉

α : Πs:(Σx:A.Σy:A.IdA(x, y)). g(f(s)) = s

α s :≡ reflΣx:A.Σy:A.IdA(x,y)(s)

β : Πh:(I → A). f(g(h)) = h

β h :≡ funext(λx:I.rec[z.f(g(h))(x) = h(x)](x; reflA(h(0I)); reflA(h(1I));

reflIdA(h(0I),h(1I))(aph(seg))))

Martens and Cavallo 2013/11/04 and 2013/11/06 3

Homotopy Type Theory

Intuitively, the interval has the shape of a single path, so the image of a
function f : I → A is a path in A.

Funext from the Interval

Interestingly, we can prove function extensionality in ITT if we assume the
presence of the interval type. Let f, g : A→ B be two functions and assume
h : Πx:A.IdB(f(x), g(x)); we want to show IdA→B(f, g). To do this, we’ll
define a function k : I → (A → B). In order to do that, we’ll first want
another function k̃ : A→ (I → B). This function is defined for every x : A
by induction on I:

k̃(x)(0I) :≡ f(x)

k̃(x)(1I) :≡ g(x)

apk̃(x)(seg) :≡ h(x)

The function k is then defined by k(t)(x) :≡ k̃(x)(t). Observe that k(0I) ≡ f
and k(1I) ≡ g. Hence, apk(seg) : IdA→B(f, g).

3 ITT is a theory of sets

Without univalence or higher inductive types, we have no way to construct-
ing paths other than reflexivity. For this reason, we would expect that the
types of ITT are homotopically discrete – they have no higher path structure.
Recall the definition of isSet:

isSet(A) :≡
∏
x,y:A

∏
p,q:IdA(x,y)

p =IdA(x,y) q

We will be able to show that most of the basic types in ITT are sets, and
that most of the type constructors preserve the property of being a set.
Depending on how we define the universe U , it may or may not be possible
to prove U is a set. To prove Π preserves sethood, we will need function
extensionality, which is not present in pure ITT. However, it is certianly
consistent with pure ITT that all types are sets. In HoTT, on the other
hand, we will be able to find types which are provably not sets.

Basic constructs

• 1: By a homework exercise, we know that Id1(x, y) ' 1, so for any x, y : 1
we have a map f : Id1(x, y) → 1 which is an equivalence. Let x, y : 1

Martens and Cavallo 2013/11/04 and 2013/11/06 4

Homotopy Type Theory

and p, q : Id1(x, y) be given. We know that f(p) =1 〈〉 and f(q) =1 〈〉,
so f(p) =1 f(q). Then f−1(f(p)) =Id1(x,y) f

−1(f(q)) by apf−1 , and the
properties of inverses give us that p =Id1(x,y) q.
• 0: Given x, y : 0 and p, q : Id0(x, y), we can simply abort with x to prove

that p =Id0(x,y) q.
• Π: We assume function extensionality. To prove that Πx:A.Bx is a set,

we only need to know that Bx is a set for every x:A. Assume this is
true, and let f, g : Πx:A.B. We want to show any two p, q : IdΠx:A.B(f, g)
are equal. By function extensionality, the type IdΠx:A.B(f, g) is equivalent
to Πx:A.IdBx(f(x), g(x)), so it suffices to prove any homotopies h, k :
Πx:A.IdBx(f(x), g(x)) are equal. Applying function extensionality again,
it is enough to show h(x) =IdBx (f(x),g(x)) k(x) for every x:A. This follows
from our assumption that Bx is a set.
• Σ: Analogously with the product type A×B, it is possible to show that

IdΣx:A.Bx(a, b) ' Σp : (fst a = fst b). (snd a =x.Bx
p snd b). Thus, a path

in Σx:A.Bx is decomposable into a path in A and a path in Bx for some
x; if A and Bx are sets, all such paths will be equal, so we can show that
all paths in Σx:A.Bx are equal.
• +: To prove that A + B is a set, we need to assume A and B are sets.

Given x, y : A+B, we want to show that any two elements of IdA+B(x, y)
are equal. We can do this by a case analysis on x and y. If x ≡ inl(a) and
y ≡ inl(a′), then IdA+B(x, y) ' IdA(a, a′), so our theorem follows from the
fact that A is a set. The case that x ≡ inr(b) and y ≡ inr(b′) is symmetric.
If x ≡ inl(a) and y ≡ inr(b) (or in the reverse case), then the space of
paths from x and y is empty, so of course any two paths are equal.
• Nat: We will later discuss Hedberg’s theorem, which shows that any type

with decidable equality is a set. We leave it as an exercise for the reader
to show that Nat has decidable equality.

The universe

We did not go into much detail with demonstrating that the universe is a
set, but the gist of it is that we can show it by giving “codes,” or abstract
syntax trees, for every type in the universe such that they map onto the
natural numbers. For example, for base types like Nat we just give a termi-
nal code ˙Nat and for the complex types we can concatenate (the inductive
codification of) their codes. Then we give an interpretation function to say
the appropriate thing, like T (˙Nat) = Nat and T (a→̇b) = T (ȧ)→ T ((̇b).

Martens and Cavallo 2013/11/04 and 2013/11/06 5

Homotopy Type Theory

Identity types

We can show that IdA(x, y) is a set if A is a set.
Assumption: A is a set, i.e. there is a term H s.t.

H : Πx, y:A.Πp, q:IdA(x, y).IdIdA(x,y)(p, q)

For the sake of making deeply-nested subscripts on identity types more
readable, let’s introduce a few definitions:

idA(x, y) := IdA(x, y)

ididA(x, y, r, s) := IdidA(x,y)(r, s)

idididA(x, y, r, s, α, β) := IdididA(x,y,r,s)(α, β)

We need to show that for any x, y, IdA(x, y) is a set, i.e. construct a
proof term of type

Πr, s: idA(x, y).Πα, β: ididA(x, y, r, s). idididA(α, β)

Assume:

u, v : A

r, s : idA(u, v)

α, β : ididA(u, v, r, s)

Need to construct a term of type idididA(u, v, r, s, α, β).
First, specialize H to H ′(q) : H(u, v, r, q).
We exploit the functoriality of H ′ to get

apdH′ : Πq, q′:IdA(u, v).Πγ:Id−(q, q′).Id−(γ∗(H
′(q)), H ′(q′))

apdH′(r, s, α) : Id−(α∗(H
′(r)), H ′(s))

apdH′(r, s, β) : Id−(β∗(H
′(r)), H ′(s))

By symmetry and transitivity of identity, we can form a term of type

Id−(α∗(H
′(r)), β∗(H

′(r)))

and so we can get transport in the identity

Id−(H ′(r) · α,H ′(r) · β)

Martens and Cavallo 2013/11/04 and 2013/11/06 6

Homotopy Type Theory

Because the groupid structure tells us we get a cancellation property (?),
this means α = β.

It is left as an exercise to the reader to construct this term in formal
notation.

4 ITT + UA is not a set theory

In other words, in homotopy type theory, not all types are sets. In particular,
U is a proper groupoid. There are nontrivial paths between the elements of
U .

As an example, we can demonstrate two distinct paths between the
booleans 2, one which is based on the identity mapping id taking tt to
tt and ff to ff. The other is based on not, taking tt to ff and ff to tt.

not and id are two functions from 2 to 2, and we can show them equivalent
(exercise). Denote with ua the half of UA that takes us from equivalences
to paths. Then ua(id) and ua(not) are two paths from 2 to 2.

We can now refute that these paths are identifiable, i.e. realize

Πx:2.Id2(ua(id)(x), ua(not)(x))→ 0

refl2(tt) : tt =2 tt by identity introduction, and by the assumed identity
between id and not, we can transport to get a proof that tt =2 ff. This
can be refuted via the path characterization of sum types seen in a previous
lecture, yielding 0.

5 n-types

To foreshadow what’s to come: we will eventually consider isSet(A) a special
case of the more general is-n -type(A), specifically

isSet(A) becomes is- 0 -type(A)
isGpd(A) becomes is- 1 -type(A)
is2Gpd(A) becomes is- 2 -type(A)

...
...

The types A for which is-n -type(A) holds will be called the n-types.
Roughly, it means that “up a level” we have a set (the identities between
identities between ... (n times) become identified).

But before we start climbing the ladder upward, let’s go the opposite
direction and consider (in some sense) n = −1,−2, i.e. what happens if we
take away structure in the sense of differentiation of identity proofs.

Martens and Cavallo 2013/11/04 and 2013/11/06 7

Homotopy Type Theory

6 Proof Irrelevance

So far, we have taken to heart the idea of proof relevance and seen that it
can be useful for the evidence for a proposition to matter, i.e. to treat the
proposition as a type and terms inhabiting that type as useful, meaningful
data. For example, the natural numbers form a type Nat, and different
“proofs” of Nat are different numbers—so of course we care to differentiate
them.

Now we will consider the special case of proof irrelevance: we can identify
certain propositions for which we do not distinguishing its proofs, i.e. we
can consider any M,N : A for this type A to be equivalent. We will call
this property isProp (corresponding to is-−1 -type in the table above), and
formally we define isProp(A) to be the type

Πx, y:A.IdA(x, y)

Another word used to describe A with this property is “subsingleton.”
It is a type with at most one element, up to higher homotopy (i.e. if there
are multiple elements then there are paths between them).

A motivation for considering this type arises in the domain of depen-
dently typed programming, wherein we want to consider types (propositions)
to be specificatons for code. For example, consider specifying a function that
takes a (possibly infinite) sequence and returns the first index of the sequence
that contains the element 0. A type giving this specification might look like

Πs:Nat→ Nat. Σi : Nat.s(i) =Nat 0

...except that if we want the function to be total, we need some extra
information about the input stream, saying that it actually contains a 0
element:

Πs:(Σt:Nat→ Nat.Σi:Nat.t(i) =Nat 0). Σi : Nat.(π1s)(i) =Nat 0

But it turns out that we are now asking for too much information from
our input. The above specification has a constant-time algorithm: the input
contains a proof, i.e. a witness that it has a 0 element, which is exactly
what we are supposed to return. The function is

λs.〈π1(π2s), π2(π2s)〉

Martens and Cavallo 2013/11/04 and 2013/11/06 8

Homotopy Type Theory

This is not the function we wanted to specify: we had in mind something
like an inductive traversal of the sequence, stopping when we find the 0
element and returning a tracked index.

The question for resolving this puzzle is “How do we suppress information
in a type?”. We would like to still require the input to have a 0 element
without making that information available in computation; that is, we are
interested in only the propositional content of the spec.

One way of suppressing information in a type is Brouwer’s idea of using
double negation, i.e. to put a ¬¬ in front of s’s type.

(Digression: if the stream is infinite, it’s not actually clear that we would
be able to decide whether it contains a 0; we might be worried that by
doubly-negating, we no longer have access to that information. Markov’s
Principle, from the Russian school of constructivism, states that if a Turing
machine can’t fail to halt, it must halt; i.e. it takes a form of DNE specialized
to Turing machines. Alternatively, we can take the NuPRL route and specify
a bound k for the sequence such that we know we will find a 0 if there is
one.)

Double negation “kills computational content” in the way that we want,
and we can formally state that as the following fact:

isProp(¬¬A) for any A.
¬¬A is defined as (A→ 0)→ 0
NTS a term inhabiting

Πx, y:(¬¬A).Id¬¬A(x, y)

In lecture it was stated that this is a simple proof using abort−. If we
have function extensionality available it seems straightforward that in fact
any negated type A→ 0 is a prop:

f, g:¬C, x:C ` abortC(f x) : Id0(f x, g x)

With function extensionality we can turn this into

f, g:¬C ` funext(λx.abortC(f x)) : Id¬C(f, g)

6.1 Gödel’s Double Negation Translation

Brouwer’s insight about double negation led to Gödel’s discovery of a trans-
lation embedding classical logic into constructive logic. The idea is to define
‖−‖ such that if A is provable classically, ‖A‖ is provable constructively. We
can give this translation as:

Martens and Cavallo 2013/11/04 and 2013/11/06 9

Homotopy Type Theory

‖1‖ = 1

‖A ∧B‖ = ‖A‖ ∧ ‖B‖
‖0‖ = 0

‖A ∨B‖ = ¬¬(‖A‖ ∨ ‖B‖)

For implication we have two choices. We can either “just squash” the
type, which would be sufficient for information erasure:

‖A ⊃ B‖ = ‖A‖ ⊃ ‖B‖

...or we can properly embed classical logic with the translation

‖A ⊃ B‖ = ‖A‖ ⊃ ¬¬‖B‖

We need the latter definition to recover completeness wrt classical logic,
since, remembering that classical logic can be formulated as “constructive
logic plus DNE (a double negation elimination rule available in general),”
we have

‖¬¬A ⊃ A‖ = ¬¬A ⊃ A

with the “just squash” principle, but

‖¬¬A ⊃ A‖ = ¬¬A ⊃ ¬¬A

with the classical embedding, which is provable constructively (it is just
an instance of the identity).

With the interpretation of ¬A as a continuation accepting a term of type
A, this translation coincides with the “continuation-passing transform” for
compilers.

7 Hedberg’s Theorem

Finally, we will touch briefly on Hedberg’s Theorem. Hedberg’s Theorem is
another way to prove something is a set: it states that a type with decidable
equality is a set. In other words, If

Πx, y:A.IdA(x, y) ∨ ¬IdA(x, y)

Martens and Cavallo 2013/11/04 and 2013/11/06 10

Homotopy Type Theory

then isSet(A).
Proof sketch: decidable equality implies stable equality, i.e. ¬¬IdA(x, y) ⊃

Ida(x, y), and stable equality implies sethood.

Martens and Cavallo 2013/11/04 and 2013/11/06 11

	Contents
	The Interval
	ITT is a theory of sets
	ITT + UA is not a set theory
	n-types
	Proof Irrelevance
	Gödel's Double Negation Translation

	Hedberg's Theorem

