
15-819 Homotopy Type Theory

Lecture Notes

Robert Lewis and Joseph Tassarotti

November 11 and 13, 2013

1 Contents

These notes cover Robert Harper’s lectures on Homotopy Type Theory from
November 11 and 13, 2013. Discussions include Hedberg’s theorem, con-
tractibility, propositional truncation, and the “axiom” of choice.

2 Refresher: Sets and Propositions

Recall from previous lectures the definitions of sets and propositions within
HoTT. A type is called a set if there is only “one way” for any two of its
elements to be equal:

isSet(A) :≡
∏
x,y:A

∏
p,q:x=Ay

(p =x=Ay q)

Relatedly, a type is called a proposition if it is a “subsingleton”: that is,
it has at most one inhabitant.

isProp(A) :≡
∏
x,y:A

(x =A y)

We can define isSet in terms of isProp: a type is a set if equality for that
type is propositional.

isSet(A) ≡
∏
x,y:A

isProp(x =A y)

What it means for a type to be a set is that there are no nontrivial rela-
tionships between elements of the type. The higher homotopy structure we

1

Homotopy Type Theory

have seen in previous weeks does not exist in a set, as the only paths between
elements are trivial, which trivializes the higher structure. In this sense, sets
(and propositions) “reclaim” some properties of classical mathematics.

Proposition 1. For any type A, we have isProp(¬A), where ¬A :≡ A→ 0.

Proof. We want to find

:
∏

x,y:¬A
(x =¬A y).

Since ¬A is a function type, via funext it suffices to find

:
∏
u:A

(x(u) =0 y(u)).

We have λu. abortx(u)=0y(u)(x(u)) of this type.

From this, we can derive the (perhaps surprising) result that ¬¬(¬A)→
¬A, even though we do not necessarily have ¬¬A→ A.

3 Hedberg’s Theorem

These considerations lead us to the following important theorem.

Definition 1. A type A has decidable equality if one can prove of any two
inhabitants of A that they are either equal or unequal.∏

x,y:A

(IdA(x, y) ∨ ¬IdA(x, y)).

A type A has stable equality if double-negation elimination holds in its
identity type: ∏

x,y:A

(¬¬IdA(x, y)→ IdA(x, y))

Theorem 1. A type with decidable equality is a set.

Proof. The proof of Hedberg’s theorem goes in two parts:
1. Decidable equality implies stable equality. In fact, we can prove in general

that for any type A, (A+¬A)→ ¬¬A→ A. This part is simple and left
as an exercise.

2. Stable equality implies sethood. This is the heart of Hedberg’s theorem.

Lewis and Tassarotti 2013/11/11 and 2013/11/13 2

Homotopy Type Theory

We prove 2. Suppose h :
∏
x, y : A.(¬¬x =A y)→ (x =A y) is evidence

that equality in A is stable. To show isSet(A), is suffices to show that
x : A, p : x =A x ` p =x=Ax reflA(x), since we can reduce the identity of
p, q : x =A y to showing that p � q−1 = reflA(x).

Fix x : A. We then have h(x) :
∏
y : A.(¬¬x =A y)→ (x =A y).

Using dependent function application apd (defined previously), we see
that

apdh(x)(p) : p∗(h(x)(x)) =(¬¬x=Ax)→(x=Ax) h(x)(x)

By lemma 2.9.6 of [1], it follows that for that for any r : ¬¬(x =A x),

p∗(h(x)(x))(r) =x=Ax h(x)(x)(p∗r).

Next, from a proven property of transport in identity types, we have
that

p∗(h(x)(x))(r) =x=Ax h(x)(x)(r) · p

and because negated types are propositions (from above),

h(x)(x)(p∗r) =x=Ax h(x)(x)(r)

so we have by transitivity

h(x)(x)(r) · p =x=Ax h(x)(x)(r)

and cancellation gives us p =x=Ax reflA(x) as desired.

For an example of the power of Hedberg’s theorem, note that it implies
isSet(Nat). Using double induction, one can show∏

x,y:Nat

(x =Nat y) ∨ ¬(x =Nat y).

This is left as an exercise.

4 More Results on Propositions and Sets

Theorem 2. Every proposition is a set:

If
∏
x,y:A

x =A y then
∏
x,y:A

∏
p,q:x=Ay

p =x=Ay q

Lewis and Tassarotti 2013/11/11 and 2013/11/13 3

Homotopy Type Theory

Proof. Suppose f :
∏
x, y : A.x =A y. Given two inhabitants of A, f returns

a path between them.
Fix x0 : A and let g :≡ f(x0) :

∏
y : A.x0 =A y. For p : y =A y

′, we have

apdg(p) : p∗(g(y)) =x0=Ay′ g(y′)

and by property of transport within identity type,

p∗(g(y)) =x0=Ay′ g(y) · p.

By transitivity, we thus have

g(y) · p =x0=Ay′ g(y′)

p =x0=Ay′ g(y)−1 · g(y)

For q : y =A y
′, these same calculations give us

q =x0=Ay′ g(y)−1 · g(y).

Thus, p =x0=Ay′ q as desired.

Theorem 3. isProp(isProp(A)) – that is, there is only one proof that A has
only one inhabitant.

Proof. Let f, g : isProp(A) be given. To show f =isProp(A) g, it suffices
to show (by funext) x, y : A ` : fxy =x=Ay gxy. This follows since
isProp(A)→ isSet(A).

We can similarly prove isProp(isSet(A)). For f : A→ B, with the proper
notion of isEquiv(f), we will soon be able to prove isProp(isEquiv(f)). If we
take equivalence to mean having a quasi-inverse, though, this is not the case.

5 Contractibility

In preparation for what follows, we define the notion of contractibility:

isContr(A) :
∑
x:A

∏
y:A

x =A y

That is, a type is contractible if there is some inhabitant which all other
inhabitants are equal to. This is equivalent to saying that A is a prop, and
it is inhabited. Alternatively, a A type is contractibile if it is equivalent to
1.

Lewis and Tassarotti 2013/11/11 and 2013/11/13 4

Homotopy Type Theory

x

Figure 1: A contractible type. There is some element x, and paths between
x and all other elements

Notice that for any type A, given a:A, we have that isContr(Σx:Aa = x).
In particular, (a, reflA(a))) is an inhabitant of this type which all other
elements are equal to.

The notions of contraction and truncation are related to the (n)-type
hierarchy: specifically, contractions sit at the bottom of the hierarchy. For
historical reasons, we begin with (-2) types, and define inductively:

is-(−2)-type(A) :≡ isContr(A)

is-(n+ 1)-type(A) :≡
∏
x,y:A

is-n-type(x =A y)

Now, we have that:

isProp(A)↔
∏
x,y:A

isContr(x =A y).

which implies that
isProp(A)↔ is-(−1)-type(A).

Lewis and Tassarotti 2013/11/11 and 2013/11/13 5

Homotopy Type Theory

We can further prove the following:

isSet(A)↔ is-0-type(A)

isGpd(A)↔ is-1-type(A)

is-2-Gpd(A)↔ is-2-type(A)

...

As well as ∏
A:U

(is-n-type(A)→ is-(n+ 1)-type(A)) .

However, it is not the case that every type is an n-type for some n:
consider U .

6 Propositional Truncation (Squashing)

The notion of “squashing” introduced last week was perhaps too heavy-
handed: it was used toward a number of goals, among them to recover
classical logic within constructive logic. We now introduce the more general
idea of abstract truncation, which for now will be taken as a primitive idea of
HoTT. Truncation serves to reduce types to sets, without all the byproducts
of the double negation translation.

Let ‖A‖−1 be read as the (-1)-truncation of A. When the context is
clear, we omit the subscript. When the type ‖A‖ is inhabited, we say A is
“merely inhabited”, to emphasize that this is a proof-irrelevant setting. We
have the following ‖ · ‖-introduction rules:

Γ `M : A

Γ ` |M | : ‖A‖ Γ, x : ‖A‖, y : ‖A‖ ` squash(x, y) : Id‖A‖(x, y)

As we would expect, isProp(‖A‖) because of the rule for squash(·, ·). The
corresponding elimination rule s:

Γ `M : ‖A‖ Γ, x : A ` N : B Γ ` P : isProp(B)

elim[B](M ;x.N ;P) : B
‖ · ‖E

We require a proof of isProp(B) to ensure that the behavior of N does
not depend on the representative x : A. There are other ways to ensure

Lewis and Tassarotti 2013/11/11 and 2013/11/13 6

Homotopy Type Theory

this property: for instance, we could instead require u, v : A ` [u/x]N =B

[v/x]N . Note that isProp(B) implies that this is the case.
The β rule works as one might expect:

elim(|M |;x.N ;P) ≡ [M/x]N

One would similarly like some β like rule to hold for the 1-cell, squash.
For example, something of the form

ap(λz.elim(z;x.N ;P))(squash(|M |, |M ′|)) ≡ P ([M/x]N)([M ′/x]N)

which corresponds to the idea that P is a proof that N is equal under sub-
stitutions of different terms of type A, because B is a proposition. However,
just as in the case of seg, we do not have this.

7 Revisiting the Axiom of Choice

Previously, we explored how the axiom of choice is provable in ITT. That
is, there is a term AC∞ such that

AC∞:
∏
A:U

∏
B:A→U

∏
C:Πx:A.B→U

∏
x:A

∑
y:B(x)

C(x, y)

→
 ∑

f :Πx:A.B

∏
x:A

C(x, f(x))

In fact, we can strengthen this and say that the two types are equivalent.

Recall that this type is inhabited because the witness that the relation C is
total provides precisely the choice we should make, because the specification
is proof relevant. The situation is similar to the example that motivated our
introduction of propositional truncation, where we wanted to write a total
function that returned the index of the first occurrence of 0 in an infinite
sequence. The proof that the infinite sequence actually contained a 0 also
immediately told us where the 0 was.

Now that we have developed the notion of propositional truncation, we
can state a version of the axiom of choice that is closer in meaning to its
typical statement:

∏
A:U

∏
B:A→U

∏
C:Πx:A.B→U

isSet(A)→

(∏
x:A

isSet(B(x))

)
→

∏
x:A

∏
y:B(x)

isProp(C(x, y))

→

∏
x:A

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
y:Bx

C(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣
→

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

f :Πx:A.B

∏
x:A

C(x, f(x))

∣∣∣∣∣∣
∣∣∣∣∣∣

Lewis and Tassarotti 2013/11/11 and 2013/11/13 7

Homotopy Type Theory

This restated form is not provable. What has happened is now that we
say that there merely exists some y for each x such that C(x, y). The axiom
says that given such weaker evidence, there merely exists such a function f
where for each x, C(x, f(x)). We might call an axiom of such a type AC−1,
to emphasize that it involves the −1-truncation.

Now, the truncations of equivalent types are equivalent. Since the non-
truncated form of the axiom of choice, AC∞, gives us the equivalence∏

x:A

∑
y:B(x)

C(x, y)

 '
 ∑

f :Πx:A.B

∏
x:A

C(x, f(x))

so that the type of AC−1 is equivalent to

∏
A:U

∏
B:A→U

∏
C:Πx:A.B→U

isSet(A)→

(∏
x:A

isSet(B(x))

)
→

∏
x:A

∏
y:B(x)

isProp(C(x, y))

→

∏
x:A

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
y:Bx

C(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣
→

∣∣∣∣∣∣
∣∣∣∣∣∣
∏
x:A

∑
Y :B(x)

C(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣

Now, for all Y : A→ U , we have that Πx:AY (x) ' Πx:A(Σa:Y (x)1), so we
can simplify the above type to:

∏
A:U

∏
Y :A→U

(
isSet(A)→

(∏
x:A

isSet(Y (x))

)
→

((∏
x:A

||Y (x)||

)
→

∣∣∣∣∣
∣∣∣∣∣∏
x:A

Y (x)

∣∣∣∣∣
∣∣∣∣∣
))

In this form, we see that the axiom is saying that a product of a family
of merely inhabited sets is merely inhabited, which is well-known to be
equivalent to the axiom of choice in classical mathematics. It is crucial here
that isSet(A), since if A is not a set, there is a counter example (see lemma
3.8.5 in [1])

8 Equivalence and Propositions

A few weeks ago, we defined what it meant for a map f : A → B to be an
equivalence between A and B, written isequiv(f). The definition we gave
was:

isequiv(f) :≡ (Σg : B → A.f ◦ g ∼ idB)× (Σh : B → A.h ◦ f ∼ idA).

Lewis and Tassarotti 2013/11/11 and 2013/11/13 8

Homotopy Type Theory

We also gave the related notion of a quasi-inverse, written qinv(f), which
was defined as:

qinv(f) :≡ Σg : B → A.(f ◦ g ∼ idB × g ◦ f ∼ idA).

In some ways, the definition of qinv may at first appear to be a more
natural definition than isequiv, since it states that there is some function
g which is a left and right inverse of f . This is the definition of an iso-
morphism in category theory, for example. Of course, we explained that
isequiv(f) → qinv(f) and qinv(f) → isequiv(f), and this enabled us to use
whatever definition was more convenient over the past few weeks.

Why did we choose the above definition for isequiv instead of using the
definition we gave for qinv? The issue is that we would like there to be
only one proof that a given function f is an equivalence. That is, we want
isProp(isequiv(f)) to hold for all f . This is the case for the definition we
gave, but it is not true that isProp(qinv(f)) for every f . We can show this
by establishing two lemmas:

Proposition 2. If f : A→ B and e : qinv(f) then qinv(f) ' Πx:A.(x = x)

Proposition 3. There exists some type X such that Πx:X(x = x) is not a
proposition.

See the discussion in section 4.1 in [1] for proofs of these lemmas. This
makes qinv unsuitable as a definition for isequiv. Nevertheless, we would still
like a definition of isequiv to be interprovable with qinv, while also being a
proposition. There are three candidates which satisfy these properties, all
of which are equivalent:

1. biequiv(f) :≡ (Σg : B → A.f ◦ g ∼ idB)× (Σh : B → A.h ◦ f ∼ idA).
We say that f is bi-invertible, which means that f has a left inverse and
a right inverse. This is the definition we have been using.

2. isContr(f) :≡ Πy:B. isContr(fibf (y)) where fibf (y) = Σx:A.f(x) = y.
This says that f is contractible if given any y in the codomain, the set
of all things that f maps to y (the fiber), is contractible. That is, for
every point in the codomain, there is an element x in the domain such
that f(x) = y, and if f(x′) = y then x = x′. But that precisely means
that f is a bijection up to homotopy.

3. ishae(f) :≡ Σg:B → A.Σα:(f ◦ g ∼ id).Σβ:(g ◦ f ∼ id).
Πx: A.f(βx) = α(fx):

We read this as saying that f is a half-adjoint equivalence. We did not
talk about this definition in class, but a discussion can be found in section

Lewis and Tassarotti 2013/11/11 and 2013/11/13 9

Homotopy Type Theory

4.2 of [1]. Roughly, we can motivate this by noticing that it is similar to
the definition of qinv (where the homotopies α and β were unnamed) with
an additional coherence condition relating how these homotopies interact
with f .

References

[1] Institute for Advanced Study. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. The Univalent Foundations Program, 2013.
http://homotopytypetheory.org/book/.

Lewis and Tassarotti 2013/11/11 and 2013/11/13 10

http://homotopytypetheory.org/book/

	Contents
	Refresher: Sets and Propositions
	Hedberg's Theorem
	More Results on Propositions and Sets
	Contractibility
	Propositional Truncation (Squashing)
	Revisiting the Axiom of Choice
	Equivalence and Propositions

