
Programming in

Martin-Löf’s Type Theory

An Introduction

Bengt Nordström

Kent Petersson

Jan M. Smith

Department of Computing Sciences
University of Göteborg / Chalmers

S-412 96 Göteborg
Sweden

This book was published by Oxford University Press in 1990. It is now out of
print. This version is available from www.cs.chalmers.se/Cs/Research/Logic.

ii

iii

Preface

It is now 10 years ago that two of us took the train to Stockholm to meet
Per Martin-Löf and discuss his ideas on the connection between type theory
and computing science. This book describes different type theories (theories
of types, polymorphic and monomorphic sets, and subsets) from a computing
science perspective. It is intended for researchers and graduate students with
an interest in the foundations of computing science, and it is mathematically
self-contained.

We started writing this book about six years ago. One reason for this long
time is that our increasing experience in using type theory has made several
changes of the theory necessary. We are still in this process, but have neverthe-
less decided to publish the book now.

We are, of course, greatly indebted to Per Martin-Löf; not only for creating
the subject of this book, but also for all the discussions we have had with him.
Beside Martin-Löf, we have discussed type theory with many people and we
in particular want to thank Samson Abramsky, Peter Aczel, Stuart Anderson,
Roland Backhouse, Bror Bjerner, Robert Constable, Thierry Coquand, Peter
Dybjer, Roy Dyckhoff, Gerard Huet, Larry Paulson, Christine Paulin-Mohring,
Anne Salvesen, Björn von Sydow, and Dan Synek. Thanks to Dan Synek also
for his co-authorship of the report which the chapter on trees is based on.

Finally, we would like to thank STU, the National Swedish Board For Tech-
nical Development, for financial support.

Bengt Nordström, Kent Petersson and Jan Smith

Göteborg, Midsummer Day 1989.

iv

Contents

1 Introduction 1
1.1 Using type theory for programming 3
1.2 Constructive mathematics . 6
1.3 Different formulations of type theory 6
1.4 Implementations of programming logics 8

2 The identification of sets, propositions and specifications 9
2.1 Propositions as sets . 9
2.2 Propositions as tasks and specifications of programs 12

3 Expressions and definitional equality 13
3.1 Application . 13
3.2 Abstraction . 14
3.3 Combination . 15
3.4 Selection . 16
3.5 Combinations with named components 16
3.6 Arities . 17
3.7 Definitions . 19
3.8 Definition of what an expression of a certain arity is 19
3.9 Definition of equality between two expressions 20

I Polymorphic sets 23

4 The semantics of the judgement forms 25
4.1 Categorical judgements . 27

4.1.1 What does it mean to be a set? 27
4.1.2 What does it mean for two sets to be equal? 28
4.1.3 What does it mean to be an element in a set? 28
4.1.4 What does it mean for two elements to be equal in a set? 29
4.1.5 What does it mean to be a proposition? 29
4.1.6 What does it mean for a proposition to be true? 29

4.2 Hypothetical judgements with one assumption 29
4.2.1 What does it mean to be a set under an assumption? . . 30
4.2.2 What does it mean for two sets to be equal under an

assumption? . 30
4.2.3 What does it mean to be an element in a set under an

assumption? . 30

v

vi CONTENTS

4.2.4 What does it mean for two elements to be equal in a set
under an assumption? . 31

4.2.5 What does it mean to be a proposition under an assumption? 31
4.2.6 What does it mean for a proposition to be true under an

assumption? . 31
4.3 Hypothetical judgements with several assumptions 31

4.3.1 What does it mean to be a set under several assumptions? 31
4.3.2 What does it mean for two sets to be equal under several

assumptions? . 32
4.3.3 What does it mean to be an element in a set under several

assumptions? . 32
4.3.4 What does it mean for two elements to be equal in a set

under several assumptions? 33
4.3.5 What does it mean to be a proposition under several as-

sumptions? . 33
4.3.6 What does it mean for a proposition to be true under

several assumptions? . 33

5 General rules 35
5.1 Assumptions . 37
5.2 Propositions as sets . 37
5.3 Equality rules . 37
5.4 Set rules . 38
5.5 Substitution rules . 38

6 Enumeration sets 41
6.1 Absurdity and the empty set . 43
6.2 The one-element set and the true proposition 43
6.3 The set Bool . 44

7 Cartesian product of a family of sets 47
7.1 The formal rules and their justification 49
7.2 An alternative primitive non-canonical form 51
7.3 Constants defined in terms of the Π set 53

7.3.1 The universal quantifier (∀) 53
7.3.2 The function set (→) . 53
7.3.3 Implication (⊃) . 54

8 Equality sets 57
8.1 Intensional equality . 57
8.2 Extensional equality . 60
8.3 η-equality for elements in a Π set 62

9 Natural numbers 63

10 Lists 67

11 Cartesian product of two sets 73
11.1 The formal rules . 73
11.2 Extensional equality on functions 76

CONTENTS vii

12 Disjoint union of two sets 79

13 Disjoint union of a family of sets 81

14 The set of small sets (The first universe) 83
14.1 Formal rules . 83
14.2 Elimination rule . 91

15 Well-orderings 97
15.1 Representing inductively defined sets by well-orderings 101

16 General trees 103
16.1 Formal rules . 104
16.2 Relation to the well-order set constructor 106
16.3 A variant of the tree set constructor 108
16.4 Examples of different tree sets . 108

16.4.1 Even and odd numbers 108
16.4.2 An infinite family of sets 110

II Subsets 111

17 Subsets in the basic set theory 113

18 The subset theory 117
18.1 Judgements without assumptions 117

18.1.1 What does it mean to be a set? 118
18.1.2 What does it mean for two sets to be equal? 118
18.1.3 What does it mean to be an element in a set? 118
18.1.4 What does it mean for two elements to be equal in a set? 119
18.1.5 What does it mean to be a proposition? 119
18.1.6 What does it mean for a proposition to be true? 119

18.2 Hypothetical judgements . 119
18.2.1 What does it mean to be a set under assumptions? . . . 120
18.2.2 What does it mean for two sets to be equal under assump-

tions? . 120
18.2.3 What does it mean to be an element in a set under as-

sumptions? . 121
18.2.4 What does it mean for two elements to be equal in a set

under assumptions? . 121
18.2.5 What does it mean to be a proposition under assumptions?122
18.2.6 What does it mean for a proposition to be true under

assumptions? . 122
18.3 General rules in the subset theory 122
18.4 The propositional constants in the subset theory 124

18.4.1 The logical constants . 124
18.4.2 The propositional equality 125

18.5 Subsets formed by comprehension 126
18.6 The individual set formers in the subset theory 127

18.6.1 Enumeration sets . 127
18.6.2 Equality sets . 127

viii CONTENTS

18.6.3 Natural numbers . 128
18.6.4 Cartesian product of a family of sets 128
18.6.5 Disjoint union of two sets 130
18.6.6 Disjoint union of a family of sets 130
18.6.7 Lists . 131
18.6.8 Well-orderings . 131

18.7 Subsets with a universe . 131

III Monomorphic sets 135

19 Types 137
19.1 Types and objects . 138
19.2 The types of sets and elements 139
19.3 Families of types . 139
19.4 General rules . 141
19.5 Assumptions . 142
19.6 Function types . 143

20 Defining sets in terms of types 147
20.1 Π sets . 148
20.2 Σ sets . 149
20.3 Disjoint union . 150
20.4 Equality sets . 150
20.5 Finite sets . 151
20.6 Natural numbers . 151
20.7 Lists . 152

IV Examples 153

21 Some small examples 155
21.1 Division by 2 . 155
21.2 Even or odd . 159
21.3 Bool has only the elements true and false 160
21.4 Decidable predicates . 162
21.5 Stronger elimination rules . 163

22 Program derivation 167
22.1 The program derivation method 167

22.1.1 Basic tactics . 168
22.1.2 Derived tactics . 170

22.2 A partitioning problem . 171

23 Specification of abstract data types 179
23.1 Parameterized modules . 181
23.2 A module for sets with a computable equality 182

A Constants and their arities 197
A.1 Primitive constants in the set theory 197
A.2 Set constants . 198

CONTENTS ix

B Operational semantics 199
B.1 Evaluation rules for noncanonical constants 200

x CONTENTS

Chapter 1

Introduction

In recent years several formalisms for program construction have been intro-
duced. One such formalism is the type theory developed by Per Martin-Löf. It
is well suited as a theory for program construction since it is possible to express
both specifications and programs within the same formalism. Furthermore, the
proof rules can be used to derive a correct program from a specification as well
as to verify that a given program has a certain property. This book contains an
introduction to type theory as a theory for program construction.

As a programming language, type theory is similar to typed functional lan-
guages such as Hope [18] and ML [44], but a major difference is that the evalua-
tion of a well-typed program always terminates. In type theory it is also possible
to write specifications of programming tasks as well as to develop provably cor-
rect programs. Type theory is therefore more than a programming language and
it should not be compared with programming languages, but with formalized
programming logics such as LCF [44] and PL/CV [24].

Type theory was originally developed with the aim of being a clarification of
constructive mathematics, but unlike most other formalizations of mathematics
type theory is not based on first order predicate logic. Instead, predicate logic
is interpreted within type theory through the correspondence between propo-
sitions and sets [28, 52]. A proposition is interpreted as a set whose elements
represent the proofs of the proposition. Hence, a false proposition is interpreted
as the empty set and a true proposition as a non-empty set. Chapter 2 contains
a detailed explanation of how the logical constants correspond to sets, thus ex-
plaining how a proposition could be interpreted as a set. A set cannot only be
viewed as a proposition; it is also possible to see a set as a problem description.
This possibility is important for programming, because if a set can be seen as
a description of a problem, it can, in particular, be used as a specification of a
programming problem. When a set is seen as a problem, the elements of the set
are the possible solutions to the problem; or similarly if we see the set as a spec-
ification, the elements are the programs that satisfy the specification. Hence,
set membership and program correctness are the same problem in type theory,
and because all programs terminate, correctness means total correctness.

One of the main differences between the type theory presentation in this
book and the one in [69] is that we use a uniform notation for expressions.
Per Martin-Löf has formulated a theory of mathematical expressions in general,
which is presented in chapter 3. We describe how arbitrary mathematical ex-

1

2 CHAPTER 1. INTRODUCTION

pressions are formed and introduce an equality between expressions. We also
show how defined constants can be introduced as abbreviations of more compli-
cated expressions.

In Part I we introduce a polymorphic version of type theory. This version is
the same as the one presented by Martin-Löf in Hannover 1979 [69] and in his
book Intuitionistic Type Theory [70] except that we use an intensional version
of the equality.

Type theory contains rules for making judgements of the following four
forms:

A is a set
A1 and A2 are equal sets
a is an element in the set A
a1 and a2 are equal elements in the set A

The semantics of type theory explains what judgements of these forms mean.
Since the meaning is explained in a manner quite different from that which is
customary in computer science, let us first describe the context in which the
meaning is explained. When defining a programming language, one often ex-
plains its notions in terms of mathematical objects like sets and functions. Such
a definition takes for granted the existence and understanding of these objects.
Since type theory is intended to be a fundamental conceptual framework for the
basic notions of constructive mathematics, it is infeasible to explain the mean-
ing of type theory in terms of some other mathematical theory. The meaning of
type theory is explained in terms of computations. The first step in this process
is to define the syntax of programs and how they are computed. We first intro-
duce the canonical expressions which are the expressions that can be the result
of programs. When they are defined, it is possible to explain the judgements,
first the assumption-free and then the hypothetical. A set is explained in terms
of canonical objects and their equality relation, and when the notion of set is
understood, the remaining judgement forms are explained. Chapter 4 contains
a complete description of the semantics in this manner.

The semantics of the judgement forms justifies a collection of general rules
about assumptions, equality and substitution which is presented in chapter 5.

In the following chapters (7 – 17), we introduce a collection of sets and
set forming operations suitable both for mathematics and computer science.
Together with the sets, the primitive constants and their computation rules are
introduced. We also give the rules of a formal system for type theory. The rules
are formulated in the style of Gentzen’s natural deduction system for predicate
logic and are justified from

• the semantic explanations of the judgement forms,

• the definitions of the sets, and

• the computation rules of the constants.

We do not, however, present justifications of all rules, since many of the justifi-
cations follow the same pattern.

There is a major disadvantage with the set forming operations presented
in part I because programs sometimes will contain computationally irrelevant
parts. In order to remedy this problem we will in part II introduce rules which

1.1. USING TYPE THEORY FOR PROGRAMMING 3

makes it possible to form subsets. However, if we introduce subsets in the
same way as we introduced the other set forming operations, we cannot justify
a satisfactory elimination rule. Therefore, we define a new theory, the subset
theory, and explain the judgements in this new theory by translating them into
judgements in the basic theory, which we already have given meaning to in part
I.

In part III, we briefly describe a theory of types and show how it can be
used as an alternative way of providing meaning to the judgement forms in
type theory. The origin of the ideas in this chapter is Martin-Löf’s analysis
of the notions of proposition, judgement and proof in [71]. The extension of
type theory presented is important since it makes it possible to introduce more
general assumptions within the given formalism. We also show how the theory
of types could be used as a framework for defining some of the sets which were
introduced in part I.

In part IV we present some examples from logic and programming. We
show how type theory can be used to prove properties of programs and also
how to formally derive programs for given specifications. Finally we describe
how abstract data types can be specified and implemented in type theory.

1.1 Using type theory for programming

Type theory, as it is used in this book, is intended as a theory for program
construction. The programming development process starts with the task of
the program. Often, this is just existing in the head of the programmer, but
it can also exist explicitly as a specification that expresses what the program
is supposed to do. The programmer, then, either directly writes down a pro-
gram and proves that it satisfies the given specification, or successively derives
a program from the specification. The first method is called program verifica-
tion and the second program derivation . Type theory supports both methods
and it is assumed that it is the programmer who bridges the gap between the
specification and the program.

There are many examples of correctness proofs in the literature and proofs
done in Martin-Löf’s type theory can be found in [20, 75, 82]. A theory which
is similar to type theory is Huet and Coquand’s Calculus of Constructions [27]
and examples of correctness proofs in this theory can be found in [74].

There are fewer examples of formal program derivations in the literature.
Manna and Waldinger have shown how to derive a unification algorithm using
their tableau method [63] and there are examples developed in Martin-Löf’s
type theory in Backhouse et al [6] and in the Theory of Constructions in Paulin-
Mohring [80]. A formal derivation of the partitioning problem using type theory
is presented in [87]; a slightly changed version of this derivation is also presented
in chapter 22.

In the process of formal program development, there are two different stages
and usually two different languages involved. First, we have the specification
process and the specification language, and then the programming process and
the programming language. The specification process is the activity of find-
ing and formulating the problem which the program is to solve. This process
is not dealt with in this book. We assume that the programmer knows what
problem to solve and is able to express it as a specification. A specification is

4 CHAPTER 1. INTRODUCTION

in type theory expressed as a set, the set of all correct programs satisfying the
specification. The programming process is the activity of finding and formu-
lating a program which satisfies the specification. In type theory, this means
that the programmer constructs an element in the set which is expressed by the
specification. The programs are expressed in a language which is a functional
programming language. So it is a programming language without assignments
and other side effects. The process of finding a program satisfying a specifica-
tion can be formalized in a programming logic, which has rules for deducing
the correctness of programs. So the formal language of type theory is used as a
programming language, a specification language and a programming logic.

The language for sets in type theory is similar to the type system in program-
ming languages except that the language is much more expressive. Besides the
usual set forming operations which are found in type systems of programming
languages (Bool, A+B, A → B, A×B, List(A), etc.) there are operations which
make it possible to express properties of programs using the usual connectives
in predicate logic. It is possible to write down a specification without knowing
if there is a program satisfying it. Consider for example

(∃a ∈ N+)(∃b ∈ N+)(∃c ∈ N+)(∃n ∈ N+)(n > 2 & an + bn = cn)

which is a specification of a program which computes four natural numbers such
that Fermat’s last theorem is false. It is also possible that a specification is sat-
isfied by several different programs. Trivial examples of this are “specifications”
like N, List(N) → List(N) etc. More important examples are the sorting problem
(the order of the elements of the output of a sorting program should not be
uniquely determined by the input), compilers (two compilers producing differ-
ent code for the same program satisfies the same specification as long as the
code produced computes the correct input-output relation), finding an index of
a maximal element in an array, finding a shortest path in a graph etc.

The language to express the elements in sets in type theory constitutes a
typed functional programming language with lazy evaluation order. The pro-
gram forming operations are divided into constructors and selectors. Construc-
tors are used to construct objects in a set from other objects, examples are 0,
succ, pair, inl, inr and λ . Selectors are used as a generalized pattern matching:
What in ML is written as

case p of (x,y) => d

is in type theory written as
split(p, (x, y)d)

and if we in ML define the disjoint union by

datatype (’A,’B)Dunion = inl of ’A | inr of ’B

then the ML-expression

case p of inl(x) => d
| inr(y) => e

is in type theory written as

when(p, (x)d, (y)e)

1.1. USING TYPE THEORY FOR PROGRAMMING 5

General recursion is not available. Iteration is expressed by using the se-
lectors associated with the inductively defined sets like N and List(A). For
these sets, the selectors work as operators for primitive recursion over the set.
For instance, to find a program f(n) on the natural numbers which solves the
equations {

f(0) = d
f(n + 1) = h(n, f(n))

one uses the selector natrec associated with the natural numbers. The equations
are solved by making the definition:

f(n) ≡ natrec(n, d, (x, y)h(x, y))

In order to solve recursive equations which are not primitive recursive, one must
use the selectors of inductive types together with high order functions. Examples
of how to obtain recursion schemas other than the primitive ones are discussed
by Paulson in [84] and Nordström [77].

Programs in type theory are computed using lazy evaluation. This means
that a program is considered to be evaluated if it is on the form

c(e1, . . . , en)

where c is a constructor and e1, . . . , en are expressions. Notice that there is no
requirement that the expressions e1, . . . , en must be evaluated. So, for instance,
the expression succ(2222

) is considered to be evaluated, although it is not fully
evaluated. If a program is on the form

s(e1, . . . , en)

where s is a selector, it is usually computed by first computing the value of the
first argument. The constructor of this value is then used to decide which of the
remaining arguments of s which is used to compute the value of the expression.

When a user wants to derive a correct program from a specification, she uses
a programming logic. The activity to derive a program is similar to proving
a theorem in mathematics. In the top-down approach, the programmer starts
with the task of the program and divides it into subtasks such that the programs
solving the subtasks can be combined into a program for the given task. For
instance, the problem of finding a program satisfying B can be reduced to finding
a program satisfying A and a function taking an arbitrary program satisfying
A to a program satisfying B. Similarly, the mathematician starts with the
proposition to be proven and divides it into other propositions such that the
proofs of them can be combined into a proof of the proposition. For instance,
the proposition B is true if we have proofs of the propositions A and A⊃B.

Type theory is designed to be a logic for mathematical reasoning, and it is
through the computational content of constructive proofs that it can be used
as a programming logic (by identifying programs and proof objects). So the
logic is rather strong; it is possible to express general mathematical problems
and proofs. This is important for a logic which is intended to work in practice.
We want to have a language as powerful as possible to reason about programs.
The formal system of type theory is inherently open in that it is possible to
introduce new type forming operations and their rules. The rules have to be
justified using the semantics of type theory.

6 CHAPTER 1. INTRODUCTION

1.2 Constructive mathematics

Constructive mathematics arose as an independent branch of mathematics out
of the foundational crisis in the beginning of this century, mainly developed by
Brouwer under the name intuitionism. It did not get much support because
of the general belief that important parts of mathematics were impossible to
develop constructively. By the work of Bishop, however, this belief has been
shown to be wrong. In his book Foundations of Constructive Analysis [10],
Bishop rebuilds constructively central parts of classical analysis; and he does
it in a way that demonstrates that constructive mathematics can be as elegant
as classical mathematics. Basic information about the fundamental ideas of
intuitionistic mathematics is given in Dummet [33], Heyting [50], and Troelstra
and van Dalen [108, 109].

The debate whether mathematics should be built up constructively or not
need not concern us here. It is sufficient to notice that constructive mathematics
has some fundamental notions in common with computer science, above all the
notion of computation. This means that constructive mathematics could be an
important source of inspiration for computer science. This was realized already
by Bishop in [11]; Constable made a similar proposal in [23].

The notion of function or method is primitive in constructive mathematics
and a function from a set A to a set B can be viewed as a program which when
applied to an element in A gives an element in B as output. So all functions in
constructive mathematics are computable. The notion of constructive proof is
also closely related to the notion of computer program. To prove a proposition
(∀x∈A)(∃y∈B)P (x, y) constructively means to give a function f which when
applied to an element a in A gives an element b in B such that P (a, b) holds.
So if the proposition (∀x∈A)(∃y∈B)P (x, y) expresses a specification, then the
function f obtained from the proof is a program satisfying the specification.

A constructive proof could therefore itself be seen as a computer program
and the process of computing the value of a program corresponds to the process
of normalizing a proof. There is however a small disadvantage of using a con-
structive proof as a program because the proof contains a lot of computationally
irrelevant information. To get rid of this information Goto [45], Paulin-Mohring
[80], Sato [93], Takasu [106] and Hayashi [49] have developed different tech-
niques to synthesize a computer program from a constructive proof; this is also
the main objective of the subset theory introduced in Part II of this book. Goad
has also used the correspondence between proofs and programs to specialize a
general program to efficient instantiations [41, 42].

1.3 Different formulations of type theory

One of the basic ideas behind Martin-Löf’s type theory is the Curry-Howard
interpretation of propositions as types, i.e. in our terminology, propositions
as sets. This view of propositions is related both to Heyting’s explanation of
intuitionistic logic [50] and, on a more formal level, to Kleene’s realizability
interpretation of intuitionistic arithmetic [59].

Another source for type theory is proof theory. Using the identification of
propositions and sets, normalizing a derivation is closely related to computing
the value of the proof term corresponding to the derivation. Tait’s computability

1.3. DIFFERENT FORMULATIONS OF TYPE THEORY 7

method [105] from 1967 has been used for proving normalization for many dif-
ferent theories; in the Proceedings of the Second Scandinavian Logic Symposium
[38] Tait’s method is exploited in papers by Girard, Martin-Löf and Prawitz.
One of Martin-Löf’s original aims with type theory was that it could serve as
a framework in which other theories could be interpreted. And a normalization
proof for type theory would then immediately give normalization for a theory
expressed in type theory.

In Martin-Löf’s first formulation of type theory [64] from 1971, theories
like first order arithmetic, Gödel’s T [43], second order logic and simple type
theory [22] could easily be interpreted. However, this formulation contained a
reflection principle expressed by a universe V and including the axiom V ∈ V,
which was shown by Girard to be inconsistent. Coquand and Huet’s Theory
of Constructions [26] is closely related to the type theory in [64]: instead of
having a universe V, they have the two types Prop and Type and the axiom
Prop ∈ Type. If the axiom Type ∈ Type is added to the theory of constructions
it would, by Girard’s paradox, become inconsistent.

Martin-Löf’s formulation of type theory in 1972 An Intuitionistic Theory
of Types [66] is similar to the polymorphic and intensional set theory in this
book. Intensional here means that the judgemental equality is understood as
definitional equality; in particular, the equality is decidable. In the formulation
used in this book, the judgemental equality a = b ∈ A depends on the set A
and is meaningful only when both a and b are elements in A. In [66], equality
is instead defined for two arbitrary terms in a universe of untyped terms. And
equality is convertibility in the sense of combinatory logic. A consequence of this
approach is that the Church-Rosser property must be proved for the convert-
ibility relation. In contrast to Coquand and Huet’s Theory of Constructions,
this formulation of type theory is predicative. So, second order logic and simple
type theory cannot be interpreted in it.

Although the equality between types in [66] is intensional, the term model
obtained from the normalization proof in [66] has an extensional equality on the
interpretation of the types. Extensional equality means the same as in ordinary
set theory: Two sets are equal if and only if they have the same elements. To
remedy this problem, Martin-Löf made several changes of the theory, resulting
in the formulation from 1973 in An Intuitionistic Theory of Types: Predicative
Part [68]. This theory is strongly monomorphic in that a new constant is in-
troduced in each application of a rule. Also, conversion under lambda is not
allowed, i.e. the rule of ξ-conversion is abandoned. In this formulation of type
theory, type checking is decidable. The concept of model for type theory and
definitional equality are discussed in Martin-Löf [67].

The formulation of type theory from 1979 in Constructive Mathematics and
Computer Programming [69] is polymorphic and extensional. One important
difference with the earlier treatments of type theory is that normalization is not
obtained by metamathematical reasoning. Instead, a direct semantics is given,
based on Tait’s computability method. A consequence of the semantics is that
a term, which is an element in a set, can be computed to normal form. For
the semantics of this theory, lazy evaluation is essential. Because of a strong
elimination rule for the set expressing the extensional equality, judgemental
equality is not decidable. This theory is also the one in Intuitionistic Type
Theory [70]. It is treated in this book and is obtained if the equality sets
introduced in chapter 8 are expressed by the rules for Eq. It is also the theory

8 CHAPTER 1. INTRODUCTION

used in the Nuprl system [25] and by the group in Groningen [6].
In 1986, Martin-Löf put forward a framework for type theory. The framework

is based on the notion of type and one of the primitive types is the type of sets.
The resulting set theory is monomorphic and type checking is decidable. The
theory of types and monomorphic sets is the topic of part III of this book.

1.4 Implementations of programming logics

Proofs of program correctness and formal derivations of programs soon become
very long and tedious. It is therefore very easy to make errors in the derivations.
So one is interested in formalizing the proofs in order to be able to mechanically
check them and to have computerized tools to construct them.

Several proof checkers for formal logics have been implemented. An early
example is the AUTOMATH system [31, 30] which was designed and imple-
mented by de Bruijn et al to check proofs of mathematical theorems. Quite
large proofs were checked by the system, for example the proofs in Landau’s
book: Grundlagen [58]. Another system which is more intended as a proof as-
sistant is the Edinburgh (Cambridge) LCF system [44, 85]. In this system a
user can construct proofs in Scotts’s logic for computable functions. The proofs
are constructed in a goal directed fashion, starting from the proposition the user
wants to prove and then using tactics to divide it into simpler propositions. The
LCF system also introduced the notion of metalanguage (ML) in which the user
could implement her own proof strategies. Based on the LCF system, a similar
system for Martin-Löf’s type theory was implemented in Göteborg 1982 [86].
Another, more advanced system for type theory was developed by Constable et
al at Cornell University [25].

In contrast with these systems, which were only suited for one particular
logical theory, logical frameworks have been designed and implemented. Harper,
Honsell and Plotkin have defined a logical framework called Edinburgh LF [48].
This theory was then implemented, using the Cornell Synthesizer. Paulson has
implemented a general logic proof assistant, Isabelle [83], and type theory is
one of the logics implemented in this framework. Huet and Coquand at INRIA
Paris also have an implementation of their Calculus of Constructions [56].

Chapter 2

The identification of sets,
propositions and
specifications

The judgement
a ∈ A

in type theory can be read in at least the following ways:

• a is an element in the set A.

• a is a proof object for the proposition A.

• a is a program satisfying the specification A.

• a is a solution to the problem A.

The reason for this is that the concepts set, proposition, specification and prob-
lem can be explained in the same way.

2.1 Propositions as sets

In order to explain how a proposition can be expressed as a set we will explain
the intuitionistic meaning of the logical constants, specifically in the way of
Heyting [50]. In classical mathematics, a proposition is thought of as being true
or false independently of whether we can prove or disprove it. On the other
hand, a proposition is constructively true only if we have a method of proving
it. For example, classically the law of excluded middle, A∨¬A, is true since
the proposition A is either true or false. Constructively, however, a disjunction
is true only if we can prove one of the disjuncts. Since we have no method of
proving or disproving an arbitrary proposition A, we have no proof of A∨¬A
and therefore the law of excluded middle is not intuitionistically valid.

So, the constructive explanations of propositions are spelled out in terms of
proofs and not in terms of a world of mathematical objects existing indepen-
dently of us. Let us first only consider implication and conjunction.

9

10CHAPTER 2. THE IDENTIFICATION OF SETS, PROPOSITIONS AND SPECIFICATIONS

A proof of A⊃B is a function (method, program) which to each
proof of A gives a proof of B.

For example, in order to prove A⊃A we have to give a method which to each
proof of A gives a proof of A; the obvious choice is the method which returns
its input as result. This is the identity function λx.x, using the λ-notation.

A proof of A &B is a pair whose first component is a proof of A and
whose second component is a proof of B.

If we denote the left projection by fst, i.e. fst(〈a, b〉) = a where 〈a, b〉 is the pair
of a and b, λx.fst(x) is a proof of (A &B) ⊃ A, which can be seen as follows.
Assume that

x is a proof of A &B

Since x must be a pair whose first component is a proof of A, we get

fst(x) is a proof of A

Hence, λx.fst(x) is a function which to each proof of A &B gives a proof of A,
i.e. λx.fst(x) is a proof of A &B⊃A.

The idea behind propositions as sets is to identify a proposition with the set
of its proofs. That a proposition is true then means that its corresponding set is
nonempty. For implication and conjunction we get, in view of the explanations
above,

A⊃B is identified with A → B, the set of functions from A to B.

and

A &B is identified with A×B, the cartesian product of A and B.

Using the λ-notation, the elements in A → B are of the form λx.b(x), where
b(x) ∈ B when x ∈ A, and the elements in set A×B are of the form 〈a, b〉 where
a ∈ A and b ∈ B.

These identifications may seem rather obvious, but, in case of implication,
it was first observed by Curry [28] but only as a formal correspondence of the
types of the basic combinators and the logical axioms for a language only in-
volving implication. This was extended to first order intuitionistic arithmetic by
Howard [52] in 1969. Similar ideas also occur in de Bruijn [31] and Lauchli [61].
Scott [97] was the first one to suggest a theory of constructions in which propo-
sitions are introduced by types. The idea of using constructions to represent
proofs is also related to recursive realizability interpretations, first developed by
Kleene [59] for intuitionistic arithmetic and extensively used in metamathemat-
ical investigations of constructive mathematics.

These ideas are incorporated in Martin-Löf’s type theory, which has enough
sets to express all the logical constants. In particular, type theory has function
sets and cartesian products which, as we have seen, makes it possible to express
implication and conjunction. Let us now see what set forming operations are
needed for the remaining logical constants.

A disjunction is constructively true only if we can prove one of the disjuncts.
So a proof of A∨B is either a proof of A or a proof of B together with the
information of which of A or B we have a proof. Hence,

2.1. PROPOSITIONS AS SETS 11

A∨B is identified with A + B, the disjoint union of A and B.

The elements in A+B are of the form inl(a) and inr(b), where a ∈ A and b ∈ B.
Using ≡ for definitional equality, we can define the negation of a proposition

A as:

¬A ≡ A⊃⊥

where ⊥ stands for absurdity, i.e. a proposition which has no proof. If we let ∅
denote the empty set, we have

¬A is identified with the set A → ∅

using the interpretation of implication.
For expressing propositional logic, we have only used sets (types) that are

available in many programming languages. In order to deal with the quantifiers,
however, we need operations defined on families of sets, i.e. sets B(x) depending
on elements x in some set A. Heyting’s explanation of the existential quantifier
is the following.

A proof of (∃x∈A)B(x) consists of a construction of an element a
in the set A together with a proof of B(a).

So, a proof of (∃x∈A)B(x) is a pair whose first component a is an element in the
set A and whose second component is a proof of B(a). The set corresponding
to this is the disjoint union of a family of sets, denoted by (Σx∈A)B(x). The
elements in this set are pairs 〈a, b〉 where a ∈ A and b ∈ B(a). We get the
following interpretation of the existential quantifier.

(∃x∈A)B(x) is identified with the set (Σx∈A)B(x)

Finally, we have the universal quantifier.

A proof of (∀x∈A)B(x) is a function (method, program) which to
each element a in the set A gives a proof of B(a).

The set corresponding to the universal quantifier is the cartesian product of a
family of sets, denoted by (Πx∈A)B(x). The elements in this set are functions
which, when applied to an element a in the set A gives an element in the set
B(a). Hence,

(∀x∈A)B(x) is identified with the set (Πx∈A)B(x).

The elements in (Πx∈A)B(x) are of the form λx.b(x) where b(x) ∈ B(x) for
x ∈ A.

Except the empty set, we have not yet introduced any sets that correspond
to atomic propositions. One such set is the equality set a =A b , which expresses
that a and b are equal elements in the set A. Recalling that a proposition is
identified with the set of its proofs, we see that this set is nonempty if and only
if a and b are equal. If a and b are equal elements in the set A, we postulate
that the constant id(a) is an element in the set a =A b. This is similar to
recursive realizability interpretations of arithmetic where one usually lets the
natural number 0 realize a true atomic formula.

12CHAPTER 2. THE IDENTIFICATION OF SETS, PROPOSITIONS AND SPECIFICATIONS

2.2 Propositions as tasks and specifications of
programs

Kolmogorov [60] suggested in 1932 that a proposition could be interpreted as a
problem or a task in the following way.

If A and B are tasks then

A &B is the task of solving the tasks A and B.

A∨B is the task of solving at least one of the tasks A and B.

A⊃B is the task of solving the task B under the assumption that
we have a solution of A.

He showed that the laws of the constructive propositional calculus can be vali-
dated by this interpretation. The interpretation can be used to specify the task
of a program in the following way.

A &B is a specification of programs which, when executed, yield a
pair 〈a, b〉, where a is a program for the task A and b is a program
for the task B.

A∨B is a specification of programs which, when executed, either
yields inl(a) or inr(b), where a is a program for A and b is a program
for B.

A⊃B is a specification of programs which, when executed, yields
λx.b(x), where b(x) is a program for B under the assumption that
x is a program for A.

This explanation can be extended to the quantifiers:

(∀x∈A)B(x) is a specification of programs which, when executed,
yields λx.b(x), where b(x) is a program for B(x) under the assump-
tion that x is an object of A. This means that when a program for
the problem (∀x∈A)B(x) is applied to an arbitrary object x of A,
the result will be a program for B(x).

(∃x∈A)B(x) specifies programs which, when executed, yields 〈a, b〉,
where a is an object of A and b a program for B(a). So, to solve the
task (∃x∈A)B(x) it is necessary to find a method which yields an
object a in A and a program for B(a).

To make this into a specification language for a programming language it is
of course necessary to add program forms which makes it possible to apply a
function to an argument, to compute the components of a pair, to find out how
a member of a disjoint union is built up, etc.

Chapter 3

Expressions and definitional
equality

This chapter describes a theory of expressions, abbreviations and definitional
equality. The theory was developed by Per Martin-Löf and first presented by
him at the Brouwer symposium in Holland, 1981; a further developed version
of the theory was presented in Siena 1983.

The theory is not limited to type theoretic expressions but is a general
theory of expressions in mathematics and computer science. We shall start with
an informal introduction of the four different expression forming operations in
the theory, then informally introduce arities and conclude with a more formal
treatment of the subject.

3.1 Application

In order to see what notions are needed when building up expressions, let us
start by analyzing the mathematical expression

y + sin y

We can view this expression as being obtained by applying the binary addition
operator + on y and sin(y), where the expression sin(y) has been obtained by
applying the unary function sin on y.

If we use the notation
e(e1, . . . , en)

for applying the expression e on e1, . . . , en, the expression above should be
written

+(y, sin(y))

and we can picture it as a syntax tree:

13

14 CHAPTER 3. EXPRESSIONS AND DEFINITIONAL EQUALITY

+
�����

PPPPP
y sin

y

Figure 3.1: Syntax tree for the expression +(y, sin(y))

Similarly, the expression (from ALGOL 68)

while x>0 do x:=x-1; f(x) od

is analyzed as

while(>(x,0),
;(:=(x,

-(x,1)
),

call(f,x)
)

)

The standard analysis of expressions in Computing Science is to use syntax
trees, i.e. to consider expressions being built up from n-ary constants using
application. A problem with that approach is the treatment of bound variables.

3.2 Abstraction

In the expression ∫ x

1

(y + sin(y))dy

the variable y serves only as a placeholder; we could equally well write∫ x

1

(u + sin(u))du or
∫ x

1

(z + sin(z))dz

The only purpose of the parts dy, du and dz, respectively, is to show what
variable is used as the placeholder. If we let 2 denote a place, we could write∫ x

1

(2 + sin(2))

for the expression formed by applying the ternary integration operator
∫

on the
integrand 2 + sin(2) and the integration limits 1 and x. The integrand has
been obtained by functional abstraction of y from y + sin(y). We will use the
notation

(x)e

3.3. COMBINATION 15

for the expression obtained by functional abstraction of the variable x in e, i.e.
the expression obtained from e by looking at all free occurrences of the variable
x in e as holes. So, the integral should be written∫

(((y) +(y, sin(y))), 1, x)

Since we have introduced syntactical operations for both application and
abstraction it is possible to express an object by different syntactical forms. An
object which syntactically could be expressed by the expression

e

could equally well be expressed by

((x)e)(x)

When two expressions are syntactical synonyms, we say that they are defini-
tionally, or intensionally, equal, and we will use the symbol ≡ for definitional
(intensional) equality between expressions. The definitional equality between
the expressions above is therefore written:

e ≡ ((x)e)(x)

Note that definitional equality is a syntactical notion and that it has nothing
to do with the meaning of the syntactical entities.

We conclude with a few other examples of how to analyze common expres-
sions using application and abstraction:

n∑
i=1

1
i2

≡
∑

(1, n, ((i)/(1, sqr(i))))

(∀x∈N)(x ≥ 0) ≡ ∀(N, ((x) ≥(x, 0)))

for i from 1 to n do S ≡ for(1, n, ((i)S)))

3.3 Combination

We have already seen examples of applications where the operator has been
applied to more than one expression, for example in the expression +(y, sin(y)).
There are several possibilities to syntactically analyze this situation. It is pos-
sible to understand the application operation in such a way that an operator
in an application may be applied to any number of arguments. Another way
is to see such an application just as a notational shorthand for a repeated use
of a binary application operation, that is e(e1, . . . , en) is just a shorthand for
(. . . ((e(e1)) . . . (en)). A third way, and this is the way we shall follow, is to
see the combination of expressions as a separate syntactical operation just as
application and abstraction. So if e1, e2 . . . and en are expressions, we may
form the expression

e1, e2, . . . , en

which we call the combination of e1, e2, . . . and en.

16 CHAPTER 3. EXPRESSIONS AND DEFINITIONAL EQUALITY

Besides its obvious use in connection with functions of several arguments,
the combination operation is also used for forming combined objects such as
orderings

A,≤

where A is a set and ≤ is a reflexive, antisymmetric and transitive relation on
A, and finite state machines,

S, s0,Σ, δ

where S is a finite set of states, s0 ∈ S is an initial state, Σ an alphabet and δ
a transition/output function.

3.4 Selection

Given an expression, which is a combination, we can use the syntactical opera-
tion selection to retrieve its components. If e is a combination with n compo-
nents, then

(e).i

is an expression that denotes the i’th component of e if 1 ≤ i ≤ n. We have the
defining equation

(e1, . . . , en).i ≡ ei

where 1 ≤ i ≤ n.

3.5 Combinations with named components

The components of the combinations we have introduced so far have been de-
termined by their position in the combination. In many situations it is much
more convenient to use names to distinguish the components. We will therefore
also introduce a variant where we form a combination not only of expressions
but also of names that will identify the components. If e1, e2 . . . and en are
expressions and i1, i2 . . . and in, (n > 1), are different names, then we can form
the expression

i1 : e1, i2 : e2, . . . , in : en

which we call a combination with named components.
To retrieve a component from a combination with named components, the

name of the component, of course, is used instead of the position number. So if
e is a combination with names i1, . . ., in, then

(e).ij

(where ij is one of i1, . . . , in) is an expression that denotes the component with
name ij .

We will not need combinations with named components in this monograph
and will not explore them further.

3.6. ARITIES 17

3.6 Arities

From the examples above, it seems perhaps natural to let expressions in general
be built up from variables and primitive constants by means of abstraction,
application, combination and selection without any restrictions. This is also
the analysis, leaving out combinations, made by Church and Curry and their
followers in combinatory logic.

However, there are unnatural consequences of this way of defining expres-
sions. One is that you may apply, e.g., the expression succ, representing the
successor function, on a combination with arbitrarily many components and
form expressions like succ(x1, x2, x3), although the successor function only has
one argument. You may also select a component from an expression which is not
a combination, or select the m’th component (m > n) from a combination with
only n components. Another consequence is that self-application is allowed;
you may form expressions like succ(succ). Self-application, together with the
defining equation for abstraction:

((x)d)(e) ≡ d[x := e]

where d[x := e] denotes the result of substituting e for all free occurrences of
x in d, leads to expressions in which definitions cannot be eliminated. This is
seen by the well-known example

((x)x(x))((x)x(x)) ≡ ((x)x(x))((x)x(x)) ≡ . . .

From Church [21] we also know that if expressions and definitional equality
are analyzed in this way, it will not be decidable whether two expressions are
definitionally equal or not. This will have effect on the usage of a formal system
of proof rules since it must be mechanically decidable if a proof rule is properly
applied. For instance, in Modus Ponens

A⊃B A

B

it would be infeasible to require anything but that the implicand of the first
premise is definitionally equal to the second premise. Therefore, definitional
equality must be decidable and definitions should be eliminable. The analysis
given in combinatory logic of these concepts is thus not acceptable for our
purposes. Per Martin-Löf has suggested, by going back to Frege [39], that with
each expression there should be associated an arity, showing the “functionality”
of the expression. Instead of just having one syntactical category of expressions,
as in combinatory logic, the expressions are divided into different categories
according to which syntactical operations are applicable. The arities are similar
to the types in typed λ-calculus, at least from a formal point of view.

An expression is either combined, in which case it is possible to select com-
ponents from it, or it is single. Another division is between unsaturated ex-
pressions, which can be operators in applications, and saturated expressions,
which cannot. The expressions which are both single and saturated have arity
0, and neither application nor selection can be performed on such expressions.
The unsaturated expressions have arities of the form (α→→β), where α and β
are arities; such expressions may be applied to expressions of arity α and the
application gets arity β. For instance, the expression sin has arity (0→→0) and

18 CHAPTER 3. EXPRESSIONS AND DEFINITIONAL EQUALITY

may be applied to a variable x of arity 0 to form the expression sin(x) of arity
0. The combined expressions have arities of the form (α1⊗ . . .⊗αn), and from
expressions of this arity, one may select the i′th component if 1 ≤ i ≤ n. The
selected component is, of course, of arity αi. For instance, an ordering A,≤ has
arity (0⊗((0⊗0)→→0)).

So we make the definition:

Definition 1 The arities are inductively defined as follows

1. 0 is an arity; the arity of single, saturated expressions.

2. If α1, . . . , αn (n ≥ 2) are arities, then (α1⊗ · · ·⊗αn) is an arity; the arity
of a combined expression.

3. If α and β are arities, then (α→→β) is an arity; the arity of unsaturated
expressions.

The inductive clauses generate different arities; two arities are equal only if they
are syntactically identical. The arities will often be written without parentheses;
in case of conflict, like in

0→→0⊗0

→→ will have lower priority than ⊗. The arity above should therefore be under-
stood as

(0→→(0⊗0))

We always assume that every variable and every primitive (predefined) constant
has a unique arity associated with it.

The arities of some of the variables and constants we have used above are:

Expression Arity
y 0
x 0
1 0
sin 0→→0
succ 0→→0
+ 0⊗0→→0∫

((0→→0)⊗0⊗0)→→0

From the rules of forming expressions of a certain arity, which we will give, it
is easy to derive the arities

Expression Arity
sin(y) 0
+(y, sin(y)) 0
(y) + (y, sin(y)) 0→→0∫

((y) + (y, sin(y)), 1, x) 0
succ(x) 0

However, neither succ(succ) nor succ(x)(x) can be formed, since succ can only
be applied to expressions of arity 0 and succ(x) is a complete expression which
can not be applied to any expression whatsoever.

3.7. DEFINITIONS 19

3.7 Definitions

We allow abbreviatory definitions (macros) of the form

c ≡ e

where c is a unique identifier and e is an expression without free variables. We
will often write

c(x1, x2, . . . , xn) ≡ e

instead of

c ≡ (x1, x2, . . . , xn)e

In a definition, the left hand side is called definiendum and the right hand
side definiens.

3.8 Definition of what an expression of a certain
arity is

In the rest of this chapter, we will explain how expressions are built up from
variables and primitive constants, each with an arity, and explain when two
expressions are (definitionally, intensionally) equal.

1. Variables. If x is a variable of arity α, then

x

is an expression of arity α.

2. Primitive constants. If c is a primitive constant of arity α, then

c

is an expression of arity α.

3. Defined constants. If, in an abbreviatory definition, the definiens is an
expression of arity α, then so is the definiendum.

4. Application. If d is an expression of arity α→→β and a is an expression of
arity α, then

d(a)

is an expression of arity β.

5. Abstraction. If b is an expression of arity β and x a variable of arity α,
then

((x)b)

is an expression of arity α→→β. In cases where no ambiguities can occur,
we will remove the outermost parenthesis.

20 CHAPTER 3. EXPRESSIONS AND DEFINITIONAL EQUALITY

6. Combination. If a1 is an expression of arity α1, a2 is an expression of arity
α2, . . . and an is an expression of arity αn, 2 ≤ n, then

a1, a2, . . . , an

is an expression of arity α1⊗α2⊗ · · ·⊗αn.

7. Selection. If a is an expression of arity α1⊗ · · ·⊗αn and 1 ≤ i ≤ n, then

(a).i

is an expression of arity αi.

3.9 Definition of equality between two expres-
sions

We will use the notation a : α for a is an expression of arity α and a ≡ b : α for
a and b are equal expressions of arity α.

1. Variables. If x is a variable of arity α, then

x ≡ x : α

2. Constants. If c is a constant of arity α, then

c ≡ c : α

3. Definiendum ≡ Definiens. If a is a definiendum with definiens b of arity
α, then

a ≡ b : α

4. Application 1. If a ≡ a′ : α→→β and b ≡ b′ : α, then

a(b) ≡ a′(b′) : β

5. Application 2. (β-rule). If x is a variable of arity α, a an expression of
arity α and b an expression of arity β, then

((x)b)(a) ≡ b[x := a] : β

provided that no free variables in a becomes bound in b[x := a].

6. Abstraction 1. (ξ-rule). If x is a variable of arity α and b ≡ b′ : β, then

(x)b ≡ (x)b′ : α→→β

7. Abstraction 2. (α-rule). If x and y are variables of arity α and b : β, then

(x)b ≡ (y)(b[x := y]) : α→→β

provided that y does not occur free in b.

3.9. DEFINITION OF EQUALITY BETWEEN TWO EXPRESSIONS 21

8. Abstraction 3. (η-rule). If x is a variable of arity α and b is an expression
of arity α→→β, then

(x)(b(x)) ≡ b : α→→β

provided that x does not occur free in b.

9. Combination 1. If a1 ≡ a′1 : α1, a2 ≡ a′2 : α2, . . . and an ≡ a′n : αn, then

a1, a2, . . . , an ≡ a′1, a
′
2, . . . , a

′
n : α1⊗α2⊗ · · ·⊗αn

10. Combination 2. If e : α1⊗ · · ·⊗αn then

(e).1, (e).2, . . . , (e).n ≡ e : α1⊗ · · ·⊗αn

11. Selection 1. If a ≡ a′ : α1⊗ · · ·⊗αn and 1 ≤ i ≤ n, then

(a).i ≡ (a′).i : αi

12. Selection 2. If a1 : α1, . . . , an : αn and 1 ≤ i ≤ n then

(a1, . . . an).i ≡ ai : αi

13. Reflexivity. If a : α, then a ≡ a : α.

14. Symmetry. If a ≡ b : α, then b ≡ a : α.

15. Transitivity. If a ≡ b : α and b ≡ c : α, then a ≡ c : α.

From a formal point of view, this is similar to typed λ-calculus. The proof
of the decidability of equality in typed λ-calculus can be modified to yield a
proof of decidability of ≡. It is also possible to define a normal form such that
an expression on normal form does not contain any subexpressions of the forms
((x)b)(a) and (a1, . . . , an).i. It is then possible to prove that every expression
is definitionally equal to an expression on normal form. Such a normalization
theorem, leaving out combinations, is proved in Bjerner [14].

A note on the concrete syntax used in this book

When we are writing expressions in type theory we are not going to restrict
ourselves to prefix constants but will use a more liberal syntax. We will freely
use parentheses for grouping and will in general introduce new syntax by explicit
definitions, like

(Πx∈A)B(x) ≡ Π(A,B)

If x is a variable of arity α1⊗ · · ·⊗αn we will often use a form of pattern
matching and write

(x1, . . . , xn)e

instead of (x)e and, correspondingly, write xi instead of x.i for occurrences of
x.i in the expression e.

22 CHAPTER 3. EXPRESSIONS AND DEFINITIONAL EQUALITY

Part I

Polymorphic sets

23

Chapter 4

The semantics of the
judgement forms

In the previous chapter, we presented a theory of expressions which is the syn-
tactical basis of type theory. We will now proceed by giving the semantics of
the polymorphic set theory. We will do that by explaining the meaning of a
judgement of each of the forms

• A is a set

• A1 and A2 are equal sets

• a is an element in the set A

• a1 and a2 are equal elements in the set A

When reading a set as a proposition, we will also use the judgement forms

• A is a proposition

• A is true,

where the first is the same as the judgement that A is a set and the second one
means the same as the judgement a is an element in A, but we do’t write down
the element a. We will later, in chapter 18 introduce subsets and then separate
propositions and sets.

The explanation of the judgement forms is, together with the theory of ex-
pressions, the foundation on which type theory is built by the introduction of
various individual sets. So, the semantical explanation, as well as the intro-
duction of the particular sets, is independent of and comes before any formal
system for type theory. And it is through this semantics that the formal rules
we will give later are justified.

The direct semantics will be explained starting from the primitive notion of
computation (evaluation); i.e. the purely mechanical procedure of finding the
value of a closed saturated expression. Since the semantics of the judgement
forms does not depend on what particular primitive constants we have in the
language, we will postpone the enumeration of all the constants and the com-
putation rules to later chapters where the individual sets are introduced. A

25

26 CHAPTER 4. THE SEMANTICS OF THE JUDGEMENT FORMS

summary of the constants and their arities is also in appendix A.1. Concerning
the computation of expressions in type theory, it is sufficient to know that the
general strategy is to evaluate them from without, i.e. normal order or lazy
evaluation is used.

The semantics is based on the notion of canonical expression. The canonical
expressions are the values of programs and for each set we will give conditions
for how to form a canonical expression of that set. Since canonical expressions
represents values, they must be closed and saturated. Examples of expressions,
in other programming languages, that correspond to canonical expressions in
type theory, are

3, true, cons(1, cons(2, nil)) and λx.x

and expressions that correspond to noncanonical expressions are, for example,

3+5, if 3 = 4 then fst(〈3, 4〉) else snd(〈3, 4〉) and (λx.x + 1)(12 + 13)

Since all primitive constants we use have arities of the form α1⊗ . . .⊗αn→→0,
n ≥ 0, the normal form of a closed saturated expression is always of the form

c(e1, e2, . . . , en) for n ≥ 0

where c is a primitive constant and e1, e2,. . . and en are expressions. In type
theory, the distinction between canonical and noncanonical expressions can al-
ways be made from the constant c. It therefore makes sense to divide also the
primitive constants into canonical and noncanonical ones. A canonical constant
is, of course, one that begins a canonical expression. To a noncanonical con-
stant there will always be associated a computation rule. Since the general
strategy for computing expressions is from without, the computation process,
for a closed saturated expression, will continue until an expression which starts
with a canonical constant is reached. So an expression is considered evaluated
when it is of the form

c(e1, e2, . . . , en)

where c is a canonical constant, regardless of whether the expressions e1, . . . , en

are evaluated or not. The expressions

true, succ(0), succ(2 + 3) and cons(3, append(cons(1, nil), nil))

all begin with a canonical constant and are therefore evaluated. This may seem
a little counterintuitive, but the reason is that when variable binding operations
are introduced, it may be impossible to evaluate one or several parts of an
expression. For example, consider the expression λ((x)b), where the part (x)b
cannot be evaluated since it is an unsaturated expression. To compute it would
be like taking a program which expects input and trying to execute it without
any input data.

In order to have a notion that more closely corresponds to what one normally
means by a value and an evaluated expression, we will call a closed saturated
expression fully evaluated when it is evaluated and all its saturated parts are
fully evaluated. The expressions

true, succ(0) and λ((x)(x + 1))

4.1. CATEGORICAL JUDGEMENTS 27

are fully evaluated, but

succ(2 + 3) and cons(3, append(cons(1, nil), nil))

are not.
Now that we have defined what it means for an expression to be on canonical

form, we can proceed with the explanations of the judgement forms:

• A is a set

• A1 and A2 are equal sets

• a is an element in the set A

• a1 and a2 are equal elements in the set A

• A is a proposition

• A is true

4.1 Categorical judgements

In general, a judgement is made under assumptions, but we will start to explain
the categorical judgements, that is, judgements without assumptions.

4.1.1 What does it mean to be a set?

The judgement that A is a set, which is written

A set

is explained as follows:

To know that A is a set is to know how to form the canonical elements
in the set and under what conditions two canonical elements are
equal.

A requirement on this is that the equality relation introduced between the canon-
ical elements must be an equivalence relation. Equality on canonical elements
must also be defined so that two canonical elements are equal if they have the
same form and their parts are equal. So in order to define a set, we must

• Give a prescription of how to form (construct) the canonical elements,
i.e. define the syntax of the canonical expressions and the premises for
forming them.

• Give the premises for forming two equal canonical elements.

28 CHAPTER 4. THE SEMANTICS OF THE JUDGEMENT FORMS

4.1.2 What does it mean for two sets to be equal?

Let A and B be sets. Then, according to the explanation of the first judgement
form above, we know how to form the canonical elements together with the
equality relation on them. The judgement that A and B are equal sets, which
is written

A = B

is explained as follows:

To know that two sets, A and B, are equal is to know that a canon-
ical element in the set A is also a canonical element in the set B
and, moreover, equal canonical elements of the set A are also equal
canonical elements of the set B, and vice versa.

So in order to assert A = B we must know that

• A is a set

• B is a set

• If a is a canonical element in the set A, then it is also a canonical element
in the set B.

• If a and a′ are equal canonical elements of the set A, then they are also
equal canonical elements in the set B.

• If b is a canonical element in the set B, then it is also a canonical element
in the set A.

• If b and b′ are equal canonical elements in the set B, then they are also
equal canonical elements in the set A.

From this explanation of what it means for two sets to be equal, it is clear that
the relation of set equality is an equivalence relation.

4.1.3 What does it mean to be an element in a set?

The third judgement form, saying that a is an element in the set A, which is
written

a ∈ A

is explained as follows:

If A is a set then to know that a ∈ A is to know that a, when
evaluated, yields a canonical element in A as value.

In order to assert a ∈ A, we must know that A is a set and that the expression
a yields a canonical element of A as value.

4.2. HYPOTHETICAL JUDGEMENTS WITH ONE ASSUMPTION 29

4.1.4 What does it mean for two elements to be equal in
a set?

If A is a set, then we can say what it means for two elements in the set A to be
equal. The explanation is:

To know that a and b are equal elements in the set A, is to know
that they yield equal canonical elements in the set A as values.

Since it is an assumption that A is a set, we already know what it means to be
a canonical element in the set A and how the equality relation on the canonical
elements is defined. Consequently, we know what the judgement that the values
of a and b are equal canonical elements in the set A means. The judgement
saying that a and b are equal elements in the set A is written

a = b ∈ A

4.1.5 What does it mean to be a proposition?

To know that A is a proposition is to know that A is a set.

4.1.6 What does it mean for a proposition to be true?

To know that the proposition A is true is to have an element a in A.

4.2 Hypothetical judgements with one assump-
tion

The next step is to extend the explanations for assumption free judgements to
cover also hypothetical ones. The simplest assumption is of the form

x ∈ A

where x is a variable of arity 0 and A is a set.
Since sets and propositions are identified in type theory, an assumption can

be read in two different ways:

1. As a variable declaration, that is, declaring the set which a free variable
ranges over, for example, x ∈ N and y ∈ Bool.

2. As an ordinary logical assumption, that is, x ∈ A means that we assume
that the proposition A is true and x is a construction for it.

Being a set, however, may also depend on assumptions. For example, a =A b,
which expresses equality on the set A and is defined in chapter 8, is a set only
when a ∈ A and b ∈ A. So we are only interested in assumption lists

x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, x2, . . . , xn−1)

where each Ai(x1, . . . , xi−1) is a set under the preceding assumptions. Such lists
are called contexts . We limit ourselves here to assumptions whose variables
are of arity 0; they are sufficient for everything in type theory except for the
elimination rule involving the primitive constant funsplit (chapter 7) and the

30 CHAPTER 4. THE SEMANTICS OF THE JUDGEMENT FORMS

natural formulation of the elimination rule for well-orderings. A more general
kind of assumption is presented in chapter 19.

Now we can extend the semantic explanations to judgements depending on
contexts with assumptions of the form described above. The meaning of an
arbitrary judgement is explained by induction on the length n of its context.
We have already given the meaning of judgements with empty contexts and,
as induction hypothesis, we assume that we know what judgements mean when
they have contexts of length n−1. However, in order not to get the explanations
hidden by heavy notation, we will first treat the case with just one assumption.

4.2.1 What does it mean to be a set under an assumption?

To know the judgement

A(x) set [x ∈ C]

is to know that for an arbitrary element c in the set C, A(c) is a set. Here it is
assumed that C is a set so we already know what c ∈ C means. We must also
know that A(x) is extensional in the sense that if b = c ∈ C then A(b) = A(c).

4.2.2 What does it mean for two sets to be equal under
an assumption?

The second judgement form is explained as follows: To know that

A(x) = B(x) [x ∈ C]

is to know that

A(c) = B(c)

for an arbitrary element c in the set C. Here it is assumed that the judgements
A(x) set [x ∈ C] and B(x) set [x ∈ C] hold. Hence, we know what the
judgement A(c) = B(c) means, namely that a canonical element in the set A(c)
is also a canonical element in the set B(c) and equal canonical elements in the
set A(c) are equal canonical elements in the set B(c) and vice versa.

4.2.3 What does it mean to be an element in a set under
an assumption?

To know that

a(x) ∈ A(x) [x ∈ C]

is to know that a(c) ∈ A(c) for an arbitrary element c in the set C. It is here
assumed that the judgement A(x) set [x ∈ C] holds and hence we know what
it means for an expression to be an element in the set A(c). Hence, we know
the meaning of a(c) ∈ A(c). In order to make a judgement of this form, we
must also know that a(x) is extensional in the sense that if b = c ∈ C then
a(b) = a(c) ∈ A(c).

4.3. HYPOTHETICAL JUDGEMENTS WITH SEVERAL ASSUMPTIONS31

4.2.4 What does it mean for two elements to be equal in
a set under an assumption?

To know the judgement

a(x) = b(x) ∈ A(x) [x ∈ C]

is to know that a(c) = b(c) ∈ A(c) holds for an arbitrary element c in the set C.
It is here assumed that the judgements A(x) set, a(x) ∈ A(x) and b(x) ∈ A(x)
hold under the assumption that x ∈ C.

4.2.5 What does it mean to be a proposition under an
assumption?

To know that A(x) is a proposition under the assumption that x ∈ C is to know
that A(x) is a set under the assumption that x ∈ C.

4.2.6 What does it mean for a proposition to be true un-
der an assumption?

To know that the proposition A(x) is true under the assumption that x ∈ C is
to have an expression a(x) and know the judgement a(x) ∈ A(x) [x ∈ C].

4.3 Hypothetical judgements with several assump-
tions

We now come to the induction step. The general case of contexts of length n is
a straightforward generalization of the case with just one assumption.

4.3.1 What does it mean to be a set under several as-
sumptions?

To know that

A(x1, . . . , xn) set [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

is to know that

A(c, . . . , xn) set [x2 ∈ C2(c), . . . , xn ∈ Cn(c, . . . , xn−1)]

provided c ∈ C1. So

A(x1, . . . , xn) set [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

means that

A(c1, . . . , cn) set

provided
c1 ∈ C1

...
cn ∈ Cn(c1, . . . , cn−1)

32 CHAPTER 4. THE SEMANTICS OF THE JUDGEMENT FORMS

It is also inherent in the meaning of a propositional function (family of sets)
that it is extensional in the sense that when applied to equal elements in the
domain it will yield equal propositions as result. So, if we have that

a1 = b1 ∈ C1

a2 = b2 ∈ C2(a1)
...

an = bn ∈ Cn(a1, . . . , an)

then it follows from

A(x1, . . . , xn) set [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

that

A(a1, . . . , an) = A(b1, . . . , bn)

4.3.2 What does it mean for two sets to be equal under
several assumptions?

Hypothetical judgements of the other forms are defined in a similar way. The
second judgement form is explained as follows.

Let A(x1, . . . , xn) and B(x1, . . . , xn) be sets in the context

x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)

Then to know the judgement

A(x1, . . . , xn) = B(x1, . . . xn) [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

is to know that

A(c, . . . , xn) = B(c, . . . , xn) [x2 ∈ C2(c), . . . , xn ∈ Cn(c, x2, . . . , xn−1)]

provided c ∈ C1.

4.3.3 What does it mean to be an element in a set under
several assumptions?

The third judgement form has the following explanation for a context of length
n. Let A(x1, . . . , xn) be a set in the context x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1).
Then to know the judgement

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

is to know that

a(c, x2, . . . , xn) ∈ A(c, x2, . . . , xn) [x2 ∈ C2(c), . . . , xn ∈ Cn(c1, . . . , xn−1)]

provided c ∈ C1.

4.3. HYPOTHETICAL JUDGEMENTS WITH SEVERAL ASSUMPTIONS33

It is also inherent in the meaning of being a functional expression in a set
that it is extensional in the sense that if it is applied to equal elements in the
domain it will yield equal elements in the range. So, if we have

a1 = b1 ∈ C1

a2 = b2 ∈ C2(a1)
...

an = bn ∈ Cn(a1, . . . , an)

then it follows from

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

that
a(a1, . . . , an) = a(b1, . . . , bn) ∈ A(a1, . . . , an).

4.3.4 What does it mean for two elements to be equal in
a set under several assumptions?

The fourth judgement form is explained as follows. Let a(x1, . . . , xn) and
b(x1, . . . , xn) be elements in the set A(x1, . . . , xn) in the context

x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1).

Then to know that

a(x1, . . . , xn) = b(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ C1, . . . ,
xn ∈ Cn(x1, . . . , xn−1)]

is to know that

a(c, x2, . . . , xn) = b(c, x2, . . . , xn) ∈ A(c, x2, . . . , xn) [x2 ∈ C2(c), . . . ,
xn ∈ Cn(c, x2, . . . , xn−1)]

provided c ∈ C1.

4.3.5 What does it mean to be a proposition under several
assumptions?

To know

A(x1, . . . , xn) prop [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

is to know that

A(x1, . . . , xn) set [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

4.3.6 What does it mean for a proposition to be true un-
der several assumptions?

To know

A(x1, . . . , xn) true [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

is to have an expression a(x1, . . . , xn) and know the judgement

a(x1, . . . , xn) ∈ A(x1, . . . , xn) set [x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)]

34 CHAPTER 4. THE SEMANTICS OF THE JUDGEMENT FORMS

Chapter 5

General rules

In a formal system for type theory there are first some general rules concerning
equality and substitution. These rules can be justified from the semantical
explanations given in the previous chapter. Then, for each set forming operation
there are rules for reasoning about the set and its elements.

For each set forming operation there are four kinds of rules.

• The formation rules for A describe under which conditions we may infer
that A is a set and when two sets A and B are equal.

• The introduction rules define the set A in that they prescribe how the
canonical elements are formed and when two canonical elements are equal.
The constructors for the set are introduced in these rules.

• The elimination rules show how to prove a proposition about an arbitrary
element in the set. These rules are a kind of structural induction rules
in that they state that to prove that an arbitrary element p in the set
A has a property C(p) it is enough to prove that an arbitrary canonical
element in the set has that property. The selector, which is a primitive
noncanonical constant associated with the set is introduced in this kind
of rule. It is the selector which makes it possible to do pattern-matching
and primitive recursion over the elements in the set.

• The equality rules describe the equalities which are introduced by the the
computation rules for the selector associated with the set.

In this chapter we will present the general rules, and in later chapters set
forming operations and their rules.

We will present the rules in a natural deduction style

P1 P2 · · · Pn

C

where the premises P1, P2, . . . , Pn and the conclusion C in general are hypo-
thetical judgements. When all the premises do not fit on one line, we write the

35

36 CHAPTER 5. GENERAL RULES

rule with one premise on each line:

P1

P2

...
Pn

C

When we write a rule, we will only present those assumptions that are dis-
charged by the rule. The formation rule for Π will, for instance, be written

A set B(x) set [x ∈ A]
Π(A,B) set

The full form of this rule with assumption lists Γ and ∆ is

A set [Γ] B(x) set [∆, x ∈ A]
Π(A,B) set [Γ,∆]

A rule like this one is applicable to form a proof of the conclusion if we have
proofs of the two judgements

• A set [Γ′]

• B(x) set [∆′]

and the assumption lists Γ′ and ∆′ in those judgements have the following
properties

• Γ′ must not contain an assumption for the variable x.

• If there are assumptions for the same variable in Γ′ and ∆′ the sets in the
assumptions must be identical, i.e., definitionally equal.

• If there is an assumption for the variable x in ∆′ it must be the last
assumption and the set must be A.

The assumption list [Γ,∆], in the rule above, consists of the assumptions in Γ
followed by those assumptions in ∆ which do not occur in Γ.

If a rule has a premise of the form a ∈ A, we will often exclude the premise
A set and if a premise has the form A = B we will often exclude the premises
A set and B set. And similarly, if the premise is of the form a = b ∈ A, we
will often exclude the premises A set, a ∈ A and b ∈ A. We also extend this
to families of sets, so if we have a premise of the form a(x) ∈ B(x) [x ∈ A]
we exclude the premises A set and B(x) set [x ∈ A]. That these premises are
required follows from the explanation of a ∈ A, A = B and a = b ∈ A. The full
form of the introduction rule for →

b(x) ∈ B [x ∈ A]
λ(b) ∈ A → B

is therefore

A set [Γ] B set [∆] b(x) ∈ B [Θ, x ∈ A]
λ(b) ∈ A → B [Γ,∆,Θ]

where A, B and b may have occurrences of the variables that are introduced in
the assumption lists Γ, ∆ and Θ respectively.

5.1. ASSUMPTIONS 37

5.1 Assumptions

The first rule we give is the one which makes it possible to introduce assump-
tions.

Assumption
A set

x ∈ A [x ∈ A]

This rule says that if A is a set, then we can introduce a variable x of that set.
By the correspondence between propositions and sets, and the interpretation

of true propositions as nonempty sets, the assumption x ∈ A also serves as the
assumption that the proposition A is true. An assumption of the form A true
is therefore an abbreviation of an assumption x ∈ A where x is a new variable.

Applying the assumption rule on the premise A set gives us the judgement
x ∈ A [x ∈ A]. We can see the variable x as a name of an indeterminate proof-
element of the proposition A. One way to discharge the assumption x ∈ A
is to find an element a in the set A and substitute it for all free occurrences
of x. Formally this is done by applying one of the substitution rules that are
introduced in section 5.5.

5.2 Propositions as sets

If we have an element in a set, then we will interpret that set as a true propo-
sition. We have the rule:

Proposition as set
a ∈ A

A true

5.3 Equality rules

We have the following general equality rules:
Reflexivity

a ∈ A

a = a ∈ A

A set

A = A

Symmetry

a = b ∈ A

b = a ∈ A

A = B

B = A

Transitivity

a = b ∈ A b = c ∈ A

a = c ∈ A

A = B B = C

A = C

The rules concerning equality between elements can be justified from the fact
that they hold for canonical elements. For instance, the symmetry rule can be
justified in the following way: That a = b ∈ A means that a′ = b′ ∈ A, where

38 CHAPTER 5. GENERAL RULES

a′ is the value of a and b′ is the value of b. Since equality between canonical
elements is symmetric we have b′ = a′ ∈ A, which gives that b = a ∈ A.

The other rules are also easily justified, for example the rule concerning
symmetry of equality between sets: The meaning of A = B is that canonical
elements in A are canonical in B and equal canonical elements in A are equal
canonical elements in B. The judgement also means that canonical elements in
B are canonical in A and that equal canonical elements in B are equal canonical
elements in A. By just changing the order of these two sentences we get the
definition of what B = A means.

5.4 Set rules

The meanings of the judgement forms A = B, a ∈ A and a = b ∈ A immediately
justify the following rules:

Set equality

a ∈ A A = B

a ∈ B

a = b ∈ A A = B

a = b ∈ B

5.5 Substitution rules

The meanings of the four judgement forms when they depend on a nonempty
context yield four sets of substitution rules. The judgement

C(x) set [x ∈ A]

means that C(a) is a set, provided a ∈ A, and that C(a) = C(b) whenever
a = b ∈ A. This explanation immediately gives us the rules:

Substitution in sets

C(x) set [x ∈ A] a ∈ A

C(a) set

C(x) set [x ∈ A] a = b ∈ A

C(a) = C(b)

The judgement
c(x) ∈ C(x) [x ∈ A]

means that c(a) ∈ C(a) if a ∈ A and that c(a) = c(b) ∈ C(a) if a = b ∈ A. This
justifies the rules:

Substitution in elements

c(x) ∈ C(x) [x ∈ A] a ∈ A

c(a) ∈ C(a)
c(x) ∈ C(x) [x ∈ A] a = b ∈ A

c(a) = c(b) ∈ C(a)

If we read C(x) as a proposition, and consequently c(x) as a proof-element
of the proposition, these rules can be used to discharge an assumption. When a
judgement depends on the assumption that x is a proof-element of the proposi-
tion A, we can substitute an actual proof-element for the indeterminate proof-
element x and discharge the assumption x ∈ A.

5.5. SUBSTITUTION RULES 39

The meaning of the hypothetical judgement

B(x) = C(x) [x ∈ A]

is that B(a) and C(a) are equal sets for any element a in A. Therefore we have
the rule

Substitution in equal sets

B(x) = C(x) [x ∈ A] a ∈ A

B(a) = C(a)

Finally, we have the hypothetical judgement

b(x) = c(x) ∈ B(x) [x ∈ A]

which means that b(a) and c(a) are equal elements in B(a), provided that a ∈ A.
This justifies the rule

Substitution in equal elements

b(x) = c(x) ∈ B(x) [x ∈ A] a ∈ A

b(a) = c(a) ∈ B(a)

These rules for substitution are not sufficient because if we have a judgement

C(x, y) set [x ∈ A, y ∈ B(x)]

and want to substitute a ∈ A for x and b ∈ B(a) for y we cannot use the rules
given above since they cannot handle the case with simultaneous substitution of
several variables. We therefore extend the substitution rules to n simultaneous
substitutions. We present only the rule for substitution in equal sets.

Substitution in equal sets of n variables

B(x1, . . . , xn) = C(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1]
a1 ∈ A1

...
an ∈ An(a1, . . . , an−1

B(a1, . . . , an) = C(a1, . . . , an)

The rule is justified from the meaning of a hypothetical judgement with several
assumptions.

Another way to achieve the same effect is to allow substitution in the middle
of a context. For example if we have a judgement

C(x, y) set [x ∈ A, y ∈ B(x)]

we could first substitute a ∈ A for x obtaining the judgement

C(a, y) set [y ∈ B(a)]

then substitute b ∈ B(a) for y. When using type theory to do formal proofs, it
is convenient to have substitution rules of this form.

40 CHAPTER 5. GENERAL RULES

Chapter 6

Enumeration sets

Given n canonical constants i1, . . . , in, each of arity 0, we want to be able
to introduce the enumeration set {i1, . . . , in}. So, we introduce a constant
{i1, . . . , in} of arity 0. It must be immediate from each identifier ik to which
enumeration set it belongs and what position (index) it has. The convention
we will follow is that an identifier can only belong to one enumeration set and
the first occurrence of the set decides the index of the elements. We have the
following formation rule:

{i1, . . . , in} – formation

{i1, . . . , in} set

The canonical elements of {i1, ..., in} are i1, i2, . . . and in which gives the
following n introduction rules (n ≥ 0):

{i1, . . . , in} – introduction 1

i1 ∈ {i1, . . . , in} . . . in ∈ {i1, . . . , in}

Two canonical elements of {i1, . . . , in} are equal only if they are the same canon-
ical constants:

{i1, . . . , in} – introduction 2

i1 = i1 ∈ {i1, . . . , in} . . . in = in ∈ {i1, . . . , in}

The selector expression for {i1, . . . , in} is the expression

case{i1,...,in}(a, b1, . . . , bn)

where case{i1,...,in} is a constant of arity 0⊗ · · ·⊗0→→0. The notation for the
expression case{i1,...,in}(a, b1, . . . , bn) in ML is

case a of i1 => b1

...
| in => bn

We will usually drop the index in case{i1,...,in} since it is often clear from the
context. The case-expression is computed in the following way:

41

42 CHAPTER 6. ENUMERATION SETS

1. First evaluate a.

2. If the value of a is ik (1 ≤ k ≤ n) then the value of the case expression
is the value of bk.

We have the following elimination rules:
{i1, . . . , in} – elimination 1

a ∈ {i1, . . . , in}
C(x) set [x ∈ {i1, . . . , in}]
b1 ∈ C(i1)

...
bn ∈ C(in)
case(a, b1, . . . , bn) ∈ C(a)

{i1, . . . , in} – elimination 2

a = a′ ∈ {i1, . . . , in}
C(x) set [x ∈ {i1, . . . , in}]
b1 = b′1 ∈ C(i1)

...
bn = b′n ∈ C(in)

case(a, b1, . . . , bn) = case(a′, b′1, . . . , b
′
n) ∈ C(a)

The first elimination rule is justified in the following way. Assume the premises
of the rule. We have to show that

case(a, b1, . . . , bn) ∈ C(a)

which means that we have to show that the value of case(a, b1, . . . , bn) is a
canonical element in C(a). This program is computed by first computing the
value of a. From the first premise we know that the value of a is a canonical
element in {i1, . . . , in}, so the value must be ij for some j, 1 ≤ j ≤ n. The value
of the case-expression is then the value of bj , according to the computation rule
for case. From one of the premises, we know that the value of bj is a canonical
element in C(ij). So we have shown that the value of the case-expression is a
canonical value in C(ij). But this set is equal to the set C(a). This follows
from the meaning of the second premise. That C(x) set [x ∈ {i1, . . . , in}] gives
that C(a) = C(ij). From the meaning of two sets being equal it follows that
the value of the program case(a, b1, . . . , bn) being a canonical element in C(ij)
is also a canonical element in C(a).

The second elimination rule can be justified in a similar way, using the
computation rule for the case-expression and the meaning of the different forms
of judgements. Furthermore, the computation rule justifies n equality rules. For
each k, 1 ≤ k ≤ n, we get the rule:

{i1, . . . , in} – equality

C(x) set [x ∈ {i1, . . . , in}] b1 ∈ C(i1) . . . bn ∈ C(in)
case(ik, b1, . . . , bn) = bk ∈ C(ik)

6.1. ABSURDITY AND THE EMPTY SET 43

6.1 Absurdity and the empty set

If n = 0 we get the empty set {} which, of course, has no introduction rule.
The {} – elimination rule becomes:

{} – elimination 1

a ∈ {} C(x) set [x ∈ {}]
case(a) ∈ C(a)

{} – elimination 2

a = a′ ∈ {} C(x) set [x ∈ {}]
case(a) = case(a′) ∈ C(a)

In the following we will not give rules like the second elimination rule above.
The general shape of these rules is that sets or elements are equal if their form
is identical and their parts are equal. For the monomorphic type theory (see
chapter 19) these rules follows immediately from substitution in objects on the
type level.

We will sometimes use the definition

∅ ≡ {}

Viewing sets as propositions, the empty set corresponds to absurdity, i.e. the
proposition ⊥ which has no proof. So, making the definition

⊥ ≡ {}

we get, from the elimination rule for {} by omitting some of the constructions,
the natural deduction rule for absurdity:

⊥ – elimination
⊥ true C prop

C true

where C is an arbitrary proposition (set). That this rule is correct is a direct
consequence of the semantics of type theory. If ⊥ is true then we have an
element a in ⊥ and then we can use the rule {} – elimination 1 to conclude that
case(a) ∈ C and hence that C is true.

6.2 The one-element set and the true proposi-
tion

There are many sets which are non-empty and thus can be used to represent
the true proposition T (truth). We make the following definition:

T ≡ {tt}

where tt is a new primitive constant of arity 0. From the general rules for the
enumeration set, we get the following rules:

T – formation

44 CHAPTER 6. ENUMERATION SETS

T set

T – introduction

tt ∈ T

T – elimination

a ∈ T C(x) set [x ∈ T] b ∈ C(tt)
case(a, b) ∈ C(a)

T – equality

C(x) set [x ∈ T] b ∈ C(tt)
case(tt, b) = b ∈ C(tt)

We also get the natural deduction rules for truth:
T – introduction

T true

T – elimination
T true C true

C true

These two rules are usually not formulated in systems of natural deduction.
The last one is for obvious reasons never used.

6.3 The set Bool

In order to form the set of boolean values, we introduce the two constants true
and false, both of arity 0, and make the definitions

Bool ≡ {true, false}
if b then c else d ≡ case(b, c, d)

As special cases of the rules for enumeration sets, we get
Bool – formation

Bool set

Bool – introduction

true ∈ Bool false ∈ Bool

Bool – elimination

b ∈ Bool C(v) set [v ∈ Bool] c ∈ C(true) d ∈ C(false)
if b then c else d ∈ C(b)

Bool – equality

C(v) set [v ∈ Bool] c ∈ C(true) d ∈ C(false)
if true then c else d = c ∈ C(true)

6.3. THE SET BOOL 45

C(v) set [v ∈ Bool] c ∈ C(true) d ∈ C(false)
if false then c else d = d ∈ C(false)

Note the difference of true being an element in the set Bool and the judgement
C true which abbreviates that the set C is non-empty. The judgement C is true
means that we have a proof of the proposition C, so C is really true since we
have proven it. The judgement c = true ∈ Bool means only that if we compute
the program c we get the canonical element true as a result. This has nothing to
do with truth; we only use true as a convenient name for this canonical element.
Some programming languages use other names, for instance 0 and 1 are also
used. Many years of programming practice have shown that it is convenient
to use the names true and false for the canonical elements in the set with two
elements. There is, however, something arbitrary in this choice.

In type theory with a universe (see chapter 14) it is possible to prove that

¬(true =Bool false)

where (true =Bool false) is the proposition, to be introduced in chapter 8, which
is true if true is equal to false .

46 CHAPTER 6. ENUMERATION SETS

Chapter 7

Cartesian product of a
family of sets

The members of a cartesian product of a family of sets are functions. But a
cartesian product is more general than the usual set of functions A → B, since
the result of applying a function to an argument is in a set which may depend
on the value to which the function is applied. If f is an element in a cartesian
product and a and b are expressions, it is, for instance, possible that f applied
to a is a member of N, the set of natural numbers, and f applied to b is a
member of Bool. This means that type theory contains functions which are not
definable in typed programming languages like ML and Pascal. One reason for
this generality is that it is needed in the definition of the universal quantifier. It
is also needed when we use sets to specify programs. A specification of a program
has often the following form: find a function f which for any argument a from
the set A yields a value in the set B(a). For instance a sorting program takes
an argument a from the set of integer lists and outputs an ordered permutation
of a, so the output is in the set Op(a), the set of all ordered permutations of a.
It is here essential that we can give a specification that expresses how the type
of the result of the function depends on the value of the argument.

In order to form a cartesian product of a family of sets we must have a set
A and a family B of sets on A , i.e.

A set

and

B(x) set [x ∈ A]

We will use the primitive constant Π of arity 0⊗(0→→0)→→0 when forming a
cartesian product. So

Π(A,B)

denotes the cartesian product of A and B. The following explicit definition is
used:

(Πx∈A)B(x) ≡ Π(A,B)

47

48 CHAPTER 7. CARTESIAN PRODUCT OF A FAMILY OF SETS

We have to define the canonical elements in Π(A,B) and define what it means
for two canonical elements to be equal. The elements in Π(A,B) are functions
and we will use the lambda notation for expressing them. So we introduce the
primitive constant λ of arity (0→→0)→→0. The basic notion of function is an
expression formed by abstraction. Therefore the canonical elements in Π(A,B)
will be formed by applying the λ on an abstraction b such that b(x) is an element
of B(x) when x ∈ A:

λ(b) is a canonical element in Π(A,B) if b(x) ∈ B(x) [x ∈ A].

The equality between two canonical elements λ(b1) and λ(b2) of Π(A,B) is
derived from the equality on the family B(x) on A :

λ(b1) and λ(b2) are equal canonical elements in Π(A,B) provided
that b1(x) = b2(x) ∈ B(x) [x ∈ A].

The primitive non-canonical constant for the Π-set is apply of arity 0⊗0→→0.
It is the constant used for applying an element in Π(A,B) to an element in A.
Hence, it has the following computation rule:

1. apply(f, a) is evaluated by first evaluating f .

2. If f has value λ(b) then the value of apply(f, a) is the value of b(a).

We will later, in section 7.2, give an alternative non-canonical constant for
the Π-set.

One of the main reasons for introducing the Π-set is that it is needed when
interpreting the universal quantifier, which has the following Heyting interpre-
tation:

(∀x ∈ A)B(x) is true if we can construct a function which when
applied to an element a in the set A, yields a proof of B(a).

If we identify the proposition B(x) with the family of sets B(x) [x ∈ A], and if
we let the proofs of B(x) be represented by the elements in the set B(x) [x ∈ A],
then the elements in the set Π(A,B) are exactly the functions mentioned in the
Heyting interpretation. The elements in Π(A,B) therefore represent the proofs
of (∀x∈A)B(x). So we see, that in order to cope with the universal quantifier,
it is necessary to have this kind of generalized function set.

Other examples of sets (propositions) that are defined as special cases of the
cartesian product are:

1. the restricted set of functions A → B, where the set B does not depend
on the argument x ∈ A

2. the implication A⊃B.

3. the record type former in Pascal is a set (Πx ∈ {i1, . . . , in})B(x), the
members of which are tuples. The component of the tuple with the name
j is in the set B(j). In Pascal the application apply(f, j) is written f.j.

The last example shows that a cartesian product of a family of sets is a
generalization of a cartesian product of a finite number of sets.

7.1. THE FORMAL RULES AND THEIR JUSTIFICATION 49

It is important to distinguish between the two different notions of function
we have used. The first is the fundamental syntactical notion of function as an
expression with holes in it, i.e. an expression which is not saturated. The second
is the notion of function as an element in the cartesian product. When there is
a risk of confusion between these two notions, we will use the word abstraction
for the syntactic notion and function element for the second. The syntactical
notion of function is more basic; we use it already when we write down the sets
Π(A,B) and A → C, in these expressions B, Π and → are abstractions.

Examples of canonical elements in different Π-sets are:

λ((x)x) ∈ Π(Bool, (x)Bool)
λ(succ) ∈ Π(N, (x)N)

λ((x)λ((y)x + y)) ∈ Π(N, (x)Π(N, (y)N))

where N is the set of natural numbers and succ and + the usual arithmetical
operations, to be introduced in chapter 9. These expressions can also be written:

λx.x ∈ (Πx∈Bool)Bool
λx.succ(x) ∈ (Πx∈N)N

λx.λy.x + y ∈ (Πx∈N)(Πx∈N)N

An example of a non-canonical expression is:

apply(λx.x, false) ∈ Bool

The computation rule for apply justifies the equality

apply(λ(b), a) = b(a) ∈ B(a)

For example,

apply(λx.x, false) = false ∈ Bool

and

apply(λx.if x then 0 else false), true) = if true then 0 else false ∈ N

which can be further evaluated to 0.

7.1 The formal rules and their justification

As defined previously, the canonical elements in Π(A,B) are of the form λ(b),
where b(x) ∈ B(x) when x ∈ A. We also defined two canonical elements λ(b1)
and λ(b2) in Π(A,B) to be equal if b1(x) = b2(x) ∈ B(x) when x ∈ A. In
order to see that Π(A,B) is a set it only remains to verify that the equality on
Π(A,B) is extensional. But this is obvious since the free variables in λ(b1) and
λ(b2) are also free in b1(x) and b2(x) and the equality on the family B(x) over
A is required to be extensional.

Therefore, Π(A,B) is a set if A is a set and if B(x) is a set under the
assumption that x ∈ A. Hence, the formation rule is:

Π – formation

A set B(x) set [x ∈ A]
Π(A,B) set

50 CHAPTER 7. CARTESIAN PRODUCT OF A FAMILY OF SETS

Since the canonical elements in the set Π(A,B) are of the form λ(b) where
b(x) ∈ B(x) under the assumption that x ∈ A, we get

Π – introduction

b(x) ∈ B(x) [x ∈ A]
λ(b) ∈ Π(A,B)

As mentioned earlier, the primitive non-canonical constant for the cartesian
product is

apply

of arity 0⊗0→→0. We also introduce an infix form of apply by the definition

x · y ≡ apply(x, y)

The rule associated with apply is:
Π – elimination 1

f ∈ Π(A,B) a ∈ A

apply(f, a) ∈ B(a)

We have to convince ourselves, from the way apply(f, a) is computed and the
semantics of the judgement forms, that this rule is correct. That f ∈ Π(A,B)
means that

f has a value of the form λ(b) (1)

where
b(x) ∈ B(x) [x ∈ A] (2)

since it must have a canonical value in the set Π(A,B) and all canonical values
of Π(A,B) have this form. By the definition of how apply(f, a) is computed and
(1), we get that

apply(f, a) is computed by computing b(a). (3)

Since a ∈ A, we get from (2) that

b(a) ∈ B(a) (4)

(3) and (4) finally give us
apply(f, a) ∈ B(a)

and thereby the elimination rule is justified.
The way apply(f, a) is computed gives the rule:

Π – equality 1

b(x) ∈ B(x) [x ∈ A] a ∈ A

apply(λ(b), a) = b(a) ∈ B(a)

since b(x) ∈ B(x) [x ∈ A] and a ∈ A give that b(a) ∈ B(a).

7.2. AN ALTERNATIVE PRIMITIVE NON-CANONICAL FORM 51

7.2 An alternative primitive non-canonical form

As an example of how the semantics can justify the introduction of a different
non-canonical form, we will introduce an alternative to the selector apply in the
Π-set.

For most sets, the non-canonical forms and their computation rules are based
on the principle of structural induction. This principle says, that to prove that
a property B(a) holds for an arbitrary element a in the set A, prove that the
property holds for each of the canonical elements in A. Similarly, to construct
a program for an arbitrary element a in the set A, construct a program for each
of the canonical forms of A. The computation rule for the non-canonical form
in the Π-set does not follow this principle. It is chosen because the rule is well-
known from the λ-calculus (β-reduction). The alternative non-canonical form is
based on the principle of structural induction. We define the new non-canonical
form as follows:

Introduce the constant funsplit of arity (0⊗((0→→0)→→0))→→0 and let the
expression funsplit(f, d) be computed by the following rule:

1. Compute f .

2. If the value of f is λ(b), then the value of funsplit(f, d) is the value of
d(b).

The expression f is to be an arbitrary element in the set Π(A,B) and d(y) is
a program in the set C(λ(y)) under the assumption that y(x) ∈ B(x) [x ∈
A]. Notice that this is a higher order assumption, an assumption in which an
assumption is made. The variable y is of arity 0→→0, i.e. it is a function variable,
i.e. a variable standing for an abstraction. Note that a function variable is
something quite different from an element variable ranging over a Π set.

The alternative elimination rule becomes:
Π – elimination 2

f ∈ Π(A,B)
C(v) set [v ∈ Π(A,B)]
d(y) ∈ C(λ(y)) [y(x) ∈ B(x) [x ∈ A]]
funsplit(f, d) ∈ C(f)

We can justify Π-elimination 2 in the following way: If f ∈ Π(A,B) it follows
from the meaning of this judgement form that f must have a canonical element
as value. The canonical elements in the Π set are of the form λ(b), so f has a
value of the form λ(b) and

f = λ(b) ∈ Π(A,B) (1)

where
b(x) ∈ B(x) [x ∈ A] (2)

Since we know that d(y) ∈ C(λ(y)) whenever y(x) ∈ B(x) [x ∈ A] and b(x) ∈
B(x) [x ∈ A], we get

d(b) ∈ C(λ(b)) (3)

From the computation rule for funsplit and from (1) we can conclude that
funsplit(f, d) is computed by computing d(b) and from (3) it follows that

funsplit(f, d) ∈ C(λ(b)) (4)

52 CHAPTER 7. CARTESIAN PRODUCT OF A FAMILY OF SETS

From the premise that C(v) is a set under the assumption that v ∈ Π(A,B) and
from (1) it follows that

C(f) = C(λ(b)) (5)

and now from (4) and (5) and the meaning of the judgement form A = B, it
immediately follows that

funsplit(f, b) ∈ C(f)

Hence, the first elimination rule is justified.
The computation rule for funsplit(λ(b), b) gives the equality rule:

Π – equality 2

b(x) ∈ B(x) [x ∈ A]
C(v) set [v ∈ Π(A,B)]
d(y) ∈ C(λ(y)) [y(w) ∈ B(w) [w ∈ A]]
funsplit(λ(b), d) = d(b) ∈ C(λ(b))

since b(x) ∈ B(x) [x ∈ A] and d(y) ∈ C(λ(y)) [y(w) ∈ B(w) [w ∈ A]] give
d(b) ∈ C(λ(b)).

Now we can reintroduce the constant apply of arity 0⊗0→→0 by making an
explicit definition

apply(f, a) ≡ funsplit(f, (x)(x(a)))

If we have defined apply in this way, the expression apply(f, a) will be com-
puted in the following way. The program apply(f, a) is definitionally equal to
funsplit(f, (x)(x(a))) which is computed by first computing the value of f . If the
value is λ(b) then continue to compute the value of the program ((x)(x(a)))(b),
a program which is definitionally equal to b(a).

We can also prove a counterpart to the first Π-elimination rule:

Theorem If a ∈ A and f ∈ Π(A,B), then apply(f, a) ∈ B(a).

Proof: Assume that a ∈ A and f ∈ Π(A,B). For some expression b, f must
be equal to λ(b) where

b(x) ∈ B(x) [x ∈ A] (1)

Using the definition of apply, we get that apply(f, a) is computed by computing
funsplit(λ(b), (x)x(a)). The computation rule for funsplit gives that apply(f, a)
is equal to b(a). From (1) we get

b(a) ∈ B(a)

Hence,

apply(f, a) ∈ B(a)

2

7.3. CONSTANTS DEFINED IN TERMS OF THE Π SET 53

7.3 Constants defined in terms of the Π set

7.3.1 The universal quantifier (∀)
In order to define the universal quantifier, we introduce a new constant ∀ of
arity 0⊗(0→→0)→→0 and then make the explicit definition

∀ ≡ Π

Instead of using the somewhat unusual notation ∀(A,B) for the universal quan-
tifier, we will write (∀x∈A)B(x). The rules for the universal quantifier follow
directly from the rules for the Π-set by reading B(x) as a family of propositions
and (∀x∈A) B(x) as a proposition. We get the following rules for the universal
quantifier.

∀ – formation

A prop B(x) prop [x ∈ A]
(∀x∈A)B(x) prop

∀ – introduction
B(x) true [x ∈ A]
(∀x∈A)B(x) true

∀ – elimination 1

(∀x∈A)B(x) true a ∈ A

B(a) true

The alternative elimination rule becomes
∀ – elimination 2

(∀x∈A) B(x) true C prop C true [B(x) true [x ∈ A]]
C true

7.3.2 The function set (→)

As we have already remarked, the cartesian product is a generalization of the
formation of the set of functions from a set A to a set B, which we now get in
the following way. We introduce a new constant → of arity 0⊗0→→0 and make
the definition

→ (A,B) ≡ Π(A, (x)B)

Instead of → (A,B), we shall write A → B. From the rules for Π we get, as
special cases:

→ – formation

A set B set [x ∈ A]
A → B set

where x must not occur free in B

54 CHAPTER 7. CARTESIAN PRODUCT OF A FAMILY OF SETS

→ – introduction
b(x) ∈ B [x ∈ A]

λ(b) ∈ A → B

where x must not occur free in B

→ – elimination
f ∈ A → B a ∈ A

apply(f, a) ∈ B

→ – equality

b(x) ∈ B [x ∈ A] a ∈ A

apply(λ(b), a) = b(a) ∈ B

where x must not occur free in B or f

7.3.3 Implication (⊃)

The Heyting interpretation of implication is

The implication A⊃B is true if we can construct a function which
when applied to a proof of A, yields a proof of B.

If we let the elements in the set A represent the proofs of the proposition A
and similarly for the set (proposition) B, then we can see that the elements
(functions) of A → B are exactly the constructions we require in the Heyting
interpretation to prove A⊃B. So we get the implication A⊃B simply by in-
troducing a new constant ⊃ of arity 0⊗0→→0 and making the explicit definition

⊃ ≡ →

The rules for implication immediately follow from the rules for →. By omitting
the proof elements in the rules for implication we get the natural deduction
rules:

⊃ – formation
A prop B prop [A true]

A⊃B prop

⊃ – introduction
B true [A true]

A⊃B true

⊃ – elimination
A⊃B true A true

B true

The alternative elimination rule becomes:
A⊃B true C prop C true [B true [A true]]

C true

Notice that the second premise of the formation rule is weaker than in the
traditional rule. To show that A⊃B is a proposition it is enough to show that
A is a proposition and that B is a proposition under the assumption that A is
true This rule has been suggested by Schroeder-Heister [96].

7.3. CONSTANTS DEFINED IN TERMS OF THE Π SET 55

Example. Changing the order of universal quantifiers

From a constructive proof in natural deduction, it is always possible to obtain,
by filling in the omitted constructions, a proof in type theory. Consider, for
instance, the following proof in natural deduction:

Assume

(∀x∈N)(∀y∈Bool) Q(x, y)

∀-elimination used twice, gives

Q(x, y) [x ∈ N, y ∈ Bool]

By ∀-introduction (twice) we get

(∀y∈Bool)(∀x∈N) Q(x, y)

Finally by ⊃ -introduction

(∀x∈N)(∀y∈Bool) Q(x, y)⊃ (∀y∈Bool)(∀x∈N)Q(x, y)

With the proof elements present, this proof becomes:
Assume

w ∈ (Πx∈N)(Πy∈Bool) Q(x, y)

By Π-elimination (twice) we get

apply2(w, x, y) ∈ Q(x, y) [x ∈ N, y ∈ Bool]

where

apply2(x, y, z) ≡ apply(apply(x, y), z)

and then by Π-introduction (twice)

λy.λx.apply2(w, x, y) ∈ (Πy∈Bool)(Πx∈N) Q(x, y)

Finally, by →-introduction

λw.λy.λx.apply2(w, x, y) ∈
(Πx∈N)(Πy∈Bool)Q(x, y) → (Πy∈Bool)(Πx∈N)Q(x, y)

56 CHAPTER 7. CARTESIAN PRODUCT OF A FAMILY OF SETS

Chapter 8

Equality sets

We have seen how to use set-forming operations to build up complex propo-
sitions from simpler ones, but so far we have only introduced the elementary
propositions T (the truth) and ⊥ (the absurdity). Since the judgemental equal-
ity cannot be used when building propositions, it is necessary to have an ele-
mentary proposition expressing that two elements are equal. Beside the equality
sets, it is the universe and general trees, which are introduced later, which make
it possible to have dependent sets.

We will introduce two different sets to express that a and b are equal elements
of a set A. The first one, which we denote by Id(A, a, b) and which we will call
intensional equality, will have an elimination rule which expresses an induction
principle. The second one, which we denote by Eq(A, a, b), will have a strong
elimination rule of a different form than the elimination rules for the other sets.
With this set, judgemental equality will no longer be decidable and we will
therefore avoid this equality when possible. It is only in the chapters on well-
orderings and general trees we must use it. In the chapter on cartesian product
of two sets, we will show that extensionally equal functions are equal in the
sense of Eq. Hence, we will call these kind of equalities extensional equalities.

8.1 Intensional equality

The set Id(A, a, b), where Id is a primitive constant of arity 0⊗0⊗0→→0, will
represent the judgement a = b ∈ A as a set.

Id – formation

A set a ∈ A b ∈ A

Id(A, a, b) set

The set Id(A, a, a) will have the member id(a) where a ∈ A and id is a primitive
constant of arity 0→→0. So we have

Id – introduction
a ∈ A

id(a) ∈ Id(A, a, a)

By using Substitution in sets on a = b ∈ A and Id(A, a, x) set [x ∈ A] we obtain
Id(A, a, a) = Id(A, a, b). So, by Id –introduction 1 and Set equality we get the
derived rule

57

58 CHAPTER 8. EQUALITY SETS

Id – introduction’
a = b ∈ A

id(a) ∈ Id(A, a, b)

The primitive non-canonical constant of the equality set is idpeel of arity

(0⊗(0→→0))→→0

The expression idpeel(c, d) is computed as follows:

1. idpeel(c, d) is evaluated by first evaluating c.

2. If c has value id(a) then the value of idpeel(c, d) is the value of d(a).

The way a canonical element is introduced in an equality set and the computa-
tion rule for idpeel justifies the elimination rule:

Id – elimination

a ∈ A
b ∈ A
c ∈ Id(A, a, b)
C(x, y, z) set [x ∈ A, y ∈ A, z ∈ Id(A, x, y)]
d(x) ∈ C(x, x, id(x)) [x ∈ A]
idpeel(c, d) ∈ C(a, b, c)

As for the other sets, the elimination rule expresses a principle of structural
induction on an equality set, but the importance of the elimination rule in this
case is more in that it is a substitution rule for elements which are equal in the
sense of an equality set.

The way idpeel(c, d) is computed gives the rule:
Id – equality

a ∈ A
C(x, y, z) set [x ∈ A, y ∈ A, z ∈ Id(A, x, y)]
d(x) ∈ C(x, x, id(x)) [x ∈ A]
idpeel(id(a), d) = d(a) ∈ C(a, a, id(a))

Instead of Id(A, a, b) we will often write a =A b.

Example. Symmetry and transitivity of equality

Let A be a set and a and b elements of A. Assume that

d ∈ Id(A, a, b) (8.1)

In order to prove symmetry, we must construct an element in Id(A, b, a). By
putting C ≡ (x, y, z)Id(A, y, x) in Id-elimination we get, by Id-introduction,

idpeel(d, id) ∈ Id(A, b, a)

so we have proved symmetry. Hence, we have the following derived rule:
Symmetry of propositional equality

d ∈ [a =A b]
symm(d) ∈ [b =A a]

8.1. INTENSIONAL EQUALITY 59

where
symm(d) ≡ idpeel(d, id)

To prove transitivity, we assume

e ∈ Id(A, b, c) (8.2)

where c is an element in A. We then have to construct an element in Id(A, a, c).
Using Id-elimination with C ≡ (x, y, z)(Id(A, y, c) → Id(A, x, c)) we get from
d ∈ Id(A, a, b), by Π-introduction,

idpeel(d, (x)λy.y) ∈ Id(A, b, c) → Id(A, a, c) (8.3)

(8.2), (8.3) and Π-elimination give

apply(idpeel(d, (x)λy.y), e) ∈ Id(A, a, c)

and, hence, we have transitivity. So we have the following derived rule:
Transitivity of propositional equality

d ∈ [a =A b] e ∈ [b =A c]
trans(d, e) ∈ [a =A c]

where
trans(d, e) ≡ apply(idpeel(d, (x)λy.y), e)

Example. Substitution with equal elements

Assume that we have a set A and elements a and b of A. Assume also that
c ∈ Id(A, a, b), P (x) set [x ∈ A] and p ∈ P (a). By Π-introduction we get

λx.x ∈ P (x) → P (x)

Putting C ≡ (x, y, z)(P (x) → P (y)) in Id-elimination we then get

idpeel(c, (x)λx.x) ∈ P (a) → P (b)

from which we obtain, by Π-elimination,

apply(idpeel(c, (x)λx.x), p) ∈ P (b)

So we have the derived rule

P (x) set [x ∈ A] a ∈ A b ∈ A c ∈ Id(A, a, b) p ∈ P (a)
subst(c, p) ∈ P (b)

where
subst(c, p) ≡ apply(idpeel(c, (x)λx.x), p)

If we suppress the proof-objects we get the rule

P (x) set [x ∈ A] a ∈ A b ∈ A Id(A, a, b) true P (a) true

P (b) true

which corresponds to the usual substitution rule in predicate logic with equality.

60 CHAPTER 8. EQUALITY SETS

Example. An equality involving the conditional expression

In this example we will prove, that for any set A

Id(A, if b then c else c, c) [b ∈ Bool, c ∈ A]

is inhabited. We start by assuming that c ∈ A and b ∈ Bool. and will show that
there is an element in Id(A, if b then c else c, c) by case analysis on b.

1. b = false: The Bool – equality rule gives

if false then c else c = c ∈ A

which, using Id – introduction, gives

id(c) ∈ Id(A, if false then c else c, c)

2. b = true: In the same way as above, we first get

if true then c else c = c ∈ A

by one of the Bool – equality rules, and then

id(c) ∈ Id(A, if true then c else c, c)

by Id – introduction.

Applying the Bool – elimination rule on the two cases, we finally get

if b then id(c) else id(c) ∈ Id(A, if b then c else c, c)

8.2 Extensional equality

We will now give an alternative formulation of equality sets which will have a
strong elimination rule of a different form than all the other sets.

In the semantics we have given, following [69, 70], the judgemental equality
is more general than convertibility; we have only required that it should be an
equivalence relation which is extensional with respect to substitution. The rules
for the equality sets given in [69, 70] are different from those we are using. The
formation rule is

Eq – formation

A set a ∈ A b ∈ A

Eq(A, a, b) set

where Eq is a primitive constant of arity 0⊗0⊗0→→0.
There is at most one canonical element in an Eq-set:

Eq – introduction
a = b ∈ A

eq ∈ Eq(A, a, b)

which differs from the introduction rule for Id-sets in that eq is of arity 0 and,
hence, a canonical element of Eq(A, a, b) does not depend on an element in A.
The crucial difference, however, is the elimination rule:

8.2. EXTENSIONAL EQUALITY 61

Strong Eq – elimination

c ∈ Eq(A, a, b)
a = b ∈ A

Unlike the elimination rules for the other sets, this elimination rule is not a
structural induction principle.

We also need an elimination rule by which we can deduce that all elements
in an Eq are equal to eq:

Eq – elimination 2

c ∈ Eq(A, a, b)
c = eq ∈ Eq(A, a, b)

Using the two elimination rules for Eq, we can derive an induction rule for
Eq, corresponding to Id-elimination,

a ∈ A
b ∈ A
c ∈ Eq(A, a, b)
C(x, y, z) set [x ∈ A, y ∈ A, z ∈ Eq(A, x, y)]
d(x) ∈ C(x, x, eq) [x ∈ A]
d(a) ∈ C(a, b, c)

To prove this rule, we assume the premises of the rule. By strong Eq-elimination
and c ∈ Eq(A, a, b), we get

a = b ∈ A (8.1)

From a ∈ A and d(x) ∈ C(x, x, eq) [x ∈ A] we obtain, by substitution,

d(a) ∈ C(a, a, eq) (8.2)

(1), Eq-elimination 2, (2) and substitution, finally give

d(a) ∈ C(a, b, c) (8.3)

If we do not have sets formed by Eq in our formal theory it is possible to
show, by metamathematical reasoning, that if a = b ∈ A is derivable then a
converts to b. That a converts to b is then understood in the usual way of
combinatory logic with our computational rules for the noncanonical constants
as reduction rules; in particular, it is not necessary to have lazy evaluation.
The proof is by induction on the length of the derivation of a = b ∈ A. It is
also possible to show that if c ∈ Id(A, a, b) is derivable and does not depend on
any assumptions, then a converts to b; this is the reason why we call equalities
formed by Id intensional. This result can be proved by normalization; such a
proof is complicated but can be done, using standard techniques.

If we express propositional equalities by Eq it is no longer possible to under-
stand judgemental equality as convertibility, because it is then possible to prove
a judgemental equality by reasoning using propositions. So we may e.g. use in-
duction when proving a judgement of the form a(x) = b(x) ∈ A [x ∈ N] by first
proving Eq(A, a(x), b(x)) [x ∈ N] and then applying the strong Eq-elimination
rule.

62 CHAPTER 8. EQUALITY SETS

8.3 η-equality for elements in a Π set

We have not formulated any judgemental rule corresponding to η-conversion,
that is, we have no rule by which we can conclude

λ((x)apply(f, x)) = f ∈ Π(A,B) [f ∈ Π(A,B)]

Although we do not have this judgemental equality we can prove, by using
Π-elimination 3, that the corresponding Id judgement holds:

Id(Π(A,B), λ((x)apply(f, x)), f) true [f ∈ Π(A,B)] (1)

(1) can be derived in the following way. By Π-equality we obtain

λ((x)apply(λ(y), x)) = λ(y) ∈ Π(A,B) [y(x) ∈ B(x) [x ∈ A]]

from which we get, by Id-introduction,

id(λ(y)) ∈ Id(Π(A,B), λ((x)apply(λ(y), x)), λ(y)) [y(x) ∈ B(x) [x ∈ A]] (2)

Putting
D(λ(y)) ≡ Id(Π(A,B), λ((x)apply(λ(y), x)), λ(y))

in Π-elimination 3, we obtain from (2)

funsplit(f, (y)id(λ(y))) ∈ Id(Π(A,B), λ((x)apply(f, x)), f) [f ∈ Π(A,B)]

which shows that the judgement (1) holds.
A similar proof for Eq instead of Id gives a term t such that

t ∈ Eq(Π(A,B), λ((x)apply(f, x)), f) [f ∈ Π(A,B)]

By strong Eq-elimination, we then obtain

λ((x)apply(f, x)) = f ∈ [f ∈ Π(A,B)]

So in the theory with Eq-sets, we have η-conversion on the judgemental level.

Chapter 9

Natural numbers

The constant N of arity 0 denotes the set of natural numbers. The rule for
forming this set is simply

N – formation

N set

The canonical constants 0 and succ of arities 0 and 0→→0 respectively, are used
for expressing the canonical elements in N. The object 0 is a canonical element
in N and if a is an element in N then succ(a) is a canonical element in N. This
is reflected in the following introduction rules:

N – introduction 1

0 ∈ N

N – introduction 2
a ∈ N

succ(a) ∈ N

We will often use the numerals 1, 2, . . . to denote canonical elements in N.
If a and b are equal elements in N then succ(a) and succ(b) are equal canonical

elements in N.
The basic way of proving that a proposition holds for all natural numbers is

by mathematical induction: From P (0) and that P (x) implies P (succ(x)) you
may conclude that P (n) holds for all natural numbers n. In order to be able to
prove properties by induction on natural numbers in type theory, we introduce
the selector natrec of arity 0⊗0⊗(0⊗0→→0)→→0. From a computational point of
view, natrec makes it possible to make definitions by primitive recursion. The
expression natrec(a, d, e) is computed as follows.

1. Evaluate a to canonical form.

2a. If the result of evaluating a is 0 then the value of the expression is the
value of d.

2b. If the result of evaluating a is succ(b) then the value of the expression
is the value of e(b, natrec(b, d, e)).

63

64 CHAPTER 9. NATURAL NUMBERS

So, defining a function f by the primitive recursion{
f(0) = d
f(n⊕1) = e(n, f(n))

is in type theory expressed by the definition

f ≡ (n)natrec(n, d, e)

For example, using natrec, we can define the constants ⊕ and ∗ of arity 0⊗0→→0
by the explicit definitions

⊕(x, y) ≡ natrec(x, y, (u, v) succ(v))
∗(x, y) ≡ natrec(x, 0, (u, v)⊕(y, v))

expressing addition and multiplication, respectively. We will use the infix format
and the ordinary precedence rules for ⊕ and ∗. These definitions correspond
exactly to the usual definitions of addition and multiplication by primitive re-
cursion.

The elimination rule for the natural numbers is:
N – elimination

a ∈ N
d ∈ C(0)
C(v) set [v ∈ N]
e(x, y) ∈ C(succ(x)) [x ∈ N, y ∈ C(x)]
natrec(a, d, e) ∈ C(a)

In order to justify N-elimination we assume the premises a ∈ N, d ∈ C(0) and
e(x, y) ∈ C(succ(x)) [x ∈ N, y ∈ C(x)]. We want to convince ourselves that the
conclusion is correct, i.e. that the value of natrec(a, d, e) is a canonical element
in C(a)

1. If the value of a is 0 then the value of natrec(a, d, e) is the value of d
which by the second premise is a canonical element in C(0). From the
extensionality of the family C it follows that C(a) = C(0) and, hence,
that the value of natrec(a, d, e) is a canonical element in C(a).

2. If the value of a is succ(b), where b ∈ N, then the value of natrec(a, d, e) is
the value of

e(b, natrec(b, d, e)) (1)

It now remains to show that natrec(b, d, e) ∈ C(b). Then it follows from
the meaning of the last premise that the value of (1) is a canonical element
in C(succ(b)) which by the extensionality of C is also a canonical element
in C(a). To show that natrec(b, d, e) ∈ C(b) we compute the value of
natrec(b, d, e) by first computing b. The value of b is either 0 or succ(c),
where c ∈ N.

(a) If the value of b is 0 then by a similar reasoning as in (1) we conclude
that the value of natrec(b, d, e) is a canonical element in C(b).

65

(b) Otherwise, if the value of b is succ(c), where c ∈ N, then we proceed
as in (2) to show that the value of natrec(b, d, e) is a canonical element
in C(b). This method will terminate since all natural numbers are
obtained by applying the successor function to 0 a finite number of
times.

If some of the constructions in the elimination rule are omitted, Peano’s fifth
axiom is obtained:

a ∈ N C(v) prop [v ∈ N] C(0) true C(succ(x)) true [C(x) true]
C(a) true

Notice that the justification of the induction rule comes from N-elimination
which was justified by using mathematical induction on the semantical level. Of
course, neither N-elimination nor Peano’s fifth axiom can be justified without the
knowledge that N is well-founded, which is something which we must understand
from the inductive definition of the canonical elements in N, that is, from the
introduction rules for N.

Finally we have the equality rules, which are justified from the computation
rule for natrec.

N – equality 1

C(v) set [v ∈ N]
d ∈ C(0)
e(x, y) ∈ C(succ(x)) [x ∈ N, y ∈ C(x)]
natrec(0, d, e) = d ∈ C(0)

N – equality 2

C(v) set [v ∈ N]
a ∈ N
d ∈ C(0)
e(x, y) ∈ C(succ(x)) [x ∈ N, y ∈ C(x)]
natrec(succ(a), d, e) = e(a, natrec(a, d, e)) ∈ C(succ(a))

The proposition in type theory corresponding to Peano’s fourth axiom needs
the Universe set to be proved, so we have to postpone this until later.

Example. The typing of the ⊕ -operator

The constant ⊕ was defined by

⊕(x, y) ≡ natrec(x, y, (u, v) succ(v))

We will now formally show that

⊕(x, y) ∈ N [x ∈ N, y ∈ N]

By the rule of assumption we get

x ∈ N [x ∈ N] (9.1)
y ∈ N [y ∈ N] (9.2)

66 CHAPTER 9. NATURAL NUMBERS

Assumption and N-introduction 2 give

succ(v) ∈ N [v ∈ N] (9.3)

By applying N-elimination on (9.1), (9.2) and (9.3) we get

natrec(x, y, (u, v) succ(v)) ∈ N [x ∈ N, y ∈ N]

that is, by definition,
⊕(x, y) ∈ N [x ∈ N, y ∈ N]

Example. Peano’s third axiom

Peano’s third axiom is that if the successor of two natural numbers are equal
then the natural numbers are equal. We can formulate this in type theory as a
derived rule:

m ∈ N n ∈ N succ(m) = succ(n) ∈ N

m = n ∈ N

In the derivation of this rule we will use the predecessor function pred, which is
defined by

pred ≡ (x)natrec(x, 0, (u, v)u)

Since 0 ∈ N and u ∈ N [u ∈ N], the definition of pred and N-elimination give

pred(x) ∈ N [x ∈ N] (9.1)

Let m ∈ N, n ∈ N and
succ(m) = succ(n) ∈ N (9.2)

By (9.1), (9.2) and Substitution in equal elements, we get

pred(succ(m)) = pred(succ(n)) ∈ N (9.3)

The definition of pred and N-equality 2 give

pred(succ(m)) = m ∈ N (9.4)
pred(succ(n)) = n ∈ N (9.5)

Using symmetry and transitivity of judgemental equality on (9.3) – (9.5), we
finally obtain

m = n ∈ N

and, hence we have Peano’s third axiom as a derived rule.
Instead of formulating Peano’s third axiom as a derived rule, we could ex-

press it as a proposition, using an equality set:

(∀x∈N)(∀y∈N)(Id(N, succ(x), succ(y))⊃ Id(N, x, y))

This proposition can be proved in a similar way as the derived rule, using the
rules for Id instead of the rules for judgemental equality. Note that these two for-
mulations of Peano’s third axiom are inherently different: the first formulation
is about judgements but the second is a proposition.

Chapter 10

Lists

In order to form the set of lists of elements in a set A, we introduce three new
constants: List of arity 0→→0, nil of arity 0 and cons of arity 0⊗0→→0. If A is a
set, then the canonical elements in List(A) are nil and cons(a, l) where a is an
element in A and l is an element in List(A). If a = a′ ∈ A and l = l′ ∈ List(A)
then cons(a, l) and cons(a′, l′) are equal canonical elements in List(a).

We have the following rule for forming list sets.
List – formation

A set

List(A) set

In order to be able to use infix notation when constructing lists, we make the
definition

a.l ≡ cons(a, l)

The introduction rules are:
List – introduction

nil ∈ List(A)
a ∈ A l ∈ List(A)

a.l ∈ List(A)

The primitive non-canonical constant listrec of arity 0⊗0⊗(0⊗0⊗0→→0)→→0 is
introduced in order to express recursion on lists. The expression listrec(l, c, e) is
computed as follows:

1. First compute l.

2a. If the value of l is nil, then the value of listrec(l, c, e) is the value of c.

2b. If the value of l is a.l1 then the value of listrec(l, c, e) is the value of
e(a, l1, listrec(l1, c, e)).

The following rules are justified in the same way as the corresponding rules for
natural numbers:

67

68 CHAPTER 10. LISTS

List – elimination

l ∈ List(A)
C(v) set [v ∈ List(A)]
c ∈ C(nil)
e(x, y, z) ∈ C(x.y) [x ∈ A, y ∈ List(A), z ∈ C(y)]

listrec(l, c, e) ∈ C(l)

List – equality 1

C(v) set [v ∈ List(A)]
c ∈ C(nil)
e(x, y, z) ∈ C(x.y) [x ∈ A, y ∈ List(A), z ∈ C(y)]

listrec(nil, c, e) = c ∈ C(nil)

List – equality 2

a ∈ A
l ∈ List(A)
C(v) set [v ∈ List(A)]
c ∈ C(nil)
e(x, y, z) ∈ C(x.y)) [x ∈ A, y ∈ List(A), z ∈ C(y)]

listrec(a.l, c, e) = e(a, l, listrec(l, c, e)) ∈ C(a.l)

Example. Associativity of append

The function append concatenates two lists and is defined by

append(l1, l2) ≡ listrec(l1, l2, (x, y, z) x.z))

We will use the binary infix operator @ for append,

l1@l2 ≡ append(l1, l2)

From the List-elimination rule, it follows directly that

l1@l2 ≡ listrec(l1, l2, (x, y, z) x.z) ∈ List(A) [l1 ∈ List(A), l2 ∈ List(A)]

By applying List-equality to the definition of l1@l2 we get the following equalities{
nil@l2 = l2 ∈ List(A)
a.l1@l2 = a.(l1@l2) ∈ List(A)

which are the usual defining equations for append.
As a simple example, we are going to show how to formally prove that @ is

associative, i.e. if p, q, r ∈ List(A) then

p@(q@r) =List(A) (p@q)@r

is a true proposition. We will write L instead of List(A). We first give the
informal proof and then translate it to a proof in type theory.

We sometimes use the following notation, introduced by Dijkstra, for infor-
mal proofs:

69

t1
= { informal argument why t1 = t2 }

t2
= { informal argument why t2 = t3 }

t3

This is sometimes generalized from equality to another transitive operator.
The proof proceeds by induction on the list p. For the base case, we have to

show that nil@(q@r) =L (nil@q)@r, which is done by simplifying the two sides of
the equation:

nil@(q@r)
= { definition of @ }

q@r

(nil@q)@r
= { definition of @, substitution }

q@r

The induction step starts in a similar way and ends in using the induction
hypothesis. We are going to show that (x.y)@(q@r) =L ((x.y)@q)@r from the
assumption that y@(q@r) =L (y@q)@r. First, the left hand side:

(x.y)@(q@r)
= { definition of @ }

x.(y@(q@r))

Then the right hand side:

((x.y)@q)@r
= { definition of @, substitution }

(x.(y@q))@r
= { definition of @ }

x.((y@q)@r)
=L { induction assumption, substitution }

x.(y@(q@r))

The proof is by induction on the list p, so in type theory we use List-
elimination. We have to prove the three premises

1. p ∈ L, which we already have assumed.

2. Find an element in [nil@(q@r) =L (nil@q)@r].

3. Under the assumptions that x ∈ A, y ∈ L and z ∈ [y@(q@r) =L (y@q)@r]
find an element in [(x.y)@(q@r) =L ((x.y)@q)@r].

70 CHAPTER 10. LISTS

The following is a formal proof of the two parts in the base step. First we
have the simplification of the left hand side:

q ∈ L r ∈ L

q@r ∈ L

x ∈ A z ∈ L

x.z ∈ L
List−intro

listrec(nil, (q@r), (x, y, z)x.z)︸ ︷︷ ︸
nil@(q@r)

= q@r ∈ L
List−equality

And then we have the simplification of the right hand side:

nil ∈ L

x ∈ A z ∈ L

x.z ∈ L
List−intro

nil@q = q ∈ L
List−equality

u ∈ L r ∈ L

u@r ∈ L

(nil@q)@r = q@r ∈ L
subst

These two steps are combined using symmetry and transitivity of equality to
obtain the conclusion

nil@(q@r) = (nil@q)@r ∈ L

and hence, using Id-introduction, we get

id(nil@(q@r)) ∈ [nil@(q@r) =L (nil@q)@r]

The induction step is formalized in almost the same way, the only compli-
cation is in the last step where the induction assumption is used. Here we must
switch from definitional equality to propositional equality, and therefore we will
use the derived rules for substitution and transitivity from chapter 8.

In the first part of the induction step we have shown that

(x.y)@(q@r) = x.(y@(q@r)) ∈ L

and in the second part (except for the last step)

((x.y)@q)@r = x.((y@q)@r) ∈ L

Id-introduction then gives

id((x.y)@(q@r)) ∈ [(x.y)@(q@r) =L x.(y@(q@r))] (10.1)

and
id(x.((y@q)@r)) ∈ [x.((y@q)@r) =L ((x.y)@q)@r] (10.2)

We then apply the substitution rule for propositional equality on the induction
assumption and the family

P (u) ≡ [x.(y@(q@r)) =L x.u]

and obtain

subst(z, id(x.(y@(q@r)))) ∈ [x.(y@(q@r)) =L x.((y@q)@r)] (10.3)

We can now use transitivity of propositional equality twice on (10.1), (10.3)
and (10.2) to get

71

trans(trans(id((x.y)@(q@r)),
subst(z, id(x.(y@(q@r))))
),

id(x.((y@q)@r))
) ∈ [(x.y)@(q@r) =L ((x.y)@q)@r]

We can now combine the solution of the base step and the induction step, using
List-elimination:

listrec(p,
id(nil@(q@r)),
(x, y, u)trans(trans(id((x.y)@(q@r)),

subst(z, id(x.(y@(q@r))))
),

id(x.((y@q)@r))
)

) ∈ [p@(q@r) =L (p@q)@r]

which concludes the proof. This example shows the practical importance of
using the judgement form A true. The explicit element we have found in the
set [p@(q@r) =L (p@q)@r] is not a very interesting program. A more elaborate
example is found in [99].

72 CHAPTER 10. LISTS

Chapter 11

Cartesian product of two
sets

If A and B are sets, then the cartesian product

A×B

can be formed. The canonical elements of this set are pairs

〈a, b〉

where a ∈ A and b ∈ B. The primitive noncanonical constant for the cartesian
product is split of arity 0⊗(0⊗0→→0)→→0. If p ∈ A × B and e(x, y) ∈ C(〈x, y〉)
under the assumptions that x ∈ A and y ∈ C, then

split(p, e) ∈ C(p)

which is evaluated as follows:

1. split(p, e) is evaluated by first evaluating p.

2. If p has value 〈a, b〉 then the value of split(p, e) is the value of e(a, b).

The split expression is similar to a let expression in ML of the form

case p of (x,y) => e(x,y)

The ordinary projection operators are defined by:

fst(x) ≡ split(x, (y, z)y)
snd(x) ≡ split(x, (y, z)z)

We will later see that the cartesian product A × B is a special case of the
disjoint union (Σx∈A)B.

11.1 The formal rules

In order to define A×B, we have to introduce a new constant × of arity 0⊗0→→0.
We will write A × B instead of ×(A,B). The set A × B is introduced by the
rule

73

74 CHAPTER 11. CARTESIAN PRODUCT OF TWO SETS

× – formation
A set B set

A×B set

In order to explain the set A×B, we must explain what a canonical element
in the set is and what it means for two canonical elements to be equal. For this
purpose, we introduce a new constant 〈〉 of arity 0⊗0→→0. Instead of writing
〈〉(a, b), we will write 〈a, b〉. The canonical elements in the set A×B are given
by the following rule:

× – introduction
a ∈ A b ∈ B

〈a, b〉 ∈ A×B

So the canonical elements in the set A× B are of the form 〈a, b〉, where a ∈ A
and b ∈ B.

The elimination rule for the cartesian product is:
× – elimination

p ∈ A×B C(v) set [v ∈ A×B] e(x, y) ∈ C(〈x, y〉) [x ∈ A, y ∈ B]
split(p, e) ∈ C(p)

We can justify this rule, using the computation rule for split and the semantical
explanations, in the following way.

The premise that p ∈ A×B means that the value of p is a canonical element
in the set A × B, which by the introduction rule is of the form 〈a, b〉, where
a ∈ A and b ∈ B. We are going to show that

split(p, e) ∈ C(p)

i.e. that the value of split(p, e) is a canonical element in C(p). It follows from
the computation rule for split that the value of split(p, e) is the value of e(a, b).
The meaning of the second premise gives that

e(a, b) ∈ C(〈a, b〉)

i.e. the value of split(p, e) is a canonical element in C(〈a, b〉).
From the premise

C(v) set [v ∈ A×B]

it follows that
C(〈a, b〉) = C(p)

since 〈a, b〉 = p ∈ A × B. Hence, canonical elements in C(〈a, b〉) are also
canonical elements in C(p), in particular the value of split(p, e) is a canonical
element in C(p).

The computation rule also justifies the equality rule
× – equality

a ∈ A b ∈ B e(x, y) ∈ C(〈x, y〉) [x ∈ A, y ∈ B]
split(〈a, b〉, e) = e(a, b) ∈ C(〈a, b〉)

We can define logical conjunction by

& ≡ ×

11.1. THE FORMAL RULES 75

and we get the usual natural deduction rules for conjunction by omitting the
constructions in the rules above:

& – formation
A prop B prop

A &B prop

& – introduction

A true B true

A &B true

& – elimination

A &B true C prop C true [A true, B true]
C true

It is also convenient to have a constant for logical equivalence:

A ⇔ B ≡ (A⊃B) & (B⊃A)

Example. Projection is the inverse of pairing

In the lambda-calculus it is not possible to define pairing and projection so
that 〈fst(z), snd(z)〉 converts to z. In type theory we have only defined the
computation rules for closed expressions. However, we can prove

(z =A×B 〈fst(z), snd(z)〉) true [z ∈ A×B] (1)

in the following way. By × – equality and the definitions of fst and snd we get

fst(〈x, y〉) = x ∈ A [x ∈ A, y ∈ B]

and

snd(〈x, y〉) = y ∈ B [x ∈ A, y ∈ B]

×-introduction 2 then gives

〈fst(〈x, y〉), snd(〈x, y〉)〉 = 〈x, y〉 ∈ A×B [x ∈ A, y ∈ B]

We can now apply symmetry and Id-introduction to the last equation to get

id(〈x, y〉) ∈ (〈x, y〉 =A×B 〈fst(〈x, y〉), snd(〈x, y〉)〉) [x ∈ A, y ∈ B]

from which we get, by ×-elimination,

split(z, (x, y)id(〈x, y〉)) ∈ (z =A×B 〈fst(z), snd(z)〉) [z ∈ A×B]

Hence, we have proved (1).

76 CHAPTER 11. CARTESIAN PRODUCT OF TWO SETS

11.2 Extensional equality on functions

That two functions f and g in a cartesian product Π(A,B) are extensionally
equal means that

(∀x∈A) Id(B(x), apply(f, x), apply(g, x))

is true. We cannot expect the equality expressed by Id to be extensional, i.e.
we cannot expect

(∀x∈A) Id(B(x), apply(f, x), apply(g, x)) ⇔ Id(Π(A,B), f, g)

to hold in general. Informally, we can see that in the following way. Since
the set Id(Π(A,B), f, g) does not depend on any assumptions, it is nonempty
if and only if f and g are convertible; this follows from a result mentioned in
section 8.2. Hence, it is decidable whether Id(Π(A,B), f, g) holds or not. But
we cannot even expect

(∀x∈N)Id(N, apply(f, x), apply(g, x))

to be decidable. However, Eq is extensional on a cartesian product:

Theorem Under the assumptions f ∈ Π(A,B) and g ∈ Π(A,B) it holds that

(∀x∈A) Eq(B(x), apply(f, x), apply(g, x)) ⇔ Eq(Π(A,B), f, g)

Proof: We first prove the implication from right to left. So let us assume
Eq(Π(A,B), f, g). By the strong Eq-elimination rule, we then obtain

f = g ∈ Π(A,B)

which, by equality rules, gives

apply(f, x) = apply(g, x) ∈ B(x) [x ∈ A]

Hence, by Eq-introduction,

eq ∈ Eq(B(x), apply(f, x), apply(g, x))

which, by Π-introduction, gives

λ((x)eq) ∈ (∀x∈A) Eq(B(x), apply(f, x), apply(g, x))

as desired.
For the proof of the implication from left to right, assume

(∀x∈A)Eq(B(x), apply(f, x), apply(g, x))

By Π-elimination and the strong Eq-elimination rule, we then obtain

apply(f, x) = apply(g, x) ∈ B(x) [x ∈ A]

which, by equality rules, gives

λ((x)apply(f, x)) = λ((x)apply(g, x)) ∈ Π(A,B)

11.2. EXTENSIONAL EQUALITY ON FUNCTIONS 77

By η-conversion, which we have in the theory with Eq-sets, we then obtain

f = g ∈ Π(A,B)

Hence, by Eq-introduction,

eq ∈ Eq(Π(A,B), f, g)

2

78 CHAPTER 11. CARTESIAN PRODUCT OF TWO SETS

Chapter 12

Disjoint union of two sets

We introduce the constant + of arity 0⊗0→→0 to represent the disjoint union
of two sets. We will often use infix notation instead of the standard prefix one,
and, therefore, introduce the definition:

A + B ≡ +(A,B)

To form A + B we have the rule
+ – formation

A set B set

A + B set

In order to form elements in a disjoint union of two sets, we introduce the
canonical constants inl and inr, both of arity 0→→0.

Let A and B be sets. The canonical elements in A + B are given by the
following introduction rules

+ – introduction

a ∈ A B set

inl(a) ∈ A + B

A set b ∈ B

inr(b) ∈ A + B

The selector for A+B is the constant when of arity 0⊗(0→→0)⊗(0→→0)→→0. The
expression when(c, d, e) is computed in the following way:

1. Evaluate c to canonical form.

2a. If the value of c is of the form inl(a), then continue by evaluating d(a).

2b. If the value of c is of the form inr(b), then continue by evaluating e(b).

From this computation rule, we get the elimination rule:
+ – elimination

c ∈ A + B
C(v) set [v ∈ A + B]
d(x) ∈ C(inl(x)) [x ∈ A]
e(y) ∈ C(inr(y)) [y ∈ B]
when(c, d, e) ∈ C(c)

79

80 CHAPTER 12. DISJOINT UNION OF TWO SETS

We also get the equality rules:
+ – equality

a ∈ A
C(v) set [v ∈ A + B]
d(x) ∈ C(inl(x)) [x ∈ A]
e(y) ∈ C(inr(y)) [y ∈ B]
when(inl(a), d, e) = d(a) ∈ C(inl(a))

b ∈ B
C(v) set [v ∈ A + B]
d(x) ∈ C(inl(x)) [x ∈ A]
e(y) ∈ C(inr(y)) [y ∈ B]
when(inr(b), d, e) = e(b) ∈ C(inr(b))

Having defined disjoint union, we can introduce disjunction by the definition:

A∨B ≡ A + B

and from the rules for +, we get the natural deduction rules for ∨ :
∨ – formation

A prop A prop

A∨B prop

∨ – introduction

A true

A∨B true

B true

A∨B true

∨ – elimination

A∨B true C prop C true [A true] C true [B true]
C true

Chapter 13

Disjoint union of a family of
sets

In order to be able to deal with the existential quantifier, we will now generalize
the cartesian product of two sets to disjoint union on a family of sets. We
therefore introduce a new constant Σ of arity 0⊗(0→→0)→→0. Let A be a set and
B a family of sets over A, i.e.

B(x) set [x ∈ A]

then we may conclude that Σ(A,B) is a set. So we have the formation rule
Σ – formation

A set B(x) set [x ∈ A]
Σ(A,B) set

A canonical element in the set Σ(A,B) is of the form 〈a, b〉 where a is an element
in the set A and b an element in the set B(a). Two canonical elements 〈a, b〉 and
〈a′, b′〉 are equal if a = a′ ∈ A and b = b′ ∈ B(a). So we have the introduction
rule

Σ – introduction

a ∈ A B(x) set [x ∈ A] b ∈ B(a)
〈a, b〉 ∈ Σ(A,B)

We get the cartesian product of two sets if we make the following definition:

A×B ≡ Σ(A, (x)B)

In the chapter on cartesian product of two sets, we introduced the non-canonical
constant split. The computation rules for split justify the elimination rule

Σ – elimination

c ∈ Σ(A,B)
C(v) set [v ∈ Σ(A,B)]
d(x, y) ∈ C(〈x, y〉) [x ∈ A, y ∈ B(x)]
split(c, d) ∈ C(c)

81

82 CHAPTER 13. DISJOINT UNION OF A FAMILY OF SETS

and the equality rule
Σ – equality

a ∈ A
b ∈ B(a)
C(v) set [v ∈ Σ(A,B)]
d(x, y) ∈ C(〈x, y〉) [x ∈ A, y ∈ B(x)]
split(〈a, b〉, d) = d(a, b) ∈ C(〈a, b〉)

We can show that the elimination rule is correct by assuming the premises
c ∈ Σ(A,B) and d(x, y) ∈ C(〈x, y〉) [x ∈ A, y ∈ B(x)]. The value of split(c, d) is
computed by first computing c. By the meaning of the first premise, the value
of c is 〈a, b〉 where a ∈ A and b ∈ B(a). The value of split(c, d) is then the value
of d(a, b) which, by the meaning of the second premise and the extensionality
of C, is a canonical element in C(c).

The equality rule is immediately justified from the way split(〈a, b〉, d) is com-
puted.

In order to use a notation which is more similar to the existential quantifier,
we make the definition

(Σx∈A)B(x) ≡ Σ(A,B)

We can now introduce the existential quantifier:

(∃x∈A)B(x) ≡ (Σx∈A)B(x)

By omitting some of the constructions in the rules for the Σ-set, we get the
natural deduction rules for the existential quantifier:

∃ – introduction
a ∈ A B(a) true

(∃x∈A)B(x) true

∃ – elimination

(∃x∈A)B(x) true C prop C true [x ∈ A, B(x) true]
C true

Example. All elements in a Σ set are pairs

We will prove that the proposition

(∀p∈Σ(A,B))(∃a∈A)(∃b∈B(a)) (p =Σ(A,B) 〈a, b〉)

is true for an arbitrary set A and an arbitrary family B of sets over A.
Assume that p ∈ Σ(A,B). We will prove that the proposition

(∃a∈A)(∃b∈B(a)) (p =Σ(A,B) 〈a, b〉)

is true by Σ-elimination. So, we assume that x ∈ A and y ∈ B(x) and try to
prove (∃a ∈A)(∃b ∈B(a)) (〈x, y〉 =Σ(A,B) 〈a, b〉) . But this is immediate from
the facts that x ∈ A and y ∈ B(x), since then we get that 〈x, y〉 =Σ(A,B) 〈x, y〉 is
true by Id-introduction. And then we can use ∃-introduction twice to conclude
that (∃a∈A)(∃b∈B(a)) 〈x, y〉 =Σ(A,B) 〈a, b〉. Finally, we get the desired result
by an ∀-introduction.

Chapter 14

The set of small sets
(The first universe)

14.1 Formal rules

The idea behind the set of small sets, i.e. the first universe, is to reflect the set
structure on the object level. In programming we need it for many specifications
when the most natural way of expressing a proposition is to use recursion or
conditionals. We also need it in order to prove inequalities such as 0 6=N succ(0)
(see later in this section). It is also necessary when defining abstract data types
in type theory (see chapter 23).

We shall first introduce a set U of small sets, where U is a primitive constant
of arity 0, which has constructors corresponding to the set forming operations
{i1, ..., in}, N, List, Id, +, Π, Σ, and W. The set forming operation W is used
to represent well-orderings in type theory and is introduced in chapter 15. We
start by introducing the following primitive constants: ̂{i1, ..., in} and N̂ of arity
0, L̂ist of arity 0→→0, Îd of arity 0⊗0⊗0→→0, +̂ of arity 0⊗0→→0 and Π̂, Σ̂ and
Ŵ of arity 0⊗(0→→0)→→0.

A problem with the set U is that, because of the enumeration sets, the
number of constructors is not fixed; this makes it impossible to formulate an
induction principle for U. We will therefore, in section 14.2, change the set
structure and the set of small sets in order to justify an elimination rule for
the universe. One motivation for this is to introduce a selector urec, which is
necessary for doing computations with the elements in the set of small sets.

The set of small sets is defined by giving its canonical elements and their
equality relation. The idea is to let each canonical element represent (code) a set
formed by using the set forming operations mentioned earlier. Simultaneously
with the definition of the canonical elements, we will define a family of sets
Set(x) set [x ∈ U] which decodes the elements in the universe to the set they
represent. The canonical elements are given by the introduction rules.

U – formation
U set

U – introduction 1 ̂{i1, ..., in} ∈ U

83

84 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

Set– introduction 1

Set(̂{i1, ..., in}) = {i1, ..., in}

U – introduction 2

N̂ ∈ U

Set – introduction 2

Set(N̂) = N

U – introduction 3

A ∈ U

L̂ist(A) ∈ U

Set – introduction 3

A ∈ U

Set(L̂ist(A)) = List(Set(A))

U – introduction 4

A ∈ U a ∈ Set(A) b ∈ Set(A)
Îd(A, a, b) ∈ U

Set – introduction 4

A ∈ U a ∈ Set(A) b ∈ Set(A)
Set(Îd(A, a, b)) = Id(Set(A), a, b)

U – introduction 5

A ∈ U B ∈ U

A+̂B ∈ U

Set – introduction 5

A ∈ U B ∈ U

Set(A+̂B) = Set(A) + Set(B)

U – introduction 6

A ∈ U B(x) ∈ U [x ∈ Set(A)]
Π̂(A,B) ∈ U

Set – introduction 6

A ∈ U B(x) ∈ U [x ∈ Set(A)]
Set(Π̂(A,B)) = Π(Set(A), (x)Set(B(x)))

14.1. FORMAL RULES 85

U – introduction 7

A ∈ U B(x) ∈ U [x ∈ Set(A)]
Σ̂(A,B) ∈ U

Set – introduction 7

A ∈ U B(x) ∈ U [x ∈ Set(A)]
Set(Σ̂(A,B)) = Σ(Set(A), (x)Set(B(x)))

U – introduction 8

A ∈ U B(x) ∈ U [x ∈ Set(A)]
Ŵ(A,B) ∈ U

Set – introduction 8

A ∈ U B(x) ∈ U [x ∈ Set(A)]
Set(Ŵ(A,B)) = W(Set(A), (x)Set(B(x)))

The formation rules for the set of small sets are justified by the way the
canonical elements and their equality relation were introduced. The formation
rules are:

Set – formation 1
A ∈ U

Set(A) set

Set – formation 2
A = B ∈ U

Set(A) = Set(B)

The premise A ∈ U means that the value of A is a canonical element in the
set U, and since Set(x) is defined to be equal to a set whenever x is a canonical
element in the set U, we may conclude that Set(x) is a set. And, similarly,
A = B ∈ U means that A and B have equal canonical elements in the set U
as values. The corresponding sets must therefore be equal, since the equality
relation between the canonical elements in the set U exactly corresponds to the
set equality relation.

We shall often use the same notation for the elements in the set U and the
sets they represent. From the context, it is always possible to reconstruct the
correct notation for the expressions. For example, instead of

Set(natrec(n, B̂ool, (x, Y)B̂ool→̂Y))

we write

natrec(n, Bool, (x, Y)Bool → Y)

86 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

Example. Peano’s fourth axiom

When we have introduced the universe set we are able to prove that the propo-
sition

0 6=N succ(n)

is true for an arbitrary n ∈ N. That is, if we express it in terms of sets, we can
construct an element peano4 in the set

Id(N, 0, succ(n)) → {}

We will do this by assuming that the set Id(N, 0, succ(n)) is nonempty and
show that we then can construct an element in the empty set. We will use
substitutivity of propositional equality on a predicate over the natural numbers
which is true only for the number zero.

We start by assuming n ∈ N and x ∈ Id(N, 0, succ(n)). By using N-elimination,
we get

natrec(m, T̂, (y, z){̂}) ∈ U [m ∈ N]

We make the definition

Is zero(m) ≡ Set(natrec(m, T̂, (y, z){̂}))

From N-equality and Set-formation we get the set equalities

Is zero(0) = Set(T̂) = T

Is zero(succ(n)) = Set({̂}) = {}

Using substitutivity of propositional equality we get that

subst(x, tt) ∈ Is zero(succ(n))

which by Set-equality yields

subst(x, tt) ∈ {}

Finally, by →-introduction, we discharge the second assumption and obtain

λ((x)subst(x, tt)) ∈ Id(N, 0, succ(n)) → {} [n ∈ N]

So we may put
peano4 ≡ λ((x)subst(x, tt))

and we have a proof of Peano’s fourth axiom.
In [101] it is shown that Peano’s fourth axiom cannot be derived in type

theory without universes. The proof is based on interpreting set theory without
a universe in a domain with only two elements. So, a truth valued function ϕ is
defined on the sets and, intuitively, ϕ(A) = > means that the interpretation of
the set A is a set with one element and ϕ(A) = ⊥ means that A is interpreted
as the empty set. ϕ is defined for each set expression A(x1, . . . , xn) by recursion

14.1. FORMAL RULES 87

on the length of the derivation of A(x1, . . . , xn) set [x1 ∈ A1, . . . , xn ∈
An(x1, . . . , xn−1)], using the clauses

ϕ({}) = ⊥
ϕ({i1, . . . , in}) = >

ϕ(N) = >
ϕ(Id(A, a, b)) = ϕ(A)

ϕ(A + B) = ϕ(A) ∨ ϕ(B)
ϕ((Πx∈A)B(x)) = ϕ(A) → ϕ(B(x))
ϕ((Σx∈A)B(x)) = ϕ(A) ∧ ϕ(B(x))
ϕ((Wx∈A)B(x)) = ϕ(A) ∧ (¬ϕ(B(x)))

ϕ({x ∈ A | B(x)}) = ϕ(A) ∧ ϕ(B(x))

Here ∧, ∨, →, and ¬ denote the usual boolean operations.
That ϕ really interprets set theory in the intended way is the content of the

following theorem, which is proved in [101].

Theorem Let a(x1, . . . , xn) ∈ A(x1, . . . , xn) be derivable in set theory without
universes under the assumptions x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1). Then
ϕ(A(x1, . . . , xn)) = > if ϕ(A1) = · · · = ϕ(An(x1, . . . , xn−1)) = >.

By the interpretation we can now see that for no type A and terms a and b
does there exist a closed term t such that

t ∈ ¬Id(A, a, b) (∗)

is derivable in type theory without universes. Assume that (∗) holds. Then
there must exist a derivation of Id(A, a, b) set and, hence, also a derivation of
a ∈ A. So, by the theorem, ϕ(A) = > which, together with the definitions of ϕ
and ¬, gives

ϕ(¬Id(A, a, b)) = ϕ(Id(A, a, b) → {}) = ϕ(Id(A, a, b)) → ϕ({}) =
ϕ(A) → ⊥ = ⊥

Hence, by the theorem, ¬Id(A, a, b) cannot be derived in type theory without
universes.

Assume that Peano’s fourth axiom can be derived, that is, that we, for some
closed term s, have a derivation of

s ∈ (Πx∈N)¬Id(N, 0, succ(x))

By Π-elimination we get apply(s, 0) ∈ ¬Id(N, 0, succ(0)) which is of the form (∗)
and therefore impossible to derive in type theory without universes.

Example. The tautology function

A disadvantage with many type systems in programming languages is that some
expressions, although perfectly reasonable, can not be assigned a type. The
type systems are not well suited to express some properties needed for a safe
evaluation of the expression. As an example, take the tautology function from

88 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

the SASL manual [110]. It determines if a boolean expression of n variables
(represented as a curried function of n arguments) is a tautology or not. The
function is defined, using SASL-notation, as:

taut 0 f = f

taut n f = taut(n− 1) (f true) and taut(n− 1) (f false)

Since SASL is untyped, the function is not assigned a type and for most other
typed languages the definition causes a type error. Informally the type of taut
is

(Πn ∈ N)((Bool →n Bool) → Bool)

where (Bool →n Bool) is defined by the equations

Bool →0 Bool = Bool

Bool →k+1 Bool = Bool → (Bool →k Bool)

So, for example,

taut 0 ∈ Bool → Bool

taut 3 ∈ (Bool → Bool → Bool → Bool) → Bool

and we can see that the type of the second argument depends on the value of
the first.

The type of taut can be expressed using the set U in type theory. Make the
following definitions:

and(x, y) ≡ if x then y else false

F(n) ≡ natrec(n, Bool, (x, Y)Bool → Y)
taut(n) ≡ natrec(n,

λ((f)f),
(x, y)λ((f)and(y · (f · true),

y · (f · false))))

Notice that we have used the infix version of the constant apply,

x · y ≡ apply(x, y)

From these definitions, it immediately follows that

and(x, y) ∈ Bool [x ∈ Bool, y ∈ Bool] (14.1)
F(0) = Bool ∈ U (14.2)
F(succ(x)) = Bool → F(x) ∈ U [x ∈ N] (14.3)

Using Set-formation on (14.2) and (14.3), we get the set equalities

F(0) = Bool (14.4)
F(succ(x)) = Bool → F(x) [x ∈ N] (14.5)

The goal is to prove:

λ((n)taut(n)) ∈ (Πn ∈ N)(F(n) → Bool)

14.1. FORMAL RULES 89

so we start by assuming that
n ∈ N

and then prove taut(n) ∈ F(n) → Bool by induction on n. We first have the
base case. It is easy to see that

λ((f)f) ∈ Bool → Bool

and, since we from (14.4) and →-formation get the set equality

F(0) → Bool = Bool → Bool

we can conclude that
λ((f)f) ∈ F(0) → Bool (14.6)

For the induction step, we make the assumptions

x ∈ N

y ∈ F(x) → Bool

The goal is to prove

λ((f)and(y · (f · true), y · (f · false))) ∈ F(succ(x)) → Bool

We therefore make the assumption

f ∈ F(succ(x)) (14.7)

From (14.7) and the set equality (14.4), we get

f ∈ Bool → F(x)

and then by →-elimination

f · true ∈ F(x)
f · false ∈ F(x)

and furthermore by using the induction hypothesis

y · (f · true) ∈ Bool

y · (f · false) ∈ Bool

By substituting these elements into (14.1), we obtain

and(y · (f · true), y · (f · false))) ∈ Bool

By →-introduction, we discharge assumption (14.7) and get

λ((f)and(y · (f · true), y · (f · false))) ∈ F(succ(x)) → Bool (14.8)

We can now use N-elimination on (14.6) and (14.8) to obtain

taut(n) ∈ F(n) → Bool

and finally, by Π-introduction, we get the desired result

λ((n)taut(n)) ∈ (Πn ∈ N)(F(n) → Bool)

90 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

Example. An expression without normal form in the the-
ory with extensional equality

A canonical element in the set (Πx∈A)B(x) is of the form λ(b) where b(x) ∈
B(x) [x ∈ A] and the expression b(x) is not further evaluated. We have already
remarked that evaluating b(x) would be the same as trying to execute a program
which expects an input without giving any input. Using the extensional equality
Eq and the universe in a crucial way, we will now give an example of a lambda-
expression λ(b) in the set {} → A, where, by regarding the evaluation rules as
reduction rules, b(x) does not even terminate.

By the use of the set of small sets, we will show that

Set(A) = Set(B) [A ∈ U, B ∈ U, x ∈ {}] (14.1)

Assume
x ∈ {}

Since Eq(U, A, B) is a set, we get by {}-elimination that

case0(x) ∈ Eq(U, A, B) [A ∈ U, B ∈ U, x ∈ {}]

and by strong Eq-elimination it follows that

A = B ∈ U [A ∈ U, B ∈ U, x ∈ {}] (14.2)

Set-formation 2 and (2) gives

Set(A) = Set(B) [A ∈ U, B ∈ U, x ∈ {}]

and, hence, we have a derivation of (1).
Now assume

x ∈ {} (14.3)

By choosing A to be N̂ and B to be N̂→̂N̂, we get from (1)

N = N → N (14.4)

Assume
y ∈ N (14.5)

One of the rules for set equality applied on (4) and (5) gives

y ∈ N → N (14.6)

From (5) and (6) we get, by →-elimination,

apply(y, y) ∈ N (14.7)

and from (7) we get, by →-introduction,

λy.apply(y, y) ∈ N → N (14.8)

thereby discharging the assumption (5). (6) and (8) give

λy.apply(y, y) ∈ N (14.9)

14.2. ELIMINATION RULE 91

We can now apply →-elimination on (8) and (9) to get

apply(λy.apply(y, y), λy.apply(y, y)) ∈ N

and →-introduction finally gives

λx.apply(λy.apply(y, y), λy.apply(y, y)) ∈ {} → N

thereby discharging the assumption (3). The expression

apply(λy.apply(y, y), λy.apply(y, y))

is the well-known example from combinatory logic of an expression which re-
duces to itself. Since this expression is not on canonical form, we have an
example of a lambda-expression which is an element of a Π-set and whose body
does not terminate. Notice that there is no violation of the arity rules when
forming apply(y, y) because apply is of arity 0⊗0→→0 and y is a variable of arity
0.

14.2 Elimination rule

With a set of small sets that reflects a set structure with infinitely many set
forming operations, it is impossible to justify a structural induction rule on
the set. In order to be able to introduce such an induction rule, the small
enumeration sets, i.e the sets {i1, ..., in}, must be generated from finitely many
basic enumeration sets. We shall therefore modify the system of set forming
operations, and consequently also the set of small sets, to make room for an
induction rule on the elements of the universe. The modified system will only
contain two basic enumeration sets, the empty set and a set with one element
(see the section on enumeration sets); the other enumeration sets are generated
from these two sets by means of the disjoint union. With a set structure with
only these two enumeration sets, we get a set of small sets where the first U-
introduction rule is replaced by the rules:

U – introduction 1a

∅̂ ∈ U

Set(∅̂) = ∅

and
U – introduction 1b

T̂ ∈ U

Set(T̂) = T

An enumeration set with more than one element is formed by repeated use of
the T set and the disjoint union. We introduce the function constant N′ of arity
0 by the definition:

N′(x) ≡ natrec(x, ∅̂, (u, v)S′(v))

where

92 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

S′(x) ≡ T̂+̂x

So
Set(S′(A)) set [A ∈ U] (14.10)

and N′ applied to a natural number n gives an element in U, which corresponds
to an enumeration set with n elements. We can now prove that

N′(x) ∈ U [x ∈ N] (14.11)
N′(succ(x)) = S′(N′(x)) ∈ U [x ∈ N] (14.12)

From 14.11, we get, by Set-formation,

Set(N′(x)) set [x ∈ N]

Moreover, simplification gives us:

Set(N′(0)) = ∅
Set(N′(1)) = T + ∅

with the element inl(tt), and

Set(N′(2)) = T+(T+∅)

with elements inl(tt) and inr(inl(tt)), and so on. If the enumeration sets de-
fined here are compared with the enumeration sets Nk in [69] then Set(N′(k))
corresponds to Nk, inl(tt) corresponds to 0k and inr(inr(. . . inr(inl(tt)) . . .)) cor-
responds to nk, with n being the number of ‘inr’-applications.

By making the definitions:

o′ ≡ inl(tt)
s′(x) ≡ inr(x)

scase′(x, y, z) ≡ when(x, (w)y, z)

where o′, s′ and scase′ are constants of arity 0, 0→→0 and 0⊗0⊗(0→→0)→→0
respectively, we can prove the judgements

o′ ∈ Set(S′(A)) [A ∈ U] (14.13)

s′(x) ∈ Set(S′(A)) [A ∈ U, x ∈ Set(A)] (14.14)

scase′(x, y, z) ∈ Set(C(x))
[A ∈ U, x ∈ Set(S′(A)), C(u) ∈ U [u ∈ Set(S′(A))],
y ∈ Set(C(o′)), z(v) ∈ C(s′(v)) [v ∈ Set(A)]]

(14.15)

scase′(o′, y, z) = y ∈ Set(C(o′))
[A ∈ U, C(u) ∈ U [u ∈ Set(S′(A))],
y ∈ Set(C(o′)), z(v) ∈ C(s′(v)) [v ∈ Set(A)]]

(14.16)

scase′(s′(x), y, z) = z(x) ∈ Set(C(s′(x)))
[A ∈ U, x ∈ Set(A), C(u) ∈ U [u ∈ Set(S′(A))],
y ∈ Set(C(o′)), z(v) ∈ C(s′(v)) [v ∈ Set(A)]]

(14.17)

14.2. ELIMINATION RULE 93

Per Martin-Löf has given a more direct formulation of the enumeration
sets by introducing the set former S as a primitive constant with the follow-
ing rules (compare with the theorems (14.10), (14.13), (14.14), (14.15), (14.16)
and (14.17) above):

S– formation
A set

S(A) set

S– introduction

o ∈ S(A)
a ∈ A

s(a) ∈ S(A)

S– elimination

a ∈ S(A) b ∈ C(o) c(x) ∈ C(s(x)) [x ∈ A]
scase(a, b, c) ∈ C(a)

S– equality

b ∈ C(o) c(x) ∈ C(s(x)) [x ∈ A]
scase(o, b, c) = b ∈ C(o)

a ∈ S(A) b ∈ C(o) c(x) ∈ C(s(x)) [x ∈ A]
scase(s(a), b, c) = c(a) ∈ C(s(a))

Given the reformulated set of small sets, we can now justify a structural
induction rule, which is introduced as follows. First we introduce urec as a
constant of arity

0⊗0⊗0⊗0⊗

(0⊗0→→0)⊗
(0⊗0⊗0⊗0→→0))⊗
(0⊗0⊗0⊗0→→0))⊗
(0⊗(0→→0)⊗0⊗(0→→0)→→0)⊗
(0⊗(0→→0)⊗0⊗(0→→0)→→0)⊗
(0⊗(0→→0)⊗0⊗(0→→0)→→0)

→→0

and we then define how urec(A, a1, . . . , a9) is computed by the following rules
(a ⇒ b means that b is the value of a).

a ⇒ ∅̂ a1 ⇒ b

urec(a, a1, a2, a3, a4, a5, a6, a7, a8, a9) ⇒ b

a ⇒ T̂ a2 ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

a ⇒ N̂ a3 ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

94 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

a ⇒ L̂ist(A) a4(A, urec(A, a1, a2, ..., a9)) ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

a ⇒ Îd(A, c, d) a5(A, c, d, urec(A, a1, ..., a9)) ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

a ⇒ A+̂B a6(A,B, urec(A, a1, ..., a9), urec(B, a1, ..., a9)) ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

a ⇒ Π̂(A,B) a7(A,B, urec(A, a1, ..., a9), (w)urec(B(w), a1, ..., a9)) ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

a ⇒ Σ̂(A,B) a8(A,B, urec(A, a1, ..., a9), (w)urec(B(w), a1, ..., a9)) ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

a ⇒ Ŵ(A,B) a9(A,B, urec(A, a1, ..., a9), (w)urec(B(w), a1, ..., a9)) ⇒ b

urec(a, a1, a2, ..., a9) ⇒ b

A restriction in these rules is that w must not occur free in B, a1,. . . , a8 or a9.
It would otherwise be bound in (w)urec(B(w), a1, ..., a9).

The computation rule for urec justifies the following elimination rule for the
set of small sets:

U- elimination

a ∈ U
C(v) set [v ∈ U]
a1 ∈ C(∅̂)
a2 ∈ C(T̂)
a3 ∈ C(N̂)
a4(x, y) ∈ C(L̂ist(x)) [x ∈ U, y ∈ C(x)]
a5(x, y, z, u) ∈ C(Îd(x, y, z)) [x ∈ U, y ∈ Set(x), z ∈ Set(x), u ∈ C(x)]
a6(x, y, z, u) ∈ C(x+̂y) [x ∈ U, y ∈ U, z ∈ C(x), u ∈ C(y)]
a7(x, y, z, u) ∈ C(Π̂(x, y)) [x ∈ U, y(v) ∈ U[v ∈ Set(x)],

z ∈ C(x), u(v) ∈ C(y(v))[v ∈ Set(x)]]
a8(x, y, z, u) ∈ C(Σ̂(x, y)) [x ∈ U, y(v) ∈ U[v ∈ Set(x)],

z ∈ C(x), u(v) ∈ C(y(v))[v ∈ Set(x)]]
a9(x, y, z, u) ∈ C(Ŵ(x, y)) [x ∈ U, y(v) ∈ U[v ∈ Set(x)],

z ∈ C(x), u(v) ∈ C(y(v))[v ∈ Set(x)]]
urec(a, a1, a2, a3, a4, a5, a6, a7, a8, a9) ∈ C(a)

Here x, y, z and u must not occur free in the abstraction C. In the following
rules we will not write down the premise C(v) set [v ∈ U].

We also have an elimination rule where the premises and conclusion are of
the form a = b ∈ A. Furthermore, the computation rule for urec justifies the
following equality rules. The last 9 premises of all the equality rules are the
same as the last 9 premises of the elimination rule above.

U- equality 1

a1 ∈ C(∅̂) a2 ∈ C(T̂) . . . a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(∅̂, a1, a2, a3, a4, a5, a6, a7, a8, a9) = a1 ∈ C(∅̂)

14.2. ELIMINATION RULE 95

U- equality 2

a1 ∈ C(∅̂) a2 ∈ C(T̂) . . . a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(T̂, a1, a2, a3, a4, a5, a6, a7, a8, a9) = a2 ∈ C(T̂)

U- equality 3

a1 ∈ C(∅̂) a2 ∈ C(T̂) . . . a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(N̂, a1, a2, a3, a4, a5, a6, a7, a8, a9) = a3 ∈ C(N̂)

U- equality 4

A ∈ U a1 ∈ C(∅̂) . . . a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(L̂ist(A), a1, . . . , a9) = a4(A, urec(A, a1, . . . , a9)) ∈ C(L̂ist(A))

U- equality 5

A ∈ U
c ∈ Set(A)
d ∈ Set(A) a1 ∈ C(∅̂)

...
a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(Îd(A, c, d), a1, . . . , a9) =
a5(A, c, d, urec(A, a1, . . . , a9)) ∈ C(Îd(A, c, d))

U- equality 6

A ∈ U
B ∈ U

a1 ∈ C(∅̂)
...

a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(A+̂B, a1, . . . , a9) =
a6(A,B, urec(A, a1 . . . , a9), urec(B, a1, . . . , a9)) ∈ C(A+̂B)

U- equality 7

A ∈ U
B(x) ∈ U [x ∈ Set(A)]
a1 ∈ C(∅̂)

...
a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(Π̂(A,B), a1, . . . , a9) =
a7(A,B, urec(A, a1, . . . , a9), (w)urec(B(w), a1, . . . , a9)) ∈ C(Π̂(A,B))

96 CHAPTER 14. THE SET OF SMALL SETS (THE FIRST UNIVERSE)

U- equality 8

A ∈ U
B(x) ∈ U [x ∈ Set(A)]
a1 ∈ C(∅̂)

...
a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(Σ̂(A,B), a1, . . . , a9) =
a8(A,B, urec(A, a1, . . . , a9), (w)urec(B(w), a1, . . . , a9)) ∈ C(Σ̂(A,B))

U- equality 9

A ∈ U
B(x) ∈ U [x ∈ Set(A)]
a1 ∈ C(∅̂)

...
a9(x, y, z, u) ∈ C(Ŵ(x, y)) [. . .]
urec(Ŵ(A,B), a1, . . . , a9) =
a9(A,B, urec(A, a1, . . . , a9), (w)urec(B(w), a1, . . . , a9)) ∈ C(Ŵ(A,B))

The variables x, y, z and u must not occur free in C, and there must be no
free occurrences of w in B, a1, . . . or a9.

Chapter 15

Well-orderings

In order to introduce the well-ordering set constructor (or well-founded tree set
constructor) we introduce the primitive constants

W of arity (0⊗(0→→0))→→0
sup of arity (0⊗(0→→0))→→0

wrec of arity 0⊗(0⊗(0→→0)⊗(0→→0)→→0)→→0

With the well-order set constructor we can construct many different sets of
trees and to characterize a particular set we must provide information about
two things:

• the different ways the trees may be formed, and

• for each way to form a tree which parts it consists of.

To provide this information, the well-order set constructor W has two arguments:

1. The constructor set A.

2. The selector family B.

Given a constructor set A and selector family B on A, we can form a well-order
W(A,B) (two other notations are (Wx∈A)B(x) and Wx∈AB(x)). The formation
rule therefore has the following form:

W - formation

A set B(x) set [x ∈ A]
W(A,B) set

The elements in the set A represents the different ways to form an element in
W(A,B) and B(x) represents the parts of a tree formed by x.

The elements of a well-order W(A,B) can, as we already mentioned, be seen
as well-founded trees and to form a particular element of W(A,B) we must say
which way the tree is formed and what the parts are. If we have an element a in
the set A, that is, if we have a particular form we want the tree to have, and if we
have a function from B(a) to W(A,B), that is if we have a collection of subtrees,
we may form the tree sup(a, b). We visualize this element in figure 15.1. The
introduction rule has the form

97

98 CHAPTER 15. WELL-ORDERINGSs sup(a1, b1) ∈ W(A,B)
�

�
�

�
�

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

%
%

%
%

%
%

%
%

%

c1 ∈ B(a1)

. . .

b1(c1) = sup(a2, b2)
∈ W(A,B)

s
�

�
�

�
�

@
@

@
@

@

�
�

�s
�� SS

S
S
Ss
�� SS

J
J

J
J

J
J

J
J
Js

�
�

�
�

�

@
@

@
@

@

Figure 15.1: An element of a well-order

W - introduction
a ∈ A b(x) ∈ W(A,B) [x ∈ B(a)]

sup(a, b) ∈ W(A,B)

It may seem strange that we do not have a particular introduction rule for
the leaves, but we get the same effect if we choose B(x) to be the empty set for
some x ∈ A. In the introduction rule we can see that we must provide a function
from B(x) to W(A,B) in order to form an element sup(a, b). In the case when
B(x) is the empty set, we use a small “trick” to provide such a function. From
the assumption x ∈ {}, we can, by using the {}-elimination rule, conclude that
case{}(x) is an element of an arbitrary set, and in this case we of course choose
W(A,B). So if B(a) is empty, then (x)case{}(x) ≡ case{} is a function from
B(a) to W(A,B) and sup(a, case{}) is an element of W(A,B).

Let us take a simple example. We want to construct a well-order set to
represent simple binary trees which, for example, could be defined in ML [72]
by

datatype BinTree = leaf | node of BinTree ∗ BinTree

There are two different ways of constructing a binary tree, one to construct
a leaf and one to construct a compound tree. The constructor set A must
therefore contain two elements, and we can for example use the enumeration
set {leaf,node}. A leaf does not have any parts, so B(leaf) must be the empty
set, and a compound tree has two parts, so we can choose B(node) as the set
{left, right}. Putting this together, we get a well-order set

BinTree ≡ W({leaf,node}, (x)Set(case{leaf,node}(x, {̂}, ̂{left, right})))

which has representations of all binary trees as elements. Notice that we must
use the universe set to construct the family B. The elements of this well-order
are always of one of the forms

sup(leaf, case{}) sup(node, (x)case{left,right}(x, t′, t′′))

where t′ and t′′ are two elements in W(A,B). By introducing definitions

leaf′ ≡ sup(leaf, case)
node′(t′, t′′) ≡ sup(node, (x)case(x, t′, t′′))

99

we get expressions for the elements that look just like the corresponding ML
expressions.

The non-canonical constant in a well-ordering is wrec and the expression
wrec(a, b) is computed as follows:

1. Compute the value of a.

2. If the value is sup(d, e), then the value of wrec(a, b) is the value of
b(d, e, (x)wrec(e(x), b)).

The computation rule for wrec justifies the following elimination rule:
W – elimination

a ∈ W(A,B)
C(v) set [v ∈ W(A,B)]
b(y, z, u) ∈ C(sup(y, z))

[y ∈ A, z(x) ∈ W(A,B) [x ∈ B(y)], u(x) ∈ C(z(x)) [x ∈ B(y)]]
wrec(a, b) ∈ C(a)

and the following equality rule
W - equality

d ∈ A
e(x) ∈ W(A,B) [x ∈ B(d)]
C(v) set [v ∈ W(A,B)]
b(y, z, u) ∈ C(sup(y, z))

[y ∈ A, z(x) ∈ W(A,B) [x ∈ B(y)], u(x) ∈ C(z(x)) [x ∈ B(y)]]
wrec(sup(d, e), b) = b(d, e, (x)wrec(e(x), b)) ∈ C(sup(d, e))

As an example of how the non-canonical constant can be used, we define the
function that counts the number of nodes in a binary tree and which in ML
could be defined by:

fun nrofnodes(leaf) = 1
| nrofnodes(node(t′, t′′)) = nrofnodes(t′) + nrofnodes(t′′)

In type theory this function could be defined by

nrofnodes(x) ≡ wrec(x, (y, z, u)case(y, 1, u(left) + u(right)))

Using the elimination rule, we immediately see that

nrofnodes(x) ∈ N [x ∈ BinTree]

and using the equality rule, we immediately get the equalities that correspond
to the ML definition.

In the same way as we above introduced defined constants to get a nicer
syntax for the elements of the type BinTree, we can make a definition and get
a constant that behaves just like a recursion operator on binary trees.

trec′(t, a, b) ≡ wrec(t, (x, y, z)case(x, a, b(y(left), y(right), z(left), z(right))))

The equality rule for wrec corresponds to the equalities:

trec′(leaf′, a, b) = a

trec′(node′(t′, t′′), a, b) = b(t′, t′′, trec′(t′, a, b), trec′(t′′, a, b))

100 CHAPTER 15. WELL-ORDERINGS

And the function counting the number of nodes, which we defined above, can
then be defined as

nrofnodes ≡ trec′(x, 1, (t′, t′′, z′, z′′) z′⊕z′′)

Example. Defining the natural numbers as a well-ordering

It is not difficult to see that the set of natural numbers can be defined by the
following abbreviations:

N ≡ (Wx ∈ {zero, succ})Set(case(x, {̂}, T̂))
0 ≡ sup(zero, case)

succ(a) ≡ sup(succ, (x)a)
natrec(a, b, c) ≡ wrec(a, (y, z, u)case(y, b, c(z(tt), u(tt)))

The idea is to let the n:th natural number be represented by a thin tree of height
n. We immediately see from the W-formation rule that

(Wx ∈ {zero, succ}) Set(case(x, {̂}, T̂)) set

and therefore, using the definition of N, that the formation rule for the natural
numbers can be proved. We can also see, by using the W-introduction rule, that

sup(zero, case) ∈ (Wx ∈ {zero, succ})Set(case(x, {̂}, T̂))

and hence, using the abbreviations, that the first N-introduction rule, 0 ∈ N,
holds. The second introduction rule, succ(x) ∈ N [x ∈ N], corresponds to the
judgement

sup(succ, (y)x) ∈ (Wx ∈ {zero, succ})Set(case(x, {̂}, T̂))
[x ∈ (Wx ∈ {zero, succ})Set(case(x, {̂}, T̂))]

which also is proved directly from the W-introduction rule.
Unfortunately the N-elimination rule and the N-equality rule can not be

proved using the intensional equality in type theory. The reason for this is
that there are more elements in the well-order representing the natural numbers
than one expect at first. An element sup(a, b) of a well-order has a functional
component b and the intensional equality means that two functions are equal
only if they convert to each other. So the two functions

(x) 0 and (x) 1

which maps elements in the empty set to natural numbers are not equal even
if they give the same result for all elements in the domain. The consequence
of this for the representation of natural numbers is that there are elements in
the well-order that do not represent any natural number. With an extensional
equality this problem never occurs.

15.1. REPRESENTING INDUCTIVELY DEFINED SETS BY WELL-ORDERINGS101

15.1 Representing inductively defined sets by
well-orderings

Most programming languages have some construction for defining types by in-
ductive definitions. “Old” languages use pointers and records and “modern”
languages use more sophisticated constructions, see for example [51] and [72].
In type theory the well-order set constructor can be used for representing many
inductively defined sets. But as we remarked above, we must have an extensional
equality in order to get the correct elimination and equality rules.

We have shown above how one could represent binary trees and natural num-
bers by well-orders. Let us also show how one can define an inductively defined
set which uses another set in its definition. Consider the set of binary trees with
natural numbers in its nodes and defined by the following ML definition

datatype BinTree = leaf of N | node of N ∗ BinTree ∗ BinTree

In order to represent this set by a well-order one must consider the natural
number as part of the constructor of the tree and instead of having a two
element set as the set of constructors, we now need N × N. The selectors for
inl(n) is the empty set and for inr(n) the set {left, right}. So

W(N + N, (x)Set(when(x, (n){̂}, (n) ̂{left, right})))

is a well-ordering that represents the type of binary trees with natural numbers
in its nodes. The elements are of the form

sup(inl(n), case) and sup(inr(n), (x)case(x, t′, t′′))

where n is a natural number and t′ and t′′ are two elements in W(A,B). To get
a better syntax, we can introduce three definitions:

leaf′′(n) ≡ sup(inl(n), case)
node′′(n, t′, t′′) ≡ sup(inr(n), (x)case(x, t′, t′′))

trec′′(t, a, b) ≡ wrec(t,
(y, z, u)when(y, a, (n)b(n,

z(left),
z(right),
u(left), u(right))))

The function that adds all the numbers in a tree could in type theory be defined
by

addnum(x) ≡ trec′′(x, (n)n, (n, y, z, u, v)n + u + v)
≡ wrec(x, (y, z, u)when(y, (n)n, (n)n + u(left) + u(right))

102 CHAPTER 15. WELL-ORDERINGS

Chapter 16

General trees

When we introduced the well-order set constructor in the previous chapter, we
said that many inductively defined sets could be represented by well-orders and
that the elements of a well-order could be seen as well-founded trees. The well-
order set constructor, however, is not easy to use when we want to define a
family of mutually dependent inductive sets, or mutually dependent families of
trees.

For example if we want to represent the types defined in ML by

datatype Odd = sO of Even
and Even = zeroE | sE of Odd;

it is possible but quite complicated to do this by using well-orders. We therefore
introduce a set constructor, Tree, which could be used for representing such sets
in a more direct way. Notice that we must have an extensional equality to get
the correct elimination and equality rule when we represent inductively defined
types by well-orders and general trees. The set constructor for general trees was
first introduced in [88] on which the following chapter is based.

The constructor should produce a family of sets instead of one set as the
well-order set constructor does. In order to do this, we introduce a name set,
which is a set of names of the mutually defined sets in the inductive definition.
A suitable choice of name set for the example above would be {Odd, Even}.
Instead of having one set of constructors B and one index family C over B, as
in the well-order case, we now have one constructor set and one selector family
for each element in A. The constructors form a family of sets B, where B(x)
is a set for each x in A and the selector family forms a family of sets C where
C(x, y) is a set for each x in A and y in B(x). Furthermore, since the parts
of a tree now may come from different sets, we introduce a function d which
provides information about this; d(x, y, z) is an element of A if x ∈ A, y ∈ B(x)
and z ∈ C(x, y). We call this element the component set name.

The family of sets Tree(A,B, C, d) is a representation of the family of sets
introduced by a collection of inductive definitions, for example an ML data type
definition. It could also be seen as a solution to the equation

T ∼= (x)(Σy ∈ B(x))(Πz ∈ C(x, y))T (d(x, y, z))

where T is a family of sets over A and x ∈ A. This equation could be interpreted

103

104 CHAPTER 16. GENERAL TREES

as a possibly infinite collection of ordinary set equations, one for each a ∈ A.

T (a1) ∼= (Σy ∈ B(a1))(Πz ∈ C(a1, y)) T (d(a1, y, z))
T (a2) ∼= (Σy ∈ B(a2))(Πz ∈ C(a2, y)) T (d(a2, y, z))

...

Or, if we want to express the tree set constructor as the least fixed point of a
set function operator.

Tree(A,B,C, d) ∼= FIX((T)(x)(Σy ∈ B(x))(Πz ∈ C(x, y)) T (d(x, y, z)))

Comparing this equation with the equation for the well-order set constructor

W(B,C) ∼= FIX((X)(Σy ∈ B)C(y) → X)

we can see that it is a generalization in that the non-dependent function set,
“→”, has become a set of dependent functions, Π. This is a natural general-
ization since we are now defining a family of sets instead of just one set and
every instance of the family could be defined in terms of every one of the other
instances. It is the function d that expresses this relation.

16.1 Formal rules

In order to be able to formulate the rules for the set constructor for trees, we
introduce the primitive constant Tree which has the arity

0⊗(0→→0)⊗(0⊗0→→0)⊗(0⊗0⊗0→→0)→→0→→0

tree of arity 0⊗(0→→0)→→0 and finally treerec of arity

0⊗(0⊗(0→→0)⊗(0→→0)→→0)→→0

The formation rule for the set of trees is:
Tree – formation

A set
B(x) set [x ∈ A]
C(x, y) set [x ∈ A, y ∈ B(x)]
d(x, y, z) ∈ A [x ∈ A, y ∈ B(x), z ∈ C(x, y)]
a ∈ A

Tree(A,B,C, d)(a) set

The different parts have the following intuitive meaning:

• A, the name set, is a set of names for the mutually dependent sets.

• B(x), the constructor set, is a set of names for the clauses defining the set
x.

• C(x, y), the selector family, is a set of names for selectors of the parts in
the clause y in the definition of x.

16.1. FORMAL RULES 105

• d(x, y, z), the component set name, is the name of the set corresponding
to the selector z in clause y in the definition of x.

• a determines a particular instance of the family of sets.

Understood as a set of syntax-trees generated by a grammar, the different
parts have the following intuitive meaning:

• A is a set of non-terminals.

• B(x) is a set of names for the alternatives defining the non-terminal x.

• C(x, y), is a set of names for positions in the sequence of non-terminals in
the clause y in the definition of x.

• d(x, y, z), is the name of the non-terminal corresponding to the position z
in clause y in the definition of x.

• a is the start symbol.

In order to reduce the notational complexity, we will write T (a) instead of
Tree(A,B, C, d)(a) in the rest of this chapter.

The introduction rule for trees has the following form
Tree – introduction

a ∈ A
b ∈ B(a)
c(z) ∈ T (d(a, b, z)) [z ∈ C(a, b)]

tree(a, b, c) ∈ T (a)

Intuitively:

• a is the name of one of the mutually dependent sets.

• b is one of the constructors of the set a.

• c is a function from C(a, b) to a tree. This function defines the different
parts of the element.

The element tree(a, b, c) in the set T (a) corresponds to the tree in figure 16.1,
where C(a, b) = {z1, . . . , zn, . . .} and c(zi) ∈ T (d(a, b, zi)).

The elimination rule has the form
Tree – elimination

D(x, t) set [x ∈ A, t ∈ T (x)]
a ∈ A
t ∈ T (a)
f(x, y, z, u) ∈ D(x, tree(x, y, z))

[x ∈ A, y ∈ B(x), z(v) ∈ T (d(x, y, v)) [v ∈ C(x, y)],
u(v) ∈ D(d(x, y, v), z(v)) [v ∈ C(x, y)]]

treerec(t, f) ∈ D(a, t)

Its correctness follows from the computation rule for the non-canonical constant
treerec which says that the expression treerec(d, e) is computed as follows

106 CHAPTER 16. GENERAL TREESs tree(a, b, c) ∈ T (a)
�

�
�

�
�

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

%
%

%
%

%
%

%
%

%

z ∈ C(a, b)

. . .

c(z) = tree(a′, b′, c′)
∈ T (d(a, b, z))︸ ︷︷ ︸

a′

s
�

�
�

�
�

@
@

@
@

@

�
�

�s
�� SS

S
S
Ss
�� SS

J
J

J
J

J
J

J
J
Js

�
�

�
�

�

@
@

@
@

@

Figure 16.1: An element in the set Tree(A,B, C, d)(a)

1. Evaluate d to canonical form.

2. If the value of d is tree(a, b, c) then the value of the expression is e(a, b, c, (x)treerec(c(x), d)).

The computation rule is also reflected in the equality rule:
Tree-equality

D(x, t) set [x ∈ A, t ∈ T (x)]
a ∈ A
b ∈ B(a)
c(z) ∈ T (d(a, b, z)) [z ∈ C(a, b)]
f(x, y, z, u) ∈ D(x, tree(x, y, z))

[x ∈ A, y ∈ B(x), z(v) ∈ T (d(x, y, v)) [v ∈ C(x, y)],
u(v) ∈ D(d(x, y, v), z(v)) [v ∈ C(x, y)]]

treerec(tree(a, b, c), f) = f(a, b, c, (x)treerec(c(x), f)) ∈ D(a, tree(a, b, c))

16.2 Relation to the well-order set constructor

A well-order set W(B,C) can be seen as an instance of a Tree set. We get the
well-orders by defining a family of trees on a set with only one element. If we
make the definitions:

W(B,C) = Tree(T, (x)B, (x, y)C(y), (x, y, z)tt, tt)
sup(b, c) = tree(tt, b, c)

wrec(t, f) = treerec(t, (x, y, z, u)f(y, z, u))

where T is the set consisting of the element tt. Then we can derive the rules for
well-orders from the rules for trees as follows:

Formation rule: If we assume that the premises of the well-order formation
rule hold, that is, if we assume

B set
C(y) set [y ∈ B]

16.2. RELATION TO THE WELL-ORDER SET CONSTRUCTOR 107

we can infer

T set
((x)B)(x) set [x ∈ T]
((x, y)C(y))(x, y) set [x ∈ T, y ∈ B]
((x, y, z)tt)(x, y, z) ∈ T [x ∈ T, y ∈ B, z ∈ C(y)]
tt ∈ T

and then, by the Tree-formation rule, get

Tree(T, (x)B, (x, y)C(y), (x, y, z)tt, tt) set

which is the same as

W(B,C) set

and also the conclusion of the formation rule. So we have proved that
the formation rule holds for the definition of well-orders in terms of
trees.

Introduction rule: Assume

b ∈ B
c(z) ∈ W(B,C) [z ∈ C(b)]

From the last assumption we get

c(z) ∈ Tree(T, (x)B, (x, y)C(y), (x, y, z)tt, tt) [z ∈ C(b)]

It then follows that

tt ∈ T
b ∈ ((x)B)(tt)
c(z) ∈ Tree(T, (x)B, (x, y)C(y), (x, y, z)tt, ((x, y, z)tt))(tt, b, z)

[z ∈ ((x, y)C(y))(b)]

and, from the Tree-introduction rule,

tree(tt, b, c) ∈ Tree(T, (x)B, (x, y)C(y), (x, y, z)tt, tt)

which is the same as

sup(b, c) ∈ W(B,C)

The elimination and equality rules could be proved in the same way.

108 CHAPTER 16. GENERAL TREES

16.3 A variant of the tree set constructor

We will in this section introduce a slight variant of the tree set constructor.
Instead of having information in the element about what instance of the family
a particular element belongs to, we move this information to the recursion op-
erator. We call the new set constructor Tree′, the new element constructor tree′

and the new recursion operator treerec′. The formation rule for Tree′ is exactly
the same as for Tree, but the other rules are slightly modified.

Tree′-introduction

a ∈ A
b ∈ B(a)
c(z) ∈ Tree′(A,B,C, d, d(a, b, z)) [z ∈ C(a, b)]

tree′(b, c) ∈ Tree′(A,B, C, d, a)

Tree′-elimination

D(x, t) set [x ∈ A, t ∈ Tree′(A,B,C, d, x)]
a ∈ A
t ∈ Tree′(A,B,C, d, a)
f(x, y, z, u) ∈ D(x, tree′(y, z))

[x ∈ A, y ∈ B(x), z(v) ∈ Tree′(A,B, C, d, d(x, y, v)) [v ∈ C(x, y)],
u(v) ∈ D(d(x, y, v), z(v)) [v ∈ C(x, y)]]

treerec′(d, a, t, f) ∈ D(a, t)

The formulation of the equality rule is straightforward. Notice that we in
the first version of the tree sets can view the constructor tree as a family of
constructors, one for each a ∈ A. In this variant we have one constructor for
the whole family, but instead we get a family of recursion operators, one for
each a in A.

16.4 Examples of different tree sets

16.4.1 Even and odd numbers

Consider the following data type definition in ML:

datatype Odd = sO of Even
and Even = zeroE | sE of Odd;

and the corresponding grammar:

<odd> ::= sO(<even>)
<even> ::= 0E | sE(<odd>)

If we want to define a set with elements corresponding to the phrases defined
by this grammar (and if we consider <odd> as start symbol), we can define

16.4. EXAMPLES OF DIFFERENT TREE SETS 109

OddNrs = Tree(A,B,C, d)(a) where:

A = {Odd,Even}

a = Odd

B(Odd) = {sO}
B(Even) = {zeroE , sE}

i.e. B = (x)case{Odd,Even}(x, {sO}, {zeroE , sE})

C(Odd, sO) = {predO}
C(Even, zeroE) = {}

C(Even, sE) = {predE}
i.e. C = (x, y)case{Odd,Even}(x,

{predO},
case{zeroE ,sE}(y, {}, {predE}))

d(Odd, sO, predO) = Even
d(Even, sE , predE) = Odd

i.e. d = (x, y, z)case{Odd,Even}(x,
Even,
Odd)

The element sE(sO(zeroE)) is represented by

2E = tree(Even, sE , (x)tree(Odd, sO, (x)tree(Even, zeroE , (x)case{}(x)))

and sO(sE(sO(0E))) is represented by

3O = tree(Odd, sO, (x)2E)

We get the set of even numbers by just changing the “start symbol”

EvenNrs = Tree(A,B, C, d)(Even)

and we can define a mapping from even or odd numbers to ordinary natural
numbers by:

tonat(w) = treerec(w,
(x, y, z, u) case{Odd,Even}(x,

succ(u(predO)),
case{zeroE ,sE}(y,

0,
succ(u(predE)))))

and it is easy to prove that

tonat(w) ∈ N [v ∈ {Odd,Even}, w ∈ Tree(A,B,C, d)(v)]

110 CHAPTER 16. GENERAL TREES

16.4.2 An infinite family of sets

In ML, and all other programming languages with some facility to define mu-
tually inductive types, one can only introduce finitely many new data types. A
family of sets in type theory, on the other hand, could range over infinite sets
and the tree set constructor therefore could introduce families with infinitely
many instances. In this section we will give an example where the name set is
infinite.

The problem is to define a set Array(A,n), whose elements are lists with
exactly n elements from the set A. If we make a generalization of ML’s data
type construction to dependent types this type could be defined as:

Array(E, 0) ≡ empty
Array(E, s(n)) ≡ add of E ×Array(E,n))

The corresponding definition with the tree set constructor is:

Array(E,n) ≡ Tree′(N, B, C, d)(n)

where

B(n) ≡ natrec(n, {nil}, (x, y)E)
C(n, x) ≡ natrec(n, {}, (x, y){tail})

d(n, x, y) ≡ natrec(n, case{}(y), (z, u)z)

We can then define:

empty ≡ tree′(nil, case{})
add(e, l) ≡ tree′(e, l)

as the elements. Notice that we in this example have used the variant of the
tree constructor we introduced in section 16.3.

Part II

Subsets

111

Chapter 17

Subsets in the basic set
theory

We will in this section add sets formed by comprehension directly to the basic
set theory in a similar way as we have introduced the other primitive sets. As
we already have mentioned, we will in this approach not be able to formulate a
satisfactory elimination rule.

Let A be a set and B a propositional function (family of sets) defined on
the set A, i.e. assume A set and B(x) set [x ∈ A]. From these assumptions
and the explanation of what it means to be a set, it follows that the canonical
elements and their equality relation is understood for the set A and for the set
B(a) whenever a ∈ A.

The subset of A with respect to B is denoted

{|}(A,B)

where {|} is a constant of arity 0⊗(0→→0)→→0. Instead of {|}(A,B), we shall
use the more lucid notation

{x∈A | B(x)}

This set forming operation is defined, as all the other sets, by prescribing how
to form canonical elements and how to form equal canonical elements: if a is a
canonical element in the set A and B(a) is true, i.e. if there exists an element
b ∈ B(a), then a is also a canonical element in the set {x∈A | B(x)}. And if a
and c are equal canonical elements in the set A and B(a) is true, then a and c are
also equal canonical elements in the set {x∈A | B(x)}. Since every propositional
function is extensional in the sense that it yields equal propositions (sets) when
it is applied to equal elements, it follows from a = c ∈ A and B(x) set [x ∈ A]
that B(a) and B(c) are equal propositions (sets). And, consequently, from the
requirement that B(a) is true, we immediately get that also B(c) is true.

The introduction of the canonical elements makes sense precisely when A is
a set and B(x) is a set under the assumption that x ∈ A. Hence, the formation
rule for the subset becomes:

113

114 CHAPTER 17. SUBSETS IN THE BASIC SET THEORY

Subset – formation

A set B(x) set [x ∈ A]
{x∈A | B(x)} set

For many sets, the prescription of how to form canonical elements and equal
canonical elements immediately justifies the introduction rules, since the re-
quirements for forming canonical elements can be expressed as premises of the
introduction rules. The canonical elements of the subset, however, cannot jus-
tify an introduction rule in this way, because the requirement that a should be
a canonical element in A cannot be expressed as a premise. So we cannot form
the introduction rule according to the general scheme. Instead, the introduction
rule introduces expressions both of canonical and noncanonical form. From the
explanation of the judgement a ∈ A, we know that a, when evaluated, will yield
a canonical element in the set A as result. So if B(a) is true, we know that a
will also yield a canonical element in the set {x∈A | B(x)}. The introduction
rule becomes:

Subset – introduction 1

a ∈ A b ∈ B(a)
a ∈ {x∈A | B(x)}

And similarly, if a1 = a2 ∈ A, the evaluation of a1 and a2 will yield equal
canonical elements in the set A as result and, therefore, if B(a1) is true, they
will yield equal canonical elements in the set {x∈A2 | B2(x)}. Since b ∈ B(a1)
it follows from a1 = a2 ∈ A and b ∈ B(a1) that b ∈ B(a2). This justifies the
second introduction rule for subsets:

Subset – introduction 2

a1 = a2 ∈ A b ∈ B(a1)
a1 = a2 ∈ {x ∈ A | B(x)}

The subsets are different from all other sets in that the canonical and non-
canonical forms of expressions depend only on the parameter set A. So from an
element expression alone, it is impossible to determine the form of its set; it may
belong to A as well as to a subset of A. But this cannot cause any confusion,
since an element is always given together with its set.

An elimination rule which captures the way we have introduced elements in
a subset is impossible to give in type theory because when we have an element
a in a subset {x ∈ A | B(x)} we have no explicit construction of the proof
element of B(a). The best formulation of an elimination rule we can give is the
following:

115

Subset – elimination 1

c ∈ {x ∈ A | B(x)} d(x) ∈ C(x) [x ∈ A, y ∈ B(x)]
d(c) ∈ C(c)

where y must not occur free in d nor in C

Because of the syntactical restriction on free variables in the subset-elimination
rule the strength of this rule is connected with the possibility of having rules in
type theory where free variables, other than those discharged by the rule, may
disappear in the conclusion. In our basic formulation of Martin-Löf’s set theory
with the intensional identity Id, there are very few possibilities to get rid of free
variables in an essential way.

The strength of adding subsets to set theory with the elimination rule above
is discussed in detail in [90] where it is shown that propositions of the form

(∀x ∈ {z ∈ A | P (z)})P (x) (∗)

cannot in general be proved. In the intensional formulation we have of set
theory, not even (∀x ∈ {z ∈ T | ⊥})⊥ can be derived. The proof in [90] of this
is rather complicated, using a normalization argument.

Propositions of the form (∗) are important when modularizing program
derivations, using a top-down approach and decomposing the specification into
subproblems. When solving the subproblems we may want to use lemmas which
have already been proved. The main idea of splitting up a problem into lemmas
is, in program derivation as well as in mathematics, that our original problem
can be reduced to the lemmas; in particular, there should be no need to look
into the proofs of the lemmas. If we have a lemma which talks about subsets we
certainly want (∗) to be provable since if a ∈ {x ∈ A | P (x)} we want to be able
to conclude P (a) without having to investigate the proof of a ∈ {x ∈ A | P (x)}.

In set theory with the extensional equality Eq, there are more cases for which
(∗) can be proved. Let P (x) set [x ∈ A]. The predicate P (x) is called stable if

¬¬P (x) → P (x) [x ∈ A]

Using strong Eq-elimination together with the universe, it is proved in [90] that
(∗) holds for all stable predicates, that is

(∀x∈A)(¬¬P (x) → P (x)) → (∀x ∈ {z ∈ A | P (z)})P (x)

holds in the extensional theory. Extending the basic extensional set theory with
subset is discussed in detail in Salvesen [92].

It is also shown in [90] that if we put P (x) equal to

(∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y)

where T is Kleene’s T -predicate, and put A equal to N, then (∗) cannot be
derived in Martin-Löf’s set theory extended with the above rules for subsets
irrespectively of how we formulate the remaining rules; the only requirements
are that the axiom of choice, as formulated in [69, 70], can be proved and that
a typable term can be computed by a Turing machine.

So the approach of this chapter to introduce subsets in the same way as the
other sets and interpret proposition as sets results in a very weak elimination
rule which, at least in the intensional theory, will not work in practice.

116 CHAPTER 17. SUBSETS IN THE BASIC SET THEORY

Chapter 18

The subset theory

In order to get an elimination rule by which we, for instance, can derive P (a) true
from a ∈ {x∈A | P (x)} we will now, following ideas of Martin-Löf, give a new
meaning of the judgement A set. We then also have to give new explanations
of the other forms of judgement. All judgements will be explained in terms of
our previous explanations for set theory. We will call this new theory the subset
theory and refer to the earlier set theory as the basic set theory or just set theory.

The crucial difference between the basic set theory and the subset theory is
that propositions will no longer be viewed as sets in the subset theory. However,
the semantics of propositions in the subset theory will use propositions as sets
in the basic set theory. So we must first extend our language by introducing
primitive constants for the logical constants: &, ∨ and ⊃ of arity 0⊗0→→0, ⊥
of arity 0, ∀ and ∃ of arity 0⊗(0→→0)→→0. We also need a primitive constant ID

of arity 0⊗0⊗0→→0 for forming the proposition that two elements of a certain
set are equal. Instead of ID(A, a, b) we will often write a =A b.

We will give detailed explanations of the judgements for a subset theory
without universes. The intuition behind the semantics is that a set A in the
subset theory consists of those elements x in a base set A′ in the basic set theory
such that A′′(x) holds, where A′′ is a propositional function on A′ in the basic
set theory. The situation with universes is somewhat more complicated and will
be discussed later in the chapter.

18.1 Judgements without assumptions

As when we explained the meaning of the judgements of the basic set theory,
we first explain the judgements not depending on any assumptions.

117

118 CHAPTER 18. THE SUBSET THEORY

18.1.1 What does it mean to be a set?

To know the judgement
A set

in the subset theory is to have a pair (A′, A′′) where we know that
A′ is a set in the basic set theory and that A′′ is a propositional
function on A′ in the basic set theory.

So in order to know that A is a set in the subset theory we must have A′ and
A′′ and know the judgements

• A′ set

• A′′(x) prop [x ∈ A′]

in the way we already have explained in the basic set theory. Note that the
judgement A′′(x) prop [x ∈ A′] in the basic set theory is just an abbreviation
of the judgement A′′(x) set [x ∈ A′].

18.1.2 What does it mean for two sets to be equal?

Let A and B be sets in the subset theory. According to the explanation of what
it means to be a set in the subset theory, we then have sets A′ and B′ and
propositional functions A′′ and B′′ on A′ and B′, respectively. To know the
judgement that A and B are equal sets in the subset theory is explained in the
following way:

To know that A and B are equal sets

A = B

in the sense of the subset theory, is to know that A′ and B′ are equal
sets in the basic set theory and that A′′(x) and B′′(x) are equivalent
propositions on A′ in the sense of the basic set theory.

So in order to know that A and B are equal, we must know the judgements

• A′ = B′

• A′′(x) ⇔ B′′(x) true [x ∈ A′]

as explained in the basic set theory. Since propositions are interpreted as sets
in the basic theory, the judgement A′′(x) ⇔ B′′(x) true [x ∈ A′] means that we
have an element in (A′′(x) → B′′(x))× (B′′(x) → A′′(x)) under the assumption
x ∈ A′.

18.1.3 What does it mean to be an element in a set?

According to the explanation of the judgement A set in the subset theory, A
consists of those elements x in A′ such that A′′(x) holds:

To know the judgement
a ∈ A

where A is a set in the sense of the subset theory, we must know
that a is an element in A′ and that A′′(a) is true.

18.2. HYPOTHETICAL JUDGEMENTS 119

So in order to know that a is an element in the set A we must know the judge-
ments

• a ∈ A′

• A′′(a) true

as explained in the basic set theory. Note that A′′(a) true means that we have
an element in the set A′′(a).

18.1.4 What does it mean for two elements to be equal in
a set?

If a ∈ A and b ∈ A then the explanation of equality between a and b is the
following.

To know that a and b are equal elements in a set A

a = b ∈ A

in the sense of the subset theory is to know the judgement

a = b ∈ A′

in the basic set theory.

So that two elements are equal in a subset means that they must be equal
elements in the base set of the subset.

18.1.5 What does it mean to be a proposition?

To know a proposition P in the subset theory is to know a proposi-
tion P ? in the basic set theory.

Since P may contain quantifiers ranging over subsets, P ? will depend on the
interpretation of subsets. Since propositions are interpreted as sets in the basic
set theory, P ? is nothing but a set in the basic theory.

18.1.6 What does it mean for a proposition to be true?

To know that the proposition P is true in the subset theory is to
know that P ? is true in set theory.

So a proposition P is true in the subset theory if we have an element in the set
P ? in the basic set theory.

18.2 Hypothetical judgements

The explanation of a judgement depending on assumptions is done, as in the
basic set theory, by induction on the number of assumptions. Leaving out higher
order assumptions, a member Ck in an arbitrary context C1, . . . , Cn in the subset
theory is either of the form xk ∈ Ak(x1, . . . , xk−1) where Ak(x1, . . . , xk−1) is a
subset in the context C1, . . . , Ck−1 or of the form P (x1, . . . , xk) true where

120 CHAPTER 18. THE SUBSET THEORY

P (x1, . . . , xk) is a proposition in the context C1, . . . , Ck−1. In order to avoid
heavy notation, we will explain hypothetical judgements in the subset theory in
a context

x ∈ C, P (x) true, y ∈ D(x)

where C is a subset, P (x) a proposition in the context x ∈ C, and D(x) is a
subset in the context x ∈ C, P (x) true. Given the explanations of the different
forms of judgements in this context of length 3, it is straightforward to explain
the judgements in an arbitrary context.

18.2.1 What does it mean to be a set under assumptions?

To know the judgement

A(x, y) set [x ∈ C, P (x) true, y ∈ D(x)]

in the subset theory where we already know

C set
P (x) prop [x ∈ C]
D(x) set [x ∈ C, P (x) true]

is to have a pair (A′, A′′) such that

A′(x, y) set [x ∈ C ′, y ∈ D′(x)]

and
A′′(x, y, z) prop [x ∈ C ′, y ∈ D′(x), z ∈ A′(x, y)]

both hold in the basic set theory.

When defining A′ and A′′ it must be done in such a way that it does not come
in conflict with the sets obtained from A by substitution. So we must require
the following substitution property:

A(a, b)′ is equal to A′(a, b).
A(a, b)′′ is equal to A′′(a, b).

Note that being a set under assumptions only depends on the base sets of the
sets in the assumption list and in particular does not depend on any proposition
being true.

18.2.2 What does it mean for two sets to be equal under
assumptions?

To know the judgement

A(x, y) = B(x, y) [x ∈ C, P (x) true, y ∈ D(x)]

in the subset theory, where A(x, y) and B(x, y) are sets in the context
x ∈ C, P (x) true, y ∈ D(x), is to know the judgements

A′(x, y) = B′(x, y) [x ∈ C ′, y ∈ D′(x)]

18.2. HYPOTHETICAL JUDGEMENTS 121

and

A′′(x, y) ⇔ B′′(x, y) true [x ∈ C ′, C ′′(x) true,
P ?(x) true, y ∈ D′(x), D′′(x, y) true]

in the basic set theory.

So that the base sets of the two equal sets are equal only depends on the base
sets of the subsets in the assumption list. The equivalence of the propositional
parts of the sets, however, may depend also on the propositional parts of the
sets in the assumption list as well as on the truth of propositions.

18.2.3 What does it mean to be an element in a set under
assumptions?

To know the judgement

a(x, y) ∈ A(x, y) [x ∈ C, P (x) true, y ∈ D(x)]

in the subset theory, where A(x, y) is a set in the context x ∈
C, P (x) true, y ∈ D(x), is to know the judgements

a(x, y) ∈ A′(x, y) [x ∈ C ′, y ∈ D′(x)]

and

A′′(x, y, a(x, y)) true [x ∈ C ′, C ′′(x) true,
P ?(x) true, y ∈ D′(x), D′′(x, y) true]

in the basic set theory.

Note that a(x, y) is an element in the base set of A(x, y) only depends on the
base sets of the sets in the assumption list and in particular does not depend
on any proposition being true.

18.2.4 What does it mean for two elements to be equal in
a set under assumptions?

To know the judgement

a(x, y) = b(x, y) ∈ A(x, y) [x ∈ C, P (x) true, y ∈ D(x)]

in the subset theory, where a(x, y) ∈ A(x, y) and b(x, y) ∈ A(x, y) in
the context x ∈ C, P (x) true, y ∈ D(x), is to know the judgement

a(x, y) = b(x, y) ∈ A′(x, y) [x ∈ A′, y ∈ B′(x)]

in the basic set theory.

So that two elements are equal in a set under assumptions means that they
must be equal already as elements in the base set, only depending on the base
sets of the sets in the assumption list.

122 CHAPTER 18. THE SUBSET THEORY

18.2.5 What does it mean to be a proposition under as-
sumptions?

To know the judgement

Q(x, y) prop [x ∈ C, P (x) true, y ∈ D(x)]

in the subset theory is to know the judgement

Q?(x, y) prop [x ∈ C ′, y ∈ D′(x)]

in the basic set theory.

We must also require the substitution property

Q(a, b)? is equal to Q?(a, b)

18.2.6 What does it mean for a proposition to be true
under assumptions?

To know the judgement

Q(x, y) true [x ∈ C, P (x) true, y ∈ D(x)]

in the subset theory, where Q(x, y) is a proposition in the context
x ∈ C, P (x) true, y ∈ D(x), is to know the judgement

Q?(x, y) true [x ∈ C ′, C ′′(x) true,
P ?(x) true, y ∈ D′(x), D′′(x, y) true]

in the basic set theory.

18.3 General rules in the subset theory

With the exception of the rule Proposition as set, all the general rules of the
basic set theory also hold in the subset theory. Let us as an example justify the
Set equality rule

a ∈ A A = B

a ∈ B

By the explanations of judgements of the form a ∈ A and A = B in the subset
theory, we have to show that if the judgements a ∈ A′, A′′(a) true, A′ = B′ and
A′′(x) ⇔ B′′(x) true [x ∈ A′] all hold in set theory, then a ∈ B′ and B′′(a) true
also hold in set theory. That a ∈ B′ holds follows from a ∈ A′, A′ = B′ and the
Type equality rule in set theory. From A′′(a) true and A′′(x) → B′′(x) true [x ∈
A′] we get that B′′(a) is true by substitution and →-elimination.

Since a proposition is interpreted as a set in the basic set theory, we did not
introduce judgements of the forms P prop and P true in the formalization of
set theory. For instance, an assumption of the form P true in set theory can be
understood as an assumption y ∈ P where y is a new variable. In the subset
theory, however, we must have judgements of the forms P prop and P true in
the formal system and therefore we have to add general rules involving these
two forms of judgement.

18.3. GENERAL RULES IN THE SUBSET THEORY 123

Assumption
P prop

P true [P true]

By the explanation of what it means to be a proposition in the subset theory,
we know that P ? is a proposition, that is a set, in the basic set theory. Hence,
by the assumption rule in set theory, we have y ∈ P ? [y ∈ P ?] which is the
meaning of P true [P true].

The judgement
C(x) prop [x ∈ A]

means that the judgement C?(x) set [x ∈ A′] holds in the basic set theory. By
the rule Substitution in sets and the substitution property of C?(x) we therefore
have the rule

Substitution in propositions

C(x) prop [x ∈ A] a ∈ A

C(a) prop

The rule
Cut rule for propositions

Q prop [P true] P true

Q prop

is justified in the following way. The judgement Q prop [P true] in the subset
theory means that Q? set [y ∈ P ?] in set theory and the judgement P true
means that we have an element a in the set P ?. By Substitution in sets we
therefore get Q? set, that is, Q? prop as desired.

In a similar way, we can justify the rules
Cut rule for equal sets

A = B [P true] P true

A = B

Cut rule for true propositions

Q true [P true] P true

Q true

Cut rule for elements in sets

a ∈ A [P true] P true

a ∈ A

Cut rule for equal elements in sets

a = b ∈ A [P true] P true

a = b ∈ A

124 CHAPTER 18. THE SUBSET THEORY

18.4 The propositional constants in the subset
theory

Without a universe of propositions, which we will introduce later, the proposi-
tional constants are the logical constants and the propositional equality.

18.4.1 The logical constants

Let P and Q be propositions in the subset theory. This means that we have
propositions, that is sets, P ? and Q? in the basic theory. Propositions built up
from P and Q by the sentential connectives are given meaning in the following
way:

(P&Q)? is defined to be the proposition P ? ×Q?.

(P ∨Q)? is defined to be the proposition P ? + Q?.

(P ⊃Q)? is defined to be the proposition P ? → Q?.

The truth T and absurdity ⊥ are given meaning in a similar way:

T? is defined to be the proposition T.

⊥? is defined to be the proposition ∅.

So a sentential constant is given meaning by the use of the same set forming
constant as when interpreting proposition as sets. However, the situation is
more complicated when we come to the quantifiers.

Let A be a set and P a propositional function on A in the subset theory. We
then have, according to the meaning of being a set and a propositional function
on a set, a base set A′ and propositional functions A′′ and P ? defined on A′ in
the basic set theory. The propositions obtained from P by quantification on A
are given meaning in the following way:

The proposition ((∀x∈A)P (x))? is defined to be

(Πx∈A′)(A′′(x) → P ?(x))

The proposition ((∃x∈A)P (x))? is defined to be

(Σx∈A′)(A′′(x)× P ?(x))

It is now easy to justify the rules of first order logic as we have formulated
them earlier. As an example, we justify the rules for the universal quantifier.

∀ – formation

A prop P (x) prop [x ∈ A]
(∀x∈A)P (x) prop

We must show that (Πx∈A′)(A′′(x) → P ?(x)) is a proposition, that is a set, in
the basic set theory from the assumptions that we already know the judgements
A′ set, A′′(x) prop [x ∈ A′] and P ?(x) prop [x ∈ A′]. By →-formation we

18.4. THE PROPOSITIONAL CONSTANTS IN THE SUBSET THEORY125

get A′′(x) → P ?(x) set [x ∈ A′] which gives (Πx∈A′)(A′′(x) → P ?(x)) set as
desired.

∀ – introduction
P (x) true [x ∈ A]
(∀x∈A)P (x) true

That we know the judgement P (x) true [x ∈ A] in the subset theory means
that we know the judgement P ?(x) true [x ∈ A′, A′′(x) true] in the basic set
theory. So we have an expression b for which we know the judgement b(x) ∈
P ?(x) [x ∈ A′, y ∈ A′′(x)] in the basic set theory. By →-introduction, we get
λy.b(x) ∈ A′′(x) → P ?(x) [x ∈ A′] which, by Π-introduction, gives λx.λy.b(x) ∈
(Πx∈A′)(A′′(x) → P ?(x)). Hence, we know the judgement (Πx∈A′)(A′′(x) →
P ?(x)) true as desired.

∀ – elimination 1

(∀x∈A)P (x) true a ∈ A

P (a) true

Assume that we have expressions b and c for which we know the judgements
b ∈ (Πx∈A′)(A′′(x) → P ?(x)), a ∈ A and c ∈ A′′(a) in the basic set theory. By
Π-elimination we get apply(b, a) ∈ A′′(a) → P ?(a) and then, by →-elimination,
apply(apply(b, a), c) ∈ P ?(a). So P ?(a) is true in set theory as desired.

18.4.2 The propositional equality

Let A be a subset and a and b elements in A. Then the meaning of a =A b is
given by

The proposition (a =A b)? is defined to be Id(A′, a, b).

We have the following rules for the propositional equality:
= – formation

a ∈ A b ∈ A

a =A b prop

= – introduction
a = b ∈ A

a =A b true

= – elimination

C(x) prop [x ∈ A] a =A b true C(a) true

C(b) true

We justify the elimination rule. The judgement a =A b true means that we
have an element c in the set Id(A′, a, b) and the judgement C(a) true means that
we have an element d in the set C?(a) . Using Id-elimination on c ∈ Id(A′, a, b)
and λu.u ∈ C∗(x) → C∗(x) [x ∈ A] we get idpeel(c, (x)λu.u) ∈ C∗(a) → C∗(b).
Since d ∈ C∗(a) we then obtain, by →-elimination,

apply(idpeel(c, (x)λu.u), d) ∈ C∗(b)

So, C∗(b) is true in the basic set theory which is the meaning of the judgement
C(b) true in the subset theory.

126 CHAPTER 18. THE SUBSET THEORY

18.5 Subsets formed by comprehension

Sets in the subset theory are built up by the set forming operations we already
have in the basic set theory and by set comprehension. The semantics of subsets
introduced by comprehension is the following:

{x ∈ A | P (x)}′ is defined to be the set A′ and {x ∈ A | P (x)}′′ is
defined to be the propositional function (z)(A′′(z)× P ?(z)) on A′.

The formation rule
Subset – formation

A set P (x) prop [x ∈ A]
{x ∈ A | P (x)} set

is justified in the following way. We assume that we know the interpretations of
the premises, that is that we know the judgements A′ set, A′′(x) prop [x ∈ A′]
and P ?(x) prop [x ∈ A′] as explained in the basic set theory. Since {x ∈
A | P (x)}′ is defined to be A′, we get that {x ∈ A | P (x)}′ is a set. By ×
-introduction we get that A′′(x)× P ?(x) is a proposition when x ∈ A′.

It is also easy to justify the introduction rule:
Subset – introduction

a ∈ A P (a) true

a ∈ {x ∈ A | P (x)}

Now we obtain the desired elimination rules for comprehension.
Subset – elimination for sets

a ∈ {x ∈ A | P (x)} c(x) ∈ C(x) [x ∈ A, P (x) true]
c(a) ∈ C(a)

This rule is justified as follows. We assume that we already know the judgements

a ∈ A′

A′′(a)× P ?(a) true
c(x) ∈ C ′(x) [x ∈ A′]
C ′′(c(x)) true [x ∈ A′, A′′(x) true, P ?(x) true]

in the basic set theory. From the first and third of these judgements we get, by
substitution and the substitution property, that c(a) ∈ C(a)′. By ×-elimination,
substitution and the substitution property we get from the first, second and
fourth judgements that C(a)′′(c(a)) true holds. In a similar way we can justify
the rule

Subset – elimination for propositions

a ∈ {x ∈ A | P (x)} Q(x) true [x ∈ A, P (x) true]
Q(a) true

By putting Q(x) equal to P (x) in Subset-elimination for proposition we see
that now we can derive P (a) true from a ∈ {x ∈ A | P (x)} which in general is
not possible in the basic theory.

18.6. THE INDIVIDUAL SET FORMERS IN THE SUBSET THEORY 127

18.6 The individual set formers in the subset
theory

For each set A obtained by any of the individual set formers we have to define
the set A′ and the propositional function A′′ on A′ in the basic set theory. In
general, the formation of a set is made in a context which we will not mention
explicitly. In particular, the substitution property must be satisfied when we
substitute terms for the variables in the context. Because of the inductive way
the set is introduced, it is easy to see that the substitution property holds.

To the rules for the individual sets in the basic theory, we will add rules for
proving the truth of propositions by structural induction. These new rules will
be called elimination rules for propositions. For the inductively defined sets we
will also give equality rules which will reflect their interpretation in the basic
set theory.

18.6.1 Enumeration sets

An enumeration set has the same elements in the subset theory as it has in the
basic theory:

{i1, . . . , in}′ is defined to be the set {i1, . . . , in} and {i1, . . . , in}′′ is
defined to be the propositional function (z)T on {i1, . . . , in}.

To the rules for enumeration sets in the basic theory we have to add the rule
{i1, . . . , in} – elimination for propositions

a ∈ {i1, . . . , in}
Q(x) prop [x ∈ {i1, . . . , in}]
Q(i1) true

...
Q(in) true

Q(a) true

This rule is justified in the following way. That the judgement Q(x) prop [x ∈
{i1, . . . , in}] holds in the subset theory means that Q?(x) set [x ∈ {i1, . . . , in}]
holds in the basic theory since {i1, . . . , in}′ is {i1, . . . , in}. The judgement
Q(ik) true means that we have an element bk in the set Q∗(ik). Hence, we can
use {i1, . . . , in}-elimination 1 to obtain case(a, b1, . . . , bn) ∈ Q∗(a). So Q∗(a)
is true in the basic set theory and, hence, Q(a) is true in the subset theory as
desired.

The other rules for enumeration sets are also straightforward to justify.

18.6.2 Equality sets

The main purpose of the equality sets in the basic set theory is to reflect the
judgemental equality to the propositional level. Since propositions are not inter-
preted as sets in the subset theory, we have introduced equality as a primitive
proposition, so there is really no need of equality sets in the subset theory.
However, they can be given semantics in the subset theory:

Id(A, a, b)′ is defined to be the set Id(A′, a, b) and Id(A, a, b)′′ is de-
fined to be the propositional function (z)T on Id(A′, a, b).

128 CHAPTER 18. THE SUBSET THEORY

18.6.3 Natural numbers

The natural numbers in the subset theory are, of course, the same as the natural
numbers in the basic set theory:

N′ is defined to be the set N and N′′ is defined to be the propositional
function (z)T′′ on N.

The rules for N are all easy to justify and as an example we justify the new
N-elimination rule.

N – elimination for propositions

Q(x) prop [x ∈ N]
a ∈ N
Q(0) true
Q(succ(x)) true [x ∈ N, Q(x) true]
Q(a) true

For the justification of the rule, assume that we have expressions d and e and
know the judgements a ∈ N, d ∈ Q?(0) and e(x, y) ∈ Q?(succ(x)) [x ∈ N, y ∈
Q?(x)] as explained in the basic set theory. By the N-elimination rule in the
basic set theory, we get natrec(a, d, e) ∈ Q?(a). So Q(a) is true in the subset
theory as desired.

18.6.4 Cartesian product of a family of sets

An element f in a cartesian product of a family B of sets on a set A in the
subset theory is an element in the cartesian product (Πx∈A′)B′(x) in the basic
theory, such that when it is applied on an element a in A′ such that A′′(a) is
true, it gives an element in B′(a) such that B′′(a, apply(f, a)) is true:

((Πx∈A)B(x))′ is defined to be the set (Πx∈A′)B(x)′ and
((Πx∈A)B(x))′′ is defined to be the propositional function

(z)((Πx∈A′)(A′′(x) → B(x)′′(apply(z, x))))

on the set (Πx∈A′)B(x)′.

The rule we have to add is
Π – elimination for propositions

f ∈ (Πx∈A)B(x) Q(λ(y)) true [y(x) ∈ B(x) [x ∈ A]]
Q(f) true

In this rule we must use a higher order assumption, which we have not discussed
for the subset theory. But we leave out the details of extending our semantics to
judgements depending on higher order assumption. Note that the elimination
rule for Π involving apply cannot be used to obtain an induction principle for
propositions over a Π-type.

We can also justify the equality rule

18.6. THE INDIVIDUAL SET FORMERS IN THE SUBSET THEORY 129

Π-subset – equality

A set
B(x) set [x ∈ A]
P (x) prop [x ∈ A]
Q(x, y) prop [x ∈ A, y ∈ B(x)]
(Πx∈{u ∈ A | P (u)}){v ∈ B(x) | Q(x, v)} =
{z ∈ (Πx∈A)B(x) | (∀u∈A)(P (u)⊃Q(u, apply(z, x)))}

130 CHAPTER 18. THE SUBSET THEORY

18.6.5 Disjoint union of two sets

The semantics of a disjoint union of two sets is the following:

(A + B)′ is defined to be the set A′ + B′ and (A + B)′′ is defined to
be the propositional function

(z)((∃x∈A′)(A′′(x) × Id(A′, z, inl(x))) +
(∃y∈B′)(B′′(y) × Id(B′, z, inr(y))))

on the set A′ + B′.

The elimination rule we have to add is
+ – elimination for propositions

c ∈ A + B Q(inl(x)) true [x ∈ A] Q(inr(y)) true [y ∈ B]
Q(c) true

We also have the equality rule
+-subset – equality

A set P (x) prop [x ∈ A] Q(y) prop [y ∈ B]
{x ∈ A | P (x)} + {y ∈ B | Q(y)} =
{z ∈ A + B |(∃x∈A)(P (x) & z =A inl(x)) ∨
(∃y∈B)(Q(y) & z =B inr(y))}

18.6.6 Disjoint union of a family of sets

The semantics of a disjoint union of a family of sets is given by:

((Σx∈A)B(x))′ is defined to be (Σx∈A′)B′(x) and
((Σx∈A)B(x))′′ is defined to be the propositional function

(z)(A′′(fst(z))×B(fst(z))′′(snd(z)))

on (Σx∈A′)B′(x).

We have to add the rule
Σ – elimination for propositions

c ∈ Σ(A,B) Q(〈x, y〉) true [x ∈ A, y ∈ B(x)]
Q(c) true

We can also justify the equality rule
Σ-subset – equality

A set
B(x) set [x ∈ A]
P (x) prop [x ∈ A]
Q(x, y) prop [x ∈ A, y ∈ B(x)]
(Σx∈{u ∈ A | P (u)}){v ∈ B(x) | Q(x, v)} =
{z ∈ (Σx∈A)B(x) | P (fst(z))×Q(fst(z), snd(z))}

18.7. SUBSETS WITH A UNIVERSE 131

18.6.7 Lists

Let A be a set in the subset theory. The base set List(A)′ is then put equal to
the set List(A′) in the basic set theory. The propositional function List(A)′′ on
List(A′) must satisfy that List(A)′′(nil) is true and, for a ∈ A′ and b ∈ List(A′),
that List(A)′′(cons(a, b)) is true if A′′(a) and List(A)′′(b) both are true. So
List(A)′′ must be defined by a set valued recursion. The only way we can do
this is by using the universe U and we then obtain the following semantics for
List(A):

List(A)′ is defined to be the set List(A′) and List(A′′) is defined to
be the propositional function

(z)(Set(listrec(z, T̂, (x, y, u)(Â′′(x) ×̂ u))))

By the notation Ĉ we mean the code for the small set C. The code Ĉ can be
defined by induction on the formation of the set C.

The use of U when giving semantics to List(A) is not satisfactory since it
cannot be extended to subsets involving a universe for subsets. We will discuss
this problem in the section on the universe in the subset theory and suggest
other ways of giving semantics to List(A).

18.6.8 Well-orderings

As for lists, we must use the universe when giving semantics for well-orderings:

((Wx∈A)B(x))′ is defined to be the set (Wx∈A′)B′(x) and ((Wx∈
A)B(x))′′ is defined to be the propositional function

(z)(Set(wrec(z, (x, y, u)(Â′′(x) ×̂ (Π̂v∈B̂(x)′)(B̂(x)′′(v)→̂u(v))))))

18.7 Subsets with a universe

We will now introduce a subset U reflecting the subsets introduced so far and a
subset P reflecting the propositions we have introduced. We must then extend
the syntax by adding constants

&̂, ∨̂, ⊃̂ , ⊥̂ ∃̂, ∀̂ and ÎD

which code the propositional constants and a constant Prop for the function
which decodes an element in P.

We first give the rules and then indicate how an interpretation of the subset
theory extended with U and P can be given in the basic set theory, using the
universe U of the basic set theory.

P – formation
P prop

P – introduction 1

P ∈ P Q ∈ P

P &̂Q ∈ P

132 CHAPTER 18. THE SUBSET THEORY

Prop – introduction 1

P ∈ P Q ∈ P

Prop(P &̂Q) ⇔ (Prop(P)&Prop(Q))

P – introduction 2

P ∈ P Q ∈ P

P ∨̂Q ∈ P

Prop – introduction 2

P ∈ P Q ∈ P

Prop(P ∨̂Q) ⇔ (Prop(P) ∨ Prop(Q))

P – introduction 3

P ∈ P Q ∈ P

P ⊃̂Q ∈ P

Prop – introduction 3

P ∈ P Q ∈ P

Prop(P ⊃̂Q) ⇔ (Prop(P)⊃Prop(Q))

P – introduction 4

⊥̂ ∈ P

Prop – introduction 4

Prop(⊥̂) ⇔ ⊥

P – introduction 5

A ∈ U P (x) ∈ P [x ∈ Set(A)]
∀̂(A,P) ∈ P

Prop – introduction 5

A ∈ U P (x) ∈ P [x ∈ Set(A)]
Prop(∀̂(A,P)) ⇔ (∀x∈Set(A))Prop(P (x))

P – introduction 6

A ∈ U P (x) ∈ P [x ∈ Set(A)]
∃̂(A,P) ∈ P

Prop – introduction 6

A ∈ U P (x) ∈ P [x ∈ Set(A)]
Prop(∃̂(A,P)) ⇔ (∃x∈Set(A))Prop(P (x))

18.7. SUBSETS WITH A UNIVERSE 133

P – introduction 7

A ∈ U a ∈ Set(A) b ∈ Set(A)
ÎD(A, a, b) ∈ P

Prop – introduction 7

A ∈ U a ∈ Set(A) b ∈ Set(A)
ÎD(A, a, b) ⇔ ID(A, a, b)

To the rules for U in the basic set theory, excluding the elimination rule, we
must add rules reflecting subsets introduced by comprehension.

U – introduction 9

A ∈ U P (x) ∈ P [x ∈ Set(A)]

{̂|}(A,P) ∈ U

Set – introduction 9

A ∈ U P (x) ∈ P [x ∈ Set(A)]

Set({̂|}(A,P)) = {x ∈ Set(A) | Prop(P (x))}

We will now indicate how the subset theory with U and P can be interpreted
in the basic set theory. The interpretation of U will then reflect the interpreta-
tion we already have given of the subset theory without a universe. This leads
to the following definition of U′:

U′ ≡ (Σx′∈U)(Set(x′) → U)

where U in the definiens is the universe in the basic set theory. U′′ is trivially
defined by

U′′ ≡ (z)T

In the interpretation of the subset theory without a universe, the elements of
a set are interpreted by themselves. However, this is no longer possible when
having a universe since an element in U′ is a pair, reflecting that a set A in the
subset theory is interpreted as a set A′ in the basic set theory together with
a propositional function A′′ on A′. So if a ∈ U in the subset theory, then we
cannot have a ∈ U′; instead we must also interpret a as a pair, which we will
denote by a′.

The interpretation of Set is then given by

Set(a)′ ≡ Set(fst(a′))
Set(a)′′(z) ≡ Set(apply(snd(a′), z))

Since propositions are interpreted as sets, the interpretation of P must reflect
this:

P′ ≡ U

P′′(z) ≡ T

134 CHAPTER 18. THE SUBSET THEORY

The interpretation of Prop is then given by

Prop(a)′ ≡ Set(a′)
Prop(a)′′(z) ≡ T

We must now also define the mapping ′ on elements. For codes of sets formed
by comprehension, we have

{̂|}(a, b)′ ≡ 〈fst(a′), λz.(apply(snd(a′), z)&̂b′(z)〉

The mapping ′ is defined in a similar way for elements coding sets of the other
forms, reflecting the interpretation of the corresponding set. The mapping ′ will
commute with all the constants for elements which are not codes in U. So, for
instance, pair(a, b)′ ≡ pair(a′, b′).

When defining ′ on codes for lists and well-orderings there is, however, a
problem since the interpretation of these types is using the universe. One way
of solving this problem would be to add an infinite sequence

U1, . . . ,Un, . . .

of universes so that when interpreting Un one could use Un+1. Another way,
discussed in [102], would be to extend the basic set theory with the possibility
of defining sets directly by recursion, not using the universe. Defining sets by
induction on lists, we would have to extend the syntax with a new constant
Listrec of arity 0⊗0⊗(0⊗0⊗0→→0)→→0 and add the rules

Listrec – formation

l ∈ List(A)
C set
E(x, y, Z) set [x ∈ A, y ∈ List(A), Z set]

Listrec(l, C, E) set

Listrec – equality 1

C set E(x, y, Z) set [x ∈ A, y ∈ List(A), Z set]
Listrec(nil, C, E) = C

Listrec – equality 2

l ∈ List(A)
C set
E(x, y, Z) set [x ∈ A, y ∈ List(A), Z set]
Listrec(a.l, C, E) = E(a, l, Listrec(l, C, E))

We can now give the semantics for lists in the subset theory without using
a universe:

List(A)′ is defined to be the set List(A′) and List(A)′′ is defined to be
the propositional function (z)((Listrec(z,T, (x, y, Z)(A′′(x) × Z))))

Part III

Monomorphic sets

135

Chapter 19

Types

In the previous chapters, we have defined a collection of sets and set forming
operations and presented proof rules for these sets. We have introduced the
constants for each set and then presented the proof rules in a natural deduction
style. Another way of introducing sets is to use the more primitive notion of
type. Intuitively, a type is a collection of objects together with an equivalence
relation. Examples of types are the type of sets, the type of elements in a set,
the type of propositions, the type of set-valued functions over a given set, and
the type of predicates over a given set.

In this chapter we will describe a theory of types and show how it can be
used to present a theory of sets. We will get possibilities of using variables
ranging over sets and higher order objects. The possibility of abstracting over
these kind of variables is essential for structuring big programs and proofs. It
also gives possibilities to use more elegant formulations of the elimination rules
for the Π-set and the well-orderings. The theory of types can also be used as
a logical framework [48] in which it is possible to formalize different logics. It
can also be used as a theory of expressions where the types replaces the arities;
hence, we will in this chapter not rely on the theory of expressions developed in
chapter 3.

If one looks in a text book on logic like, for instance, Kleene’s Introduction
to Metamathematics, one hardly finds any completely formal derivations. In
general, the derivations depend on metavariables ranging over formulas. For
instance, in the formal derivation

x = y &x = z

x = y

x = y &x = z⊃x = y

we can replace the formulas x = y and x = z by arbitrary formulas A and B
respectively thereby obtaining the schematic derivation

A &B

A

(A &B)⊃A

which no longer is a formal derivation in predicate logic.

137

138 CHAPTER 19. TYPES

Most of the derivations in this book are also made under some general as-
sumptions like “Let A be a set and B(x) a family of sets over A”. When
implementing type theory on a computer these kinds of assumptions have to
be made formal. In the Nuprl-system [25] this is made by using universes; for
instance the assumption

“Let X be a set”

is translated into the formal assumption

X ∈ U

However, this does not really capture the assumption that X is an arbitrary set,
because U is only the set of small sets which has a fixed inductive definition.
What we really want to assume is that X is an arbitrary set, that is, something
satisfying the semantical requirements of being a set. In particular, X may in
the future be interpreted as some set which we have not yet defined. It may
also be interpreted as some set involving U and then it cannot be a small set.

19.1 Types and objects

We will now extend type theory so that assumptions like “X is a set” can be
made. We will do that by introducing an even more basic concept than that of
a set, namely the notion of type. Intuitively, a type is a collection of objects
together with an equivalence relation.

What does it mean that something is a type? To know that A is a type is to
know what it means to be an object of the type, as well as what it means for two
objects to be the same. The identity between objects must be an equivalence
relation and it must be decidable. The requirement of decidability of identity
comes from the general requirement of decidability of the new forms of judge-
ments that we are introducing in this chapter. In these judgements everything
is there which is needed to be convinced of them: They carry their own proof.

As an example of a type, we will later define the type Set whose objects are
monomorphic sets by explaining what it means to be a set as well as what it
means for two sets to be the same.

We will write
A type

for the judgement that A is a type. That a is an object of type A is written

a : A

and that a and b are the same object of type A will be written

a = b : A

and, finally, that two types A and B are identical will be written

A = B

What does it mean for two types to be the same? Two types are the same
if an object of one type is also an object of the other type and identical objects
of the one type are identical objects of the other type.

19.2. THE TYPES OF SETS AND ELEMENTS 139

19.2 The types of sets and elements

The type Set which contains (monomorphic) sets as objects is explained by
explaining what a set is and when two sets are identical. To know a set A is
to know how the canonical elements of A are formed and when two canonical
elements are identical. Two sets are identical if a canonical element of one set
is a canonical element of the other set and if two identical canonical elements
in one set also are identical in the other set.

Hence, we have the axiom
Set formation

Set type

Notice that this explanation of what the type Set is, is totally open. We
have not exhausted the possibilities of defining new sets. This is in contrast
with the set U, whose canonical elements are codings of a fixed number of set
constructing operations. A set is always an inductive structure, we know that
a canonical element in it has been formed according to one of its introduction
rules.

If A is a set, then El(A) is a type. It is the type whose objects are the
elements of A. We know that a is an object in El(A) if we know that the value
of a is a canonical element of A. Two objects in El(A) are identical if their
values are identical canonical elements in A. So we have the rules

El-formation

A : Set

El(A) type

A = B : Set

El(A) = El(B)

We will use the abbreviations

A set ≡ A : Set

a ∈ A ≡ a : El(A)

in accordance with the earlier used notation.

19.3 Families of types

In much the same way as the notion of set is extended to families of sets, we
will now introduce families of types.

A context is a sequence

x1 : A1, x2 : A2, . . . , xn : An

such that

• A1 is a type,

• A2[x1 := a1] is a type for an arbitrary object a1 of type A1,
...

140 CHAPTER 19. TYPES

• An[x1 := a1][x2 := a2] · · · [xn−1 := an−1] is a type for arbitrary objects
a1, a2, . . . , an−1 of types

A1, A2[x1 := a1], . . . , An−1[x1 := a1][x2 := a2] · · · [xn−2 := an−2]

respectively.

That A is a family of types in the context

x1 : A1, x2 : A2, . . . , xn : An,

which we formally write

A type [x1 : A1, x2 : A2, . . . , xn : An]

means that

A[x1 := a1][x2 := a2] · · · [xn := an] is a type for arbitrary objects
a1, a2, . . . , an−1 of types A1, A2[x1 := a1], . . . ,
An[x1 := a1][x2 := a2] · · · [xn−1 := an−1] respectively.

As for families of sets, we also require that A must be extensional in the context,
that is, if

a1 = b1 : A1,
a2 = b2 : A2[x1 := a1],

...
an = bn : An[x1 := a1][x2 := a2] · · · [xn−1 := an−1]

then it follows from

A type [x1 : A1, . . . , xn : An]

that

A[x1 := a1][x2 := a2] · · · [xn := an] = A[x1 := b1][x2 := b2] · · · [xn := bn]

As an example, the two rules for El-formation express that El(X) is a family
of types over Set.

The explanation of the remaining three forms of judgements:

A = B
a : A

a = b : A

in the context
x1 : A1, x2 : A2, . . . , xn : An

is done in a similar way as the first form

A type [x1 : A1, x2 : A2, . . . , xn : An]

by reducing the explanation to the corresponding form with empty context by
substituting appropriate closed expressions for the variables.

19.4. GENERAL RULES 141

19.4 General rules

Since the identity relation on a type is required to be an equivalence relation
and since two types are identical if they have the same objects and identical
objects of one of the types are also identical objects of the other, we have the
following identity rules.

Reflexivity

a : A

a = a : A

A type

A = A

Symmetry

a = b : A

b = a : A

A = B

B = A

Transitivity

a = b : A b = c : A

a = c : A

A = B B = C

A = C

Type identity

a : A A = B

a : B

a = b : A A = B

a = b : B

The explanations of families of types in a context of the form x : A directly
give rules for substitution:

Substitution in types

C type [x : A] a : A

C[x := a] type

C type [x : A] a = b : A

C[x := a] = C[x := b]

Substitution in objects

c : C [x : A] a : A

c[x := a] : C[x := a]
c : C [x : A] a = b : A

c[x := a] = c[x := b] : C[x := a]

Substitution in identical types

B = C [x : A] a : A

B[x := a] = C[x := a]

Substitution in identical objects

b = c : B [x : A] a : A

b[x := a] = c[x := a] : B[x := a]

These rules can in the same way as in chapter 5 be extended to general
contexts of the form x1 : A1, x2 : A2, . . . , xn : An where n simultaneous
substitutions are made.

142 CHAPTER 19. TYPES

19.5 Assumptions

Our main reason for introducing types is that we want the possibility to make
assumptions of a more general form than x ∈ A, where A is a set. The assump-
tions we can now make are of the form

x : C

where C is a type. To be more formal, we have the rule
Assumption

C type

x : C [x : C]

The premise C type in this rule may depend on a nonempty context, but as
usual in natural deduction, we only explicitly show that part of the context
which is changed by the rule. By using the axiom that Set is a type we can now
make the assumption that X is an arbitrary set:

Set type

X : Set [X : Set]

which, by the definition above, we can also write

Set type

X set [X set]

Assumptions in set theory without types are always of the form

x ∈ A

where A is a set and they can now be obtained as special cases of assumptions
in the theory of types by the following derivation:

A set

El(A) type

x : El(A) [x : El(A)]

Using our notational conventions, we can write the conclusion of this derivation

x ∈ A [x ∈ A]

Note that this derivation is not formal because of the occurrence of the metavari-
able A, which denotes an arbitrary set. It is now possible to make the derivation
completely formal by making an assumption of the form X set:

Set type

X : Set [X : Set]
El(X) type [X : Set]

x : El(X) [X : Set, x : El(X)]

We can also write the conclusion of the derivation more in the style of previous
chapters:

x ∈ X [X set, x ∈ X]

19.6. FUNCTION TYPES 143

19.6 Function types

We have not yet defined enough types to turn an assumption like

Let A be a set and B a family of sets over A

into a formal assumption. To do this we need function types. If A is a type
and B is a family of types for x : A then (x : A)B is the type which contains
functions from A to B as objects. All free occurrences of x in B become bound
in (x : A)B.

Fun formation

A type B type [x : A]
(x : A)B type

A1 = A2 B1 = B2 [x : A1]
(x : A1)B1 = (x : A2)B2

To define the type of functions (x : A)B we must explain what it means to
be a function and when two functions are the same. To know that an object c
is in the type (x : A)B means that we know that when we apply it to an object
a in A we get an object c(a) in B[x := a] and that we get identical objects in
B[x := a1] when we apply it to identical objects a1 and a2 in A. Two objects
c1 and c2 in (x : A)B are identical if c1(a) = c2(a) : B[x := a] for an arbitrary
a in A. Hence, we have the following two rules

Application

c : (x : A)B a : A

c(a) : B[x := a]
c1 = c2 : (x : A)B a = b : A

c1(a1) = c2(a2) : B[x := a]

Functions can be formed by abstraction, if b : B [x : A] then (x)b is an
object in (x : A)B. All free occurences of x in b become bound in (x)b.

Abstraction
b : B [x : A]

(x)b : (x : A)B

The abstraction is explained by the ordinary β-rule which defines what it means
to apply an abstraction to an object in A.

β – rule
a : A b : B [x : A]

((x)b)(a) = b[x := a] : B[x := a]

It is possible to justify the following rules:
ξ – rule

b1 = b2 : B [x : A]
(x)b1 = (x)b2 : (x : A)B

α – rule
b : B [x : A]

(x)b = (y)(b[x := y]) : (x : A)B

y must not occur free in b

η – rule
c : (x : A)B

(x)(c(x)) = c : (x : A)B

144 CHAPTER 19. TYPES

x must not occur free in c

In a context we will often write x ∈ A instead of x : El(A) and y(x) ∈
B(x) [x ∈ A] instead of y : (x : El(A))El(B(x)).

Example. Translating between hypothetical judgements and func-
tions

From the judgement

a : A [x1 : A1, x2 : A2, . . . , xn : An]

we can derive, by repeated abstractions,

(x1, . . . , xn)a : (x1 : A1)(x2 : A2) · · · (xn : An) A

We can go in the other direction by repeated applications of the rules Assump-
tion and Application.

Instead of
(x : A)(y : B)C

we will often write
(x : A, y : B)C

and, similarly, repeated application will be written f(a, b) instead of f(a)(b) and
repeated abstraction will be written (x, y)e instead of (x)(y)e. When B does
not depend on the variable x, we will use the following definition:

(A)B ≡ (x : A)B

Example. Looking at a family of sets as an object of a type

We can now formalize an assumption of the form “Let Y (x) be a family of sets
over a set X” by the following derivation:

By Set-formation we have
Set type

and, hence, we can use Assumption to obtain

X : Set [X : Set]

from which we get, by El-formation,

El(X) type [X : Set]

We can now use Assumption to get

x : El(X) [X : Set, x : El(X)]

By applying Fun formation we get

(x : El(X)) Set type [X : Set]

19.6. FUNCTION TYPES 145

The objects in the type (x : El(X)) Set are set-valued functions indexed by
elements in X. We can now use Assumption to get

Y : (x : El(X))Set [X : Set, Y : (x : El(X))Set]

Hence, by Assumption and application,

Y (x) : Set [X : Set, Y : (x : El(X))Set, x : El(X)]

Using our notational conventions, this may also be written

Y (x) set [X set, Y (x) set[x ∈ X], x ∈ X]

and we may read this

Assume that Y (x) is a set under the assumptions that X is a set
and x ∈ X.

146 CHAPTER 19. TYPES

Chapter 20

Defining sets in terms of
types

We will in this chapter, very briefly, describe the objects in the type Set, thereby
illustrating how the theory of types can be used to formulate a theory of sets.

We will introduce the different sets by defining constants of different types
and asserting equalities between elements in the sets. The sets we get are
different from the one previously presented. The major difference is that they
are monomorphic, which means that all constants contain explicit information
about which sets the rest of the arguments belong to. In the polymorphic
set theory presented in the previous chapters, the constant apply, for example,
takes two arguments, a function from A to B and an element in A. In the
monomorphic version, apply will take four arguments. First the two sets, A and
B, then the function in A → B, and finally the element in A. One advantage
with a monomorphic version is that all important information about the validity
of a judgement is contained in the judgement itself. Given a judgement, it is
possible to reconstruct a derivation of the judgement. The disadvantage, of
course, is that programs will contain a lot of information which is irrelevant for
the computation.

Another difference between the two type theory versions is that all functional
constants introduced in this chapter are curried and written in prefix form. The
reason is that we did only introduce a function type in the chapter about types.
The selectors also take their arguments in a different order.

We may define a stripping function on the expressions in the monomorphic
theory which takes away the set information and we would then obtain expres-
sions of the polymorphic theory. A derivation in the monomorphic theory is,
after the stripping, a correct derivation in the polymorphic theory; this can easily
be shown by induction on the length of a derivation in the monomorphic theory
since each rule in the monomorphic theory becomes a rule in the polymorphic
theory after stripping. Nevertheless, the polymorphic theory is fundamentally
different from the monomorphic theory; in Salvesen [91] it is shown that there
are derivable judgements in the polymorphic theory which cannot come from
any derivable judgement in the monomorphic theory by stripping.

If we declare the constants for the extensional equality Eq in the theory of
types, we will not be able to derive the strong Eq-elimination rule. So this

147

148 CHAPTER 20. DEFINING SETS IN TERMS OF TYPES

equality does not fit into the monomorphic theory of sets.

20.1 Π sets

The notation (A)B is used instead of (x : A)B whenever B does not contain
any free occurrences of x. We will write (x1 : A1, . . . , xn : An)B instead of
(x1 : A1) . . . (xn : An)B and b(a1, . . . , an) instead of b(a1) . . . (an) in order to
increase the readability.

The Π-sets are introduced by introducing the following constants.

Π : (X :Set, (El (X))Set) Set

λ : (X :Set, Y : (El (X))Set, (x :El (X))El (Y (x)))
El (Π(X, Y))

apply : (X :Set, Y : (El (X))Set,El (Π(X, Y)) , x :El (X))
El (Y (x))

and asserting the equality:

apply(A,B, λ(A,B, b), a) = b(a) : El (B(a))

where

A : Set

B : (El (A))Set

a : El (A)
b : (x :El (A))El (B(x))

An alternative notation for the function type is x :A−−�B. The type of the
constants for Π is then written as follows:

Π : X :Set−−�(El (X)−−�Set)−−�Set

λ : X :Set−−�(Y :El (X)−−�Set)−−�
(x :El (X)−−�El (Y (x)))−−�

El (Π(X, Y))

apply : X :Set−−�(Y :El (X)−−�Set)−−�
(El (Π(X, Y)))−−�

(x :El (X))−−�
El (Y (x))

We get the ordinary function set by asserting the equality

A → B = Π(A, (x)B)) : Set [A :Set, B :Set]

In a more conventional formulation the typing of the constants correspond to
the following derivable inference rules (compare with the formation, introduction
and elimination rules in chapter 7):

X : Set Y (x) : Set [x : El (X)]
Π(X, Y) : Set

20.2. Σ SETS 149

X : Set Y (x) : Set [x : El (X)] b(x) : El (Y (x)) [x : El (X)]
λ(X, Y, b) : El (Π(X, Y))

X : Set Y (x) : Set [x : El (X)] c : El (Π(X, Y)) a : El (X)
apply(X, Y, c, a) : El (Y (a))

and the equality corresponds to the rule (compare with the equality rule)

X : Set
Y (x) : Set [x : El (X)]
b(x) : El (Y (x)) [x : El (X)]
a : El (X)
apply(X, Y, λ(X, Y, b), a) = b(a) : El (Y (a))

20.2 Σ sets

We get the Σ sets by declaring the constants:

Σ : (X :Set, (El (X))Set) Set

pair : (X :Set, Y : (El (X))Set, x :El (X) ,El (Y (x)))El (Σ(X, Y))
split : (X :Set, Y : (El (X))Set, Z : (El (Σ(X, Y)))Set,

(x :El (X) , y :El (Y (x)))El (Z(pair(X, Y, x, y))) ,
w :El (Σ(X, Y)))

El (Z(w))

and asserting the equality:

split(A,B, C, d, pair(A,B, a, b)) = d(a, b) : El (C(pair(A,B, a, b)))

where

A : Set

B : (El (A))Set

C : (El (Σ(A,B)))Set

d : (x :El (A) , y :El (B(x)))El (C(pair(A,B, a, b)))
a : El (A)
b : El (B(a))

The usual cartesian product is defined by

A×B = Σ(A, (x)B) : Set [A : Set, B : Set]

150 CHAPTER 20. DEFINING SETS IN TERMS OF TYPES

20.3 Disjoint union

The disjoint unions are introduced by declaring the constants:

+ : (Set,Set) Set

inl : (X :Set, Y :Set,El (X)) +(X, Y)
inr : (X :Set, Y :Set,El (Y)) +(X, Y)

when : (X :Set, Y :Set, Z : (El (+(X, Y)))Set,
(x :El (X))El (Z(inl(X, Y, x))) ,

(y :El (Y))El (Z(inr(X, Y, y))) ,
z :El (+(X, Y)))

El (Z(z))

and the equalities

when(A,B, C, d, e, inl(A,B, a)) = d(a) : El (C(inl(A,B, a)))
when(A,B,C, d, e, inr(A,B, b)) = e(b) : El (C(inr(A,B, b)))

where

A : Set

B : Set

C : (El (+(A,B)))Set

d : (x :El (A))El (C(inl(A,B, x)))
e : (y :El (B))El (C(inr(A,B, y)))
a : El (A)
b : El (B)

20.4 Equality sets

The equality sets are introduced by declaring the constants:

Id : (X :Set,El (X) ,El (X))Set

id : (X :Set, x :El (X)) Id(X, x, x)
idpeel : (X :Set, x :El (X) , y :El (X) ,

Z : (x :El (X) , y :El (X) ,El (Id(X, x, y)))Set,
(z :El (X))El (Z(z, z, id(X, z))) ,

u :El (Id(X, x, y)))
El (Z(x, y, u))

and the equality

idpeel(A, a, b, C, d, id(A, a)) = d(a) : El (C(a, a, id(A, a)))

where

A : Set

a : El (A)
b : El (A)

C : (x :El (A) , y :El (A) ,El (Id(A, x, y)))Set

d : (x :El (A))El (C(x, x, id(A, x)))

20.5. FINITE SETS 151

20.5 Finite sets

We introduce the empty set and the one element set as examples of finite sets.
The empty set is introduced by declaring the constants:

{} : Set

case{} : ((Z :El ({}))Set, x :El ({}))El (Z(x))

The one element set is introduced by declaring the constants:

T : Set

tt : El (T))
caseT : (Z : (El (T))Set,El (Z(tt)) , x :El (T))El (Z(x))

and the equality

caseT(C, b, tt) = b(tt) : El (C(tt))

where C : (El (T))Set and b : El (C(tt)).

20.6 Natural numbers

The set of natural numbers is introduced by declaring the constants:

N : Set

0 : El (N)
succ : (El (N))El (N)

natrec : (Z : (El (N))Set,
El (Z(0)) ,

(x :El (N) ,El (Z(x)))El (Z(succ(x))) ,
n :El (N))

El (Z(n))

and the equalities

natrec(C, d, e, 0) = d : El (C(0))
natrec(C, d, e, succ(a)) = e(a, natrec(C, d, e, a)) : El (C(succ(a)))

where

C : (x :El (N))Set

d : El (C(0))
e : (x :El (N) ,El (C(x)))El (C(succ(x)))
a : El (N)

152 CHAPTER 20. DEFINING SETS IN TERMS OF TYPES

20.7 Lists

Lists are introduced by declaring the constants:

List : (Set) Set

nil : (X :Set) El (List(X))
cons : (X :Set,El (X) ,El (List(X)))El (List(X))

listrec : (X :Set, Z : (El (List(X)))Set,
El (Z(nil(X))) ,

(x :El (X) , y :El (List(X)) ,El (Z(x)))El (Z(cons(X, x, y))) ,
u :El (List(X)))

El (Z(u))

and the equalities

listrec(A,C, d, e, nil(A)) = d : El (C(nil(A)))
listrec(A,C, d, e, cons(A, a, b)) = e(a, b, listrec(A,C, d, e, b))
: El (C(cons(A, a, b)))

where

A : Set

C : (x :El (List(A)))Set

d : El (C(nil(A)))
e : (x :El (X) , y :El (List(A)) El (C(y)))El (C(cons(A, x, y)))
a : El (X)
b : El (List(X))

Part IV

Examples

153

Chapter 21

Some small examples

21.1 Division by 2

In this example we give a derivation of the proposition

(∃y ∈ N)(x =N y ∗ 2)∨ (x =N y ∗ 2⊕ 1) [x ∈ N] (21.1)

and then by interpreting propositions as sets show how to obtain a program
which for each natural number n computes the integral part of n/2. In this
chapter we are using the infix symbol ⊕ for addition between natural numbers.

We prove (21.1) by induction on x.

Base: By definition of ∗ we have

0 =N 0 ∗ 2

from which we get, by ∨ -introduction and ∃-introduction,

(∃y ∈ N)((0 =N y ∗ 2)∨ (0 =N y ∗ 2⊕ 1))

Induction step: We want to prove

(∃y ∈ N)((x⊕ 1 =N y ∗ 2)∨ (x⊕ 1 =N y ∗ 2⊕ 1))

from the assumptions

x ∈ N, (∃y ∈ N)((x =N y ∗ 2)∨ (x =N y ∗ 2⊕ 1)) (21.2)

We will use ∃-elimination on (21.2) and therefore assume

y ∈ N, x =N y ∗ 2∨x =N y ∗ 2⊕ 1 (21.3)

There are two cases corresponding to the two disjuncts in (21.3):

(i) Assume
x =N y ∗ 2 (21.4)

By substitution we get

x⊕ 1 =N y ∗ 2⊕ 1

155

156 CHAPTER 21. SOME SMALL EXAMPLES

and by ∨ -introduction we then get

(x⊕ 1 =N y ∗ 2)∨ (x⊕ 1 =N y ∗ 2⊕ 1)

Hence, by ∃-introduction,

(∃y ∈ N)((x⊕ 1 =N y ∗ 2)∨ (x⊕ 1 =N y ∗ 2⊕ 1)) (21.5)

(ii) Assume
x =N y ∗ 2⊕ 1 (21.6)

By elementary arithmetic we get

x⊕ 1 =N (y ⊕ 1) ∗ 2

and by ∨ -introduction we then get

(x⊕ 1 =N (y ⊕ 1) ∗ 2)∨ (x⊕ 1 =N (y ⊕ 1) ∗ 2⊕ 1)

Hence, by ∃-introduction,

(∃y ∈ N)((x⊕ 1 =N y ∗ 2)∨ (x⊕ 1 =N y ∗ 2⊕ 1)) (21.7)

Since we have derived (21.5) from (21.4) and (21.7) from (21.6) we
can use ∨ -elimination to obtain

(∃y ∈ N)(x⊕ 1 =N y ∗ 2)∨ (x⊕ 1 =N y ∗ 2⊕ 1) (21.8)

thereby discharging the assumptions (21.4) and (21.6). The proposi-
tion (21.8) depends on the assumption list (21.3) which we discharge
by using ∃-elimination and thereby (21.1) is proved.

We will now translate this derivation using the interpretation of propositions
as sets. Viewed as a set, the truth of the proposition

(∃y ∈ N)((x =N y ∗ 2)∨ (x =N y ∗ 2⊕ 1)) [x ∈ N]

means that we know how to construct an element in the corresponding set; that
is, we know how to construct an expression such that when we substitute a
natural number n for x we get a natural number m such that

(n =N m ∗ 2)∨ (n =N m ∗ 2⊕ 1)

So, the constructed element will give us a method for computing the integral
part of n/2.

There are two possibilities when interpreting the existential quantifier in
type theory: either to use the Σ set or to use a subset. Since we are interested
in the program that computes the integral part of n/2 and not in the proof
element of

(n =N m ∗ 2)∨ (n =N m ∗ 2⊕ 1)

it is natural to use a subset, that is to interpret the proposition by the set

{y ∈ N | (x =N y ∗ 2)∨ (x =N y ∗ 2⊕ 1)} [x ∈ N] (21.9)

21.1. DIVISION BY 2 157

However, using the subset it is not possible to directly translate the proof above
to type theory because subset-elimination is not strong enough to interpret ∃-
elimination. So we will instead use the Σ set when translating the proof. We
will then get an element in the set

(Σy ∈ N)((x =N y ∗ 2) + (x =N y ∗ 2⊕ 1)) [x ∈ N]

and by applying the projection fst on this element we will get a program satis-
fying (21.9).

Our proof of

(∃y ∈ N)((x =N y ∗ 2)∨ (x =N y ∗ 2⊕ 1)) [x ∈ N]

was by induction, so we will construct an element of the set

(Σy ∈ N)((x =N y ∗ 2) + (x =N y ∗ 2⊕ 1)) [x ∈ N] (21.10)

by N-elimination, remembering that induction corresponds to N-elimination in
type theory.

Base: By N-equality and Id-introduction we have

id(0) ∈ (0 =N 0 ∗ 2)

So, by +-introduction and Σ-introduction, we get

〈0, inl(id(0))〉 ∈ (Σy ∈ N)((0 =N y ∗ 2) + (0 =N y ∗ 2⊕ 1))

Recursion step: We want to construct an element in the set

(Σy ∈ N)((x⊕ 1 =N y ∗ 2) + (x⊕ 1 =N y ∗ 2⊕ 1))

from the assumptions

x ∈ N, z1 ∈ (Σy ∈ N)((x =N y ∗ 2) + (x =N y ∗ 2⊕ 1)) (21.11)

We will use Σ-elimination on (21.11) and therefore assume

y ∈ N, z2 ∈ ((x =N y ∗ 2) + (x =N y ∗ 2⊕ 1)) (21.12)

There are two cases:

(i) Assume
z3 ∈ (x =N y ∗ 2) (21.13)

Substitution in the propositional function Id(N, x ⊕ 1, z ⊕
1) [z ∈ N] gives

subst(z3, id(x⊕ 1)) ∈ (x⊕ 1 =N y ∗ 2⊕ 1)

and by +-introduction we then get

inr(subst(z3, id(x⊕1))) ∈ (x⊕1 =N y∗2)+(x⊕1 =N y∗2⊕1)

Hence, by Σ-introduction,

〈y, inr(subst(z3, id(x⊕ 1)))〉
∈ (Σy ∈ N)((x⊕ 1 =N y ∗ 2)+(x⊕ 1 =N y ∗ 2⊕ 1))

(21.14)

158 CHAPTER 21. SOME SMALL EXAMPLES

(ii) Assume
z4 ∈ (x =N y ∗ 2⊕ 1) (21.15)

By elementary arithmetic we get a construction

c(x, y, z4) ∈ (x⊕ 1 =N (y ⊕ 1) ∗ 2)

and by +-introduction we then get

inl(c(x, y, z4)) ∈ (x⊕1 =N (y⊕1)∗2+x⊕1 =N (y⊕1)∗2⊕1)

Hence, by Σ-introduction,

〈y ⊕ 1, inl(c(x, y, z4))〉
∈ (Σy ∈ N)((x⊕ 1 =N y ∗ 2)+(x⊕ 1 =N y ∗ 2⊕ 1))

(21.16)

Since we have a derived (21.14) from (21.13) and (21.16) from (21.15)
we can use +-elimination to obtain

when(z2,
(z3)〈y, inr(subst(z3, id(x⊕ 1)))〉,
(z4)〈y ⊕ 1, inl(c(x, y, z4))〉))))

∈ (Σy ∈ N)((x⊕ 1 =N y ∗ 2)+(x⊕ 1 =N y ∗ 2⊕ 1))

(21.17)

thereby discharging assumptions (21.13) and (21.15). (21.16) de-
pends on the assumption (21.12) which we can discharge by using
Σ-elimination:

split(z1,
(y, z2)when(z2,

(z3)〈y, inr(subst(z3, id(x⊕ 1)))〉,
(z4)〈y ⊕ 1, inl(c(x, y, z4))〉))))

∈ (Σy ∈ N)((x⊕ 1 =N y ∗ 2)+(x⊕ 1 =N y ∗ 2⊕ 1))

Now we can use N-elimination to obtain

natrec(x,
〈0, inl(id(0))〉,
(x, z1)split(z1,

(y, z2)when(z2,
(z3)〈y, inr(subst(z3, id(x⊕ 1)))〉,
(z4)〈y ⊕ 1, inl(c(x, y, z4))〉))))

∈ (Σy ∈ N)((x =N y ∗ 2)+(x =N y ∗ 2⊕ 1))
[x ∈ N]

(21.18)

Defining half proof by

half proof ≡
λx.natrec(x,

〈0, inl(id(0))〉,
(x, z1)split(z1,

(y, z2)when(z2,
(z3)〈y, inr(subst(z3, id(x⊕ 1)))〉,
(z4)〈y ⊕ 1, inl(c(x, y, z4))〉)))

21.2. EVEN OR ODD 159

and half by
half(x) ≡ fst(half proof · x)

we get, by applying Σ-elimination twice and then using subset intro-
duction,

half(x) ∈ {y ∈ N|(x =N y ∗ 2) + (x =N y ∗ 2⊕ 1)} [x ∈ N]

Note that we in this type theory derivation not only have constructed the
program half but also simultaneously have given an almost formal proof that the
program satisfies the specification, that is that half(n) computes the integral
part of n/2 for each natural number n.

In the proof there was a proof of a trivial arithmetic equation which we
did not carry out. Note, however, that this proof element is never used in the
computation of the program half.

Since the program was constructed from a derivation using logic, there occur
parts in the program which one normally would not use when constructing the
program in a traditional way. For instance, the when-part of the program comes
from an application, in the induction step, of ∨ -elimination where one is using
the induction hypothesis which tells you that a number is either even or odd.
Thinking operationally, one would here probably have used some construction
involving if then else .

21.2 Even or odd

By using the previous example and a proof of

((∃x ∈ A)(P (x)∨Q(x)))⊃ ((∃x ∈ A)P (x)∨ (∃x ∈ A)Q(x)) (21.19)

we will derive a program even(n) in the set Bool which has value true if the
natural number n is even and false if n is odd.

This can be proved in the following bottom-up way: By ∃-introduction and
∨ -introduction we get

(∃x ∈ A)P (x)∨ (∃x ∈ A)Q(x) [x ∈ A, P (x)]

and
(∃x ∈ A)P (x)∨ (∃x ∈ A)Q(x) [x ∈ A, Q(x)]

Now we can use ∨ -elimination to get

(∃x ∈ A)P (x)∨ (∃x ∈ A)Q(x) [x ∈ A, P (x)∨Q(x)]

Finally, by ∃-elimination and ⊃ -introduction we obtain (21.19).
Translating this proof, using propositions as sets, gives the following deriva-

tion. By Σ -introduction and + -introduction we get

inl(〈x, u〉) ∈ (Σx ∈ A)P (x) + (Σx ∈ A)Q(x) [x ∈ A, u ∈ P (x)]

and

inr(〈x, v〉) ∈ (Σx ∈ A)Q(x) + (Σx ∈ A)Q(x) [x ∈ A, v ∈ Q(x)]

160 CHAPTER 21. SOME SMALL EXAMPLES

We can now use + -elimination to get

when(y, (u)inl(〈x, u〉), (v)inr(〈x, v〉)) ∈
(Σx ∈ A)P (x) + (Σx ∈ A)Q(x) [x ∈ A, y ∈ P (x) + Q(x)]

By Σ -elimination we obtain

split(z, (x, y)when(y, (u)inl(〈x, u〉), (v)inr(〈x, v〉))
∈ (Σx ∈ A)P (x) + (Σx ∈ A)Q(x)

under the assumption that z ∈ (Σx ∈ A)(P (x)+Q(x)). We can now use →-
introduction to obtain

distr ∈ (Σx ∈ A)(P (x)+Q(x)) → (Σx ∈ A)P (x) + (Σx ∈ A)Q(x)

where
distr ≡ split(z, (x, y)when(y, (u)inl(〈x, u〉), (v)inr(〈x, v〉))

In the previous example we have derived a program half proof in the set

(Πx ∈ N)(Σy ∈ N)((x =N y ∗ 2)+(x =N y ∗ 2⊕ 1))

Hence, by putting

P (y) ≡ (x =N y ∗ 2)
Q(y) ≡ (x =N y ∗ 2⊕ 1)

Even(x) ≡ (Σy ∈ N)(x =N y ∗ 2)
Odd(x) ≡ (Σy ∈ N)(x =N y ∗ 2⊕ 1)

we get, by →-elimination,

distr · (half proof · x) ∈ Even(x) + Odd(x)

Defining even or odd by

even or odd(n) ≡ distr · (half proof · x)

we have that even or odd(n) has a value whose outermost form is inl if and only
if n is even. So we can now define even by

even(n) ≡ when(even or odd(n), (u)true, (v)false)

and by + -elimination we have

even(n) ∈ Bool [n ∈ N]

Clearly, even(n) has value true if n is even and value false if n is odd.

21.3 Bool has only the elements true and false

We prove the proposition

((∃b ∈ Bool)P (b))⊃ (P (true)∨P (false))

21.3. BOOL HAS ONLY THE ELEMENTS TRUE AND FALSE 161

by showing that the set

((Σb ∈ Bool)P (b)) → (P (true) + P (false))

is inhabited.
We start the derivation by assuming

w ∈ (Σb ∈ Bool)P (b) (21.1)

and then look for an element in the set

P (true) + P (false)

We continue by making two more assumptions

w1 ∈ Bool (21.2)
w2 ∈ P (w1) (21.3)

Unfortunately, there is now not a straightforward way to get an element in the
set P (true) + P (false) from the assumptions we have introduced. Instead we
must first derive an element in the set

P (w1) → (P (true) + P (false))

by case analysis on w1 and then apply this element on w2 to get an element in
the set

P (true) + P (false)

We use +-introduction and →-introduction on the assumption

q ∈ P (true)

to get
λ(inl) ∈ P (true)⊃ (P (true)+P (false)) (21.4)

In the same way we also get

λ(inr) ∈ P (false)⊃ (P (true)+P (false)) (21.5)

By applying Bool-elimination on (21.2), (21.4) and (21.5), we get

if w1 then λ(inl) else λ(inr)
∈ P (w1) → (P (true)+P (false)) (21.6)

Then →-elimination, applied on (21.3) and (21.6), gives

apply(if w1 then λ(inl) else λ(inr), w2)
∈ P (true)+P (false) (21.7)

Now we can apply the ∃-elimination rule on (21.1) and (21.7) and thereby
discharging assumption (21.2) and (21.3):

split(w,
(w1, w2)apply(if w1 then λ(inl) else λ(inr),

w2))
∈ P (true)+P (false)

(21.8)

162 CHAPTER 21. SOME SMALL EXAMPLES

Finally, by →-introduction, we discharge (21.1) and get

λw.split(w,
(w1, w2)apply(if w1 then λ(inl) else λ(inr),

w2))
∈ P (true)+P (false)

(21.9)

In essentially the same way we can prove the propositions:

(∃x ∈ N)P (x)⊃ (P (0)∨ (∃y ∈ N)P (succ(y)))
(∃x ∈ List(A))P (x)⊃ (P (nil)∨ (∃y ∈ A)(∃z ∈ List(A))P (cons(x, y)))
(∃x ∈ A + B)P (x)⊃ ((∃y ∈ A)P (inl(y))∨ (∃z ∈ B)P (inr(z)))
(∃x ∈ A×B)P (x)⊃ (∃y ∈ A)(∃z ∈ B)P (〈y, z〉)

21.4 Decidable predicates

The disjoint union can be used to express that a predicate (propositional func-
tion) is decidable. Consider the set B(x) set [x ∈ A]. To say that B is decidable
means that there is a mechanical procedure which for an arbitrary element a ∈ A
decides if B(a) is true or if it is false. In order to formally express that a predi-
cate B is decidable for elements from A, one can use the disjoint union. If the
set

Decidable(A,B) ≡ (Πx∈A) B(x)∨¬B(x)

is nonempty, then B is decidable and an element in the set is a decision procedure
for the predicate.

As an example of a decidable predicate and a decision procedure, we will
show that there is an element in the set Decidable(N, (n)Id(N, 0, n)), thereby
getting a decision procedure that decides if a natural number is equal to zero.
We start the derivation by assuming

n ∈ N

We then proceed to find an element in the set

Id(N, 0, n)∨¬Id(N, 0, n)

by induction on n.
The base case: By N-introduction, Id-introduction and ∨ -introduction, we

get
inl(id(0)) ∈ Id(N, 0, 0)∨¬Id(N, 0, 0)

The induction step: We first introduce the induction assumptions

x ∈ N

y ∈ Id(N, 0, x)∨¬Id(N, 0, x)

and then continue with the assumption

z ∈ Id(N, 0, succ(x))

21.5. STRONGER ELIMINATION RULES 163

By the proof of Peano’s fourth axiom, we have

peano4 ∈ Id(N, 0, succ(n)) → {} [n ∈ N]

By {}-elimination and →-introduction, we get

λ((z)case(peano4 · z)) ∈ ¬Id(N, 0, succ(x))

We can then use ∨ -introduction to get

inr(λ((z)case(peano4 · z)) ∈ Id(N, 0, succ(x))∨¬Id(N, 0, succ(x))

and the N-elimination rule therefore gives us

natrec(n, inl(id(0)), (x, y)inr(λ((z)case(peano4 · z)))) ∈
Id(N, 0, n)∨¬Id(N, 0, n)

Finally, by →-introduction,

λ((n)natrec(n, inl(id(0)), (x, y)inr(λ((z)case(peano4 · z)))))
∈ Decidable(N, (n)Id(N, 0, n))

So, we have derived a decision procedure for the predicate (n)Id(N, 0, n).

21.5 Stronger elimination rules

It is possible to formulate stronger versions of the elimination rules, for instance,
the rule of strong Σ-elimination:

Strong Σ – elimination

c ∈ Σ(A,B)
C(v) set [v ∈ Σ(A,B)]
d(x, y) ∈ C(〈x, y〉) [x ∈ A, y ∈ B(x), 〈x, y〉 =Σ(A,B) c true]
split′(c, d) ∈ C(c)

The third premise is weaker than the corresponding premise in the ordinary rule
for Σ-elimination in that the assumption 〈x, y〉 =Σ(A,B) c true is added. The
constant split has been replaced by the defined constant split′. This rule can be
seen as a derived rule in the following way:

Let

c ∈ Σ(A,B)
C(v) set [v ∈ Σ(A,B)]
d(x′, y′) ∈ C(〈x′, y′〉) [x′ ∈ A, y′ ∈ B(x′), 〈x′, y′〉 =Σ(A,B) c true]

We are going to use the ordinary Σ-elimination rule on c and the family

C ′(u) ≡ (u =Σ(A,B) c) → C(u)

So, assume x ∈ A and y ∈ B(x) and we want to find an element in

C ′(〈x, y〉) ≡ (〈x, y〉 =Σ(A,B) c) → C(〈x, y〉)

164 CHAPTER 21. SOME SMALL EXAMPLES

Assume therefore that z ∈ (〈x, y〉 =Σ(A,B) c). But then

d(x, y) ∈ C(〈x, y〉)

and →-introduction gives that

λz.d(x, y) ∈ (〈x, y〉 =Σ(A,B) c) → C(〈x, y〉)

thereby discharging the last assumption. Σ-elimination gives

split(c, (x, y)λz.d(x, y)) ∈ (c =Σ(A,B) c) → C(c)

thereby discharging the remaining two assumptions. Since we know that id(c) ∈
(c =Σ(A,B) c) we can use →-elimination to finally conclude that

split′(c, d) ∈ C(c)

where
split′(c, d) ≡ apply(split(c, (x, y)λz.d(x, y)), id(c)).

Notice, that if the premises of the strong elimination rule hold then the
value of split′(c, d) is equal to the value of split(c, d) which can be seen from the
following computation steps:

c ⇒〈a, b〉 λz.d(a, b) ⇒λz.d(a, b)
split(c, (x, y)λz.d(x, y)) ⇒λz.d(a, b) d(a, b) ⇒ q

apply(split(c, (x, y)λz.d(x, y)), id(c)) ⇒ q

We can strengthen the elimination-rules for Π, +, and the enumeration sets
in an analogous way:

Strong Π–elimination

c ∈ Π(A,B)
C(v) set [v ∈ Π(A,B)]
d(y) ∈ C(λ(y)) [y(x) ∈ B(x) [x ∈ A], c =Π(A,B) λ(y) true]
funsplit′(c, d) ∈ C(c)

where
funsplit′(c, d) ≡ apply(funsplit(c, (y)λz.d(y)), id(c))

Strong +–elimination

c ∈ A + B

C(v) set [v ∈ A + B]
d(x) ∈ C(inl(x)) [x ∈ A, c =A+B inl(x) true]
e(y) ∈ C(inr(y)) [y ∈ B, c =A+B inr(y) true]
when′(c, d, e) ∈ C(c)

where

when′(c, d, e) ≡ apply(when(c, (x)λz.d(x), (y)λz.e(y)), id(c))

21.5. STRONGER ELIMINATION RULES 165

Strong Bool–elimination

b ∈ Bool

C(v) set [v ∈ Bool]
c ∈ C(true) [b =Bool true true]
d ∈ C(false) [b =Bool false true]
if′(b, c, d) ∈ C(b)

where
if′(b, c, d) ≡ apply(if(b, λz.c, λz.d), id(b))

166 CHAPTER 21. SOME SMALL EXAMPLES

Chapter 22

Program derivation

One of the main reasons for using type theory for programming is that it can
be seen as a theory both for writing specifications and constructing programs.
In type theory a specification is expressed as a set and an element of that set is
a program that satisfies the specification.

Programming in type theory corresponds to theorem proving in mathemat-
ics: the specification plays the rôle of the proposition to be proved and the
program is obtained from the proof. We will in this chapter formulate the rules
of type theory as tactics, corresponding to constructing programs top down.
The idea of synthesising programs from constructive proofs has been used e.g.
by Manna and Waldinger [62] Takasu [106] and Constable and his coworkers at
Cornell University [25].

22.1 The program derivation method

As already has been mentioned, programming in type theory is like theorem
proving in mathematics. However, since parts of the proofs are used in the actual
construction of programs, the proofs have to be more detailed and formal than
they usually are in mathematics. In this respect, derivations of programs in type
theory are similar to proofs of mathematical theorems in a formal system. Being
formal is also a necessity when dealing with complex problems since one then
certainly need computer support. For the examples in this chapter the solutions
are so simple that there are no problems in doing the derivations informally.
But already in the solution of Dijkstra’s problem of the Dutch national flag
using arrays [87], there are so many steps and so much book-keeping that it is
appropriate to make the derivation in such a way that it could be checked by
a computer. So, in order to illustrate the method, our example is carried out
in such a detail that it should be straightforward to obtain a completely formal
derivation. Differences between proofs in traditional mathematics and program
derivations as well as the rôle of formalization are discussed by Scherlis and
Scott [94].

The usual way of presenting a formal derivation, e.g. in text books on
logic, is to go from axioms and assumptions to the conclusion. When deriving
programs in type theory this would mean that you first start constructing the
smaller parts of the program and then build up the program from these parts.

167

168 CHAPTER 22. PROGRAM DERIVATION

This is not a good programming methodology. Instead we want to use the
top-down approach from structured programming [32]. So, instead of starting
the derivation from axioms and assumptions, we will proceed in the opposite
direction. We will start with the specification, split it into subspecifications
and then compose solutions to these subproblems to a solution of the original
problem. In the LCF-system [44] there is a goal directed technique for finding
proofs in this style.

Corresponding to the judgement

a ∈ A

we have the goal A which is achieved by an element a if we have a proof of a ∈ A.
Corresponding to each of the other forms of judgement, we have a goal which
has the same form as the judgement and which is achieved if we have a proof of
it. For instance the goal a = b ∈ A is achieved if we have a proof of a = b ∈ A.
Notice that in general goals may depend on assumptions. The different methods
that can be used to split a goal into subgoals are called tactics.

22.1.1 Basic tactics

The basic tactics come from reading the rules of type theory bottom-up. For
example, the introduction rule for conjunction

A true B true

A &B true

becomes, when viewed as a tactic:

The goal
A &B true

may be split into the subgoals

A true

and
B true

We can describe the tactic in the following way:

dA &B true by & -introduction
[A true by ...
[B true by ...

b

Similarly, the introduction rule for the cartesian product

a ∈ A b ∈ B

〈a, b〉 ∈ A &B

can be read as a tactic:

22.1. THE PROGRAM DERIVATION METHOD 169

The problem of finding a program that achieves the goal

A×B

can be split into the problem of finding a program a that achieves
the goal

A

and the problem of finding a program b that achieves the goal

B

The goal A×B is then achieved by the program 〈a, b〉.

When deriving a program from a specification, applying a tactic will give a
part of the program one is in the process of constructing. In the case of the
×-introduction tactic, one gets a part on pair-form. The ×-introduction tactic
can also be described in the following way:

dA×B by ×-introduction
dA by ...
b3 a
dB by ...
b3 b

b3 〈a, b〉

This schematical way of describing a tactic can be extended to full derivations.
It can also be used when a derivation is not yet complete and then give the
structure of the derivation made so far as well as the structure of the program
obtained at that stage.

Another example is the rule for ×-elimination:

p ∈ A×B e(x, y) ∈ C(〈x, y〉 [x ∈ A, y ∈ B]
split(p, e) ∈ C(p)

we get the following ×-elimination tactic in type theory:

The problem of finding a program that achieves the goal

C(p)

can be replaced by proving that p ∈ A×B and the problem of finding
a program e(x, y) that achieves the goal

C(〈x, y〉)

under the assumptions that x ∈ A and y ∈ B.

The goal C(p) is then achieved by the program split(p, e).

In our notation:

dC(p) by ×-elimination
dA×B by ...
b3 p
[x ∈ A, y ∈ B]

dC(〈x, y〉) by ...
b3 e(x, y)

b3 split(p, e)

170 CHAPTER 22. PROGRAM DERIVATION

In this way all rules of type theory may be formulated as tactics. This is also the
approach taken in the system for type theory developed at Cornell University
[25]. We give two more examples of translating rules into tactics by formulating
the Π-introduction rule and the List-elimination rule as tactics. Both tactics
will be used in the derivation of a program for the problem of the Dutch flag.

Corresponding to the Π-introduction rule

b(x) ∈ B(x) [x ∈ A]
λ(b) ∈ (Πx ∈ A)B(x)

we have the tactic:

d(Πx ∈ A) B(x) by Π-introduction
[x ∈ A]

dB(x) by ...
b3 b(x)

b3 λ(b)

The List-elimination rule,

l ∈ List(A)
a ∈ C(nil)
b(x, y, z) ∈ C(cons(x, y)) [x ∈ A, y ∈ List(A), z ∈ C(y)]

listrec(l, a, b) ∈ C(l)

becomes, when formulated as a tactic:

dC(l) by List-elimination
dList(A) by ...
b3 l
dC(nil) by ...
b3 a
[x ∈ A, y ∈ List(A), z ∈ C(y)]

dC(cons(x, y)) by ...
b3 b(x, y, z)

b3 listrec(l, a, b)

22.1.2 Derived tactics

If we have a proof of a judgement then we also have a derived tactic corre-
sponding to the judgement. We can look at a tactic as another way of reading
a hypothetical judgement. For instance, if we have a proof of the hypothetical
judgement

c(x, y) ∈ C(x, y) [x ∈ A, y ∈ B(x)] (J1)

then we can use the following tactic:

dC(x, y) by J1
dA by ...
b3 x
dB(x) by ...
b3 y

b3 c(x, y)

22.2. A PARTITIONING PROBLEM 171

As a simple example, after having made the derivation

[p ∈ A×B]
dA by ×-elimination

dA×B by assumption
b3 p
[x ∈ A, y ∈ B]

dA by assumption
b3 x

b3 split(p, (x, y)x) ≡ fst(p)

which is a proof of the judgement

fst(p) ∈ A [p ∈ A×B] (×− elim1)

[p ∈ A×B]
dA by ×-elim1
b3 fst(p)

If we had a mechanical proof checker, it would not be necessary to check the
correctness of a derived tactic more than once. In an application of it, there
is no need to go through each step in the proof since by the construction of a
derived tactic (that it comes from a judgement) we know that if we apply it to
proofs of the subgoals it always yield a proof of the goal.

22.2 A partitioning problem

In this section, we will derive a program for Dijkstra’s problem of the Dutch
national flag [32]: Construct a program, that given a sequence of objects, each
having one of the colours red, white and blue, rearranges the objects so that they
appear in the order of the Dutch national flag. In type theory, the natural way
of formulating this partitioning problem is to use lists. Our solution will then,
we think, result in the simplest possible program for the problem; the program
one would write in a functional language like ML. However, the program will
not satisfy Dijkstra’s requirements concerning space efficiency, which is one of
the main points of his solution. In [87] a similar problem is solved, using arrays
instead of lists and following Dijkstra’s more sophisticated method.

We will use the following general assumptions about the problem: We assume
that A is a set and each element in A has a colour, i.e. there is a function
colour(x) ∈ Colour, where Colour is the enumeration set {red,white, blue}. We
will also assume that A has a decidable equality. So we introduce the following
assumptions:

A set
colour(x) ∈ Colour [x ∈ A]
eqd(A, x, y) ∈ {z ∈ Bool | z =Bool true ⇔ x =A y} [x ∈ A, y ∈ A]

172 CHAPTER 22. PROGRAM DERIVATION

We start by introducing the following definitions:

Colouredlist(s) ≡ List({x ∈ A | colour(x) =Colour s})
Reds ≡ Colouredlist(red)

Whites ≡ Colouredlist(white)
Blues ≡ Colouredlist(blue)

append(l1, l2) ≡ listrec(l1, l2, (x, y, z) cons(x, z))
l1 ≈P l2 ≡ (∀x∈A) Id(N, occin(x, l1), occin(x, l2))

occin(x, l) ≡ listrec(l, 0, (u, v, w) if eqd(A, x, u) then succ(w) else w)
l1@l2 ≡ append(l1, l2)

We have here used a definition of permutation which requires the equality rela-
tion on A to be decidable. This restriction can be removed, but the definition
will then be more complicated.

The specification can now be given by the set

S ≡ (Π l∈List(A)) Flag(l)

where

Flag(l) ≡ {〈l′, l′′, l′′′〉 ∈ Reds×Whites×Blues | l ≈P l′@l′′@l′′′}

using the notation {〈x, y, z〉 ∈ A×B×C | P (x, y, z)} for the subset

{u ∈ A×(B×C) | P (fst(u), fst(snd(u)), trd(u))}

where trd is defined by
trd ≡ (u)snd(snd(u))

Note that a program that satisfies this specification will give a triple of lists as
output. To get a solution to Dijkstra’s formulation of the problem, these three
lists should be concatenated.

Deriving a program that satisfies the specification is nothing but finding a
program which is a member of the set expressing the specification, or, if we
think of the specification as a goal, to find a program that achieves the goal.

The intuitive idea behind the proof is the following: If l is a list of red,
white and blue objects then the problem of finding an element in Flag(l) will
be solved by induction on l. The base case, i.e. when l is equal to nil, is solved
by the partition 〈nil, nil, nil〉. For the induction step, assume that l is cons(x, y)
and that we have a partitioning z of y and then separate the problem into three
cases:

1. x is red. Then 〈cons(x, fst(z)), snd(z), trd(z)〉 is a partitioning of the list
cons(x, y).

2. x is white. Then 〈fst(z), cons(x, snd(z)), trd(z)〉 is a partitioning of the list
cons(x, y).

3. x is blue. Then 〈fst(z), snd(z), cons(x, trd(z))〉 is a partitioning of the list
cons(x, y).

22.2. A PARTITIONING PROBLEM 173

From this intuitive idea, it would not be much work to get, by informal rea-
soning, a program in type theory which satisfies the specification. We want,
however, to do a derivation which easily could be transformed to a completely
formal derivation. In the derivation we will assume a few elementary properties
about permutations and these properties will be explicitly stated as lemmas.

We begin the derivation by assuming l ∈ List(A) and then try to find a
program which is an element of the set Flag(l). In other words, we apply the
Π-introduction tactic to the specification S, getting the subgoal

Flag(l) [l ∈ List(A)]

From this problem we proceed by list induction on l, i.e., we split the goal
into three subgoals, corresponding to the three premises in the List-elimination
rule. Schematically, the derivation we have made so far is:

d(Π l∈List(A)) Flag(l) by Π-intro
[l ∈ List(A)]

G1: dFlag(l) by List-elim
dList(A) by assumption
b3 l

Base: dFlag(nil) by ...
[x ∈ A, y ∈ List(A), z ∈ Flag(y)]

Ind. step: dFlag(cons(x, y)) by ...

So if we succeed to solve the two subgoals finding an element a which achieves
the base case and finding an element b(x, y, z) which achieves the induction step
then we can complete the derivation:

d(Π l∈List(A)) Flag(l) by Π-intro
[l ∈ List(A)]

G1: dFlag(l) by List-elim
dList(A) by assumption
b3 l

Base: dFlag(nil) by ...
b3 a
[x ∈ A, y ∈ List(A), z ∈ Flag(y)]

Ind. step: dFlag(cons(x, y)) by ...
b3 b(x, y, z)

b3 listrec(l, a, b)
b3 λ((l) listrec(l, a, b)

Let us start with the base case in the induction. We have the goal

Flag(nil) ≡ {〈l′, l′′, l′′′〉 ∈ Reds×Whites×Blues | nil ≈P l′@l′′@l′′′}

Following the intuitive idea for the proof, this goal is achieved by 〈nil, nil, nil〉.
Formally, then, we have to show that 〈nil, nil, nil〉 ∈ Flag(nil). In order to do this,
we apply the Subset/Triple introduction tactic which is the tactic corresponding
to the following judgement:

〈a, b, c〉 ∈ {〈l′, l′′, l′′′〉∈A×B×C | P (l′, l′′, l′′′)}
[a ∈ A, b ∈ B, c ∈ C, P (a, b, c) true]

174 CHAPTER 22. PROGRAM DERIVATION

We leave out the derivation of this judgement. By List-introduction we know
that nil satisfies the three subgoals Reds, Whites, Blues and then we have to
verify the subgoal

nil ≈P nil@nil@nil

Lemma 1 nil ≈P nil@nil@nil

Proof: The lemma follows from the fact that nil is an identity for @ and that
permutation is reflexive:

nil@nil@nil
= { nil@nil = nil }

nil
≈P { l ≈P l [l ∈ List(A)] }

nil

2

So
〈nil, nil, nil〉 ∈ Flag(nil)

and we have solved the base-step. We can summarize the derivation made so
far:

d(Π l∈List(A)) Flag(l) by Π-intro
[l ∈ List(A)]

G1: dFlag(l) by List-elim
dList(A) by assumption
b3 l

Base: dFlag(nil) by Lemma 2
b3 〈nil, nil, nil〉
[x ∈ A, y ∈ List(A), z ∈ Flag(y)]

Ind. step: dFlag(cons(x, y)) by ...
b3 b(x, y, z)

b3 listrec(l, 〈nil, nil, nil〉, b)
b3 λ((l) listrec(l, 〈nil, nil, nil〉, b)

where Lemma 2 is the following derived tactic:

Lemma 2 〈nil, nil, nil〉 ∈ Flag(nil)

Proof: This is a formal derivation of the lemma:

dFlag(nil) by Subset/Triple-introduction
dReds by List-intro
b3 nil
dWhites by List-intro
b3 nil
dBlues by List-intro
b3 nil
nil ≈P nil@nil@nil true by Lemma 1

b3 〈nil, nil, nil〉

22.2. A PARTITIONING PROBLEM 175

2

It now remains to achieve the induction step:

Flag(cons(x, y)) ≡ {〈l′, l′′, l′′′〉 ∈ Reds×Whites×Blues |
cons(x, y) ≈P l′@l′′@l′′′}

under the assumptions

l ∈ List(A), x ∈ A, y ∈ List(A), z ∈ Flag(y)

We apply the Subset/Triple elimination tactic, which is the derived tactic (we
leave out the derivation):

dC(p) by Subset/Triple-elim
d{〈l′, l′′, l′′′〉 ∈ A×B×C | P (l′, l′′, l′′′)} by ...
b3 p
[z′ ∈ A, z′′ ∈ B, z′′′ ∈ C, P (z′, z′′, z′′′) true]

dC(〈z′, z′′, z′′′〉) by ...
b3 e(z′, z′′, z′′′)

b3 split3(p, e)

We then get the two subgoals

1. Flag(y) ≡ {〈l′, l′′, l′′′〉 ∈ Reds×Whites×Blues | y ≈P l′@l′′@l′′′}
2. [z′ ∈ Reds, z′′ ∈ Whites, z′′′ ∈ Blues, y ≈P z′@z′′@z′′′ true]

Flag(cons(x, y))

The first subgoal is achieved by z and the second subgoal says that the problem
is to find a program which is an element of Flag(cons(x, y)) under the extra
assumptions about z′, z′′, z′′′. Following the intuitive proof idea, we divide the
remaining subgoal into three cases: when the element x is red, when it is white
and when it is blue. From one of the assumptions done earlier we know that

colour(x) ∈ Colour [x ∈ A]

so it is appropriate to apply the Colour-elimination tactic:

dC(p) by Colour-elimination
dColour by ...
b3 p
[colour(x) =Colour red]

dC(p) by ...
b3 a

[colour(x) =Colour white]
dC(p) by ...
b3 b

[colour(x) =Colour blue]
dC(p) by ...
b3 c

b3 caseColour(p, a, b, c)

We then get the following derivation:

176 CHAPTER 22. PROGRAM DERIVATION

dFlag(cons(x, y)) by Colour-elimination
dColour by assumption
b3 colour(x)
[colour(x) =Colour red]

dFlag(cons(x, y) by ...
[colour(x) =Colour white]

dFlag(cons(x, y) by ...
[colour(x) =Colour blue]

dFlag(cons(x, y) by ...

That the program
〈cons(x, z′), z′′, z′′′〉

achieves the red case is seen by the following derivation, which we call A1.

dFlag(cons(x, y)) ≡
{〈l′, l′′, l′′′〉 ∈ Reds×Whites×Blues | cons(x, y) ≈P l′@l′′@l′′′}
by Subset/Triple-intro
dReds ≡ List({x∈A | colour(x) = red}) by List-intro

d{x∈A | colour(x) = red} by subset-intro
dA by assumption
b3 x
dcolour(x) = red true by assumption
b

b3 x
d{x∈A | colour(x) = red} by assumption
b3 z′

b3 cons(x, z′)
dWhites by assumption
b3 z′′

dBlues by assumption
b3 z′′′

dcons(x, z′)@z′′@z′′′ ≈P cons(x, y) true by Lemma 3
b

b3 〈cons(x, z′), z′′, z′′′〉

The following lemma has been used in the derivation.

Lemma 3 If A is a set, x ∈ A, y ∈ List(A), z′ ∈ List(A), z′′ ∈ List(A),
z′′′ ∈ List(A) and y ≈P z′@z′′@z′′′ true, then

cons(x, z′)@z′′@z′′′ ≈P cons(x, y) true

Proof: cons(x, z′)@z′′@z′′′

= { List− equality }
cons(x, z′@z′′@z′′′)

≈P { z′@z′′@z′′′ ≈P y, cons(x, z) ≈P cons(x, y) [x ∈ A, z ≈P y true] }
cons(x, y)

2

We can achieve the remaining subgoals in a similar way, letting A2 and A3
correspond to A1 in the white and blue cases, respectively:

22.2. A PARTITIONING PROBLEM 177

dFlag(cons(x, y)) by Colour-elimination
dColour by assumption
b3 colour(x)
[colour(x) =Colour red]

dFlag(cons(x, y)) by A1
b3 〈cons(x, z′), z′′, z′′′〉

[colour(x) =Colour white]
dFlag(cons(x, y) by A2
b3 〈z′, cons(x, z′′), z′′′〉

[colour(x) =Colour blue]
dFlag(cons(x, y) by A3
b3 〈z′, z′′, cons(x, z′′′)〉

Combining the solutions of the last three subproblems gives us that the goal
is achieved by

caseColour(colour(x),
〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉)

We can now form a program that achieves the induction step:

split3(z,
(z′, z′′, z′′′)caseColour(colour(x),

〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉))

G1 is then achieved by

listrec(l, 〈nil, nil, nil〉
(x, y, z)split3(z,

(z′, z′′, z′′′)caseColour(colour(x),
〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉)))

And, finally

λ((l) listrec(l, 〈nil, nil, nil〉
(x, y, z)split3(z,

(z′, z′′, z′′′)caseColour(colour(x),
〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉))))

is a program that achieves our original problem and consequently also a program
that satisfies the specification.

The whole derivation is described in figure 22.1.

178 CHAPTER 22. PROGRAM DERIVATION

d(Π l∈List(A)) Flag(l) by Π-intro
[l ∈ List(A)]

G1: dFlag(l) by List-elim
dList(A) by assumption
b3 l

Base: dFlag(nil) by Lemma 2
b3 〈nil, nil, nil〉
[x ∈ A, y ∈ List(A), z ∈ Flag(y)]

Ind. step: dFlag(cons(x, y)) by Subset/Triple-elim
dFlag(y) ≡
{〈l′, l′′, l′′′〉 ∈ Reds×Whites×Blues | y ≈P l′@l′′@l′′′} by ass.
b3 z
[z′ ∈ Reds, z′′ ∈ Whites, z′′′ ∈ Blues, y ≈P z′@z′′@z′′′ true]

dFlag(cons(x, y)) by Colour-elimination
dColour by assumption
b3 colour(x)
[colour(x) =Colour red]

dFlag(cons(x, y)) by A1
b3 〈cons(x, z′), z′′, z′′′〉

[colour(x) =Colour white]
dFlag(cons(x, y) by A2
b3 〈z′, cons(x, z′′), z′′′〉

[colour(x) =Colour blue]
dFlag(cons(x, y) by A3
b3 〈z′, z′′, cons(x, z′′′)〉

b3 caseColour(colour(x),
〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉)

b3 split3(z,
(z′, z′′, z′′′)caseColour(colour(x), 〈cons(x, z′), z′′, z′′′〉,

〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉))

b3 listrec(l, 〈nil, nil, nil〉,
(x, y, z)split3(z,

(z′, z′′, z′′′)caseColour(colour(x), 〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉)))

b3 λ((l) listrec(l, 〈nil, nil, nil〉,
(x, y, z)split3(z,

(z′, z′′, z′′′)caseColour(colour(x), 〈cons(x, z′), z′′, z′′′〉,
〈z′, cons(x, z′′), z′′′〉,
〈z′, z′′, cons(x, z′′′)〉)))

Figure 22.1: Derivation of a program for the Dutch flag

Chapter 23

Specification of abstract
data types

During the last 10 years, programmers have become increasingly aware of the
practical importance of what Guttag [47] and others have called abstract data
type specifications. A module is a generalization of an abstract data type. It is
a tuple

〈A1, A2, . . . , An〉

where some Ai are sets and some are functions and constants defined on these
sets. It is a dependent tuple in the sense that the set that a component belongs
to in general can depend on previous components in the tuple. The classical
programming example of a module is a stack which is a set together with some
operations defined on the set. An example from mathematics is a group

〈G, ∗, inv, u〉

where G is a set, ∗ ∈ G×G → G, inv ∈ G → G, u ∈ G and certain relationships
hold between the components.

In this section, we will show how to completely specify modules in type
theory using the set of small sets and the dependent sets. We will have a fifth
reading of the judgement A set :

A is a module specification

and also a fifth reading of a ∈ A :

a is an implementation of the module specification A

By an abuse of notation, we will not distinguish between sets and their
codings in a universe. We will therefore write A instead of Â and not use the
function Set explicitly. It is always obvious from the context if an expression
refers to a set or its corresponding element in U.

A simple example is the specification of a stack which in type theory is
expressed by the following set:

179

180 CHAPTER 23. SPECIFICATION OF ABSTRACT DATA TYPES

(ΣStackN ∈ U)
(Σempty ∈ StackN)
(Σpush ∈ N × StackN → StackN)
(Σpop∈StackN → StackN)
(Σtop∈StackN → N)

(Πt∈StackN)(Πn∈N)
([pop · empty =StackN empty] ×
[pop · (push · 〈n, t〉) =StackN t] ×
[top · empty =StackN 0] ×
[top · (push · 〈n, t〉) =N n])

Using the logical notation for some of the sets, the specification can be
reformulated to something that resembles an algebraic specification [47] but
with a completely different semantic explanation:

(∃StackN ∈ U)
(∃empty ∈ StackN)
(∃push ∈ N× StackN → StackN)
(∃pop ∈ StackN → StackN)
(∃top∈StackN → N)

(∀t∈StackN)(∀n∈N)
([pop · empty =StackN empty] &
[pop · (push · 〈n, t〉) =StackN t] &
[top · empty =StackN 0] &
[top · (push · 〈n, t〉) =N n])

The semantic explanation of this set is an instance of the general schema for
explaining the meaning of a set in terms of canonical expressions and their
equality relation. The canonical expressions of the set (ΣStackN ∈ U) B1 are
ordered pairs 〈st, b1〉, where st ∈ U and b1 ∈ B1[StackN := st]. Since B1 is also
a Σ-set, the canonical objects of B1 must also be ordered pairs 〈es, b2〉, where
es ∈ Set(st) and b2 ∈ B2, and so on. If each part of the set is analyzed with
respect to its semantic explanation, one can see that each member of the set
must be equal to a tuple:

〈st, es, pu, po, to, p〉

where
〈a, ..., b, c〉 ≡ 〈a, 〈..., 〈b, c〉〉〉

and

st ∈ U
es ∈ Set(st)
pu ∈ N× Set(st) → Set(st)
po ∈ Set(st) → Set(st)
to ∈ Set(st) → N
p ∈ (∀t∈Set(st))(∀n∈N) [po · es =Type(st) es]× [. . .]× [. . .]× [. . .]

Notice that the first component is an element in the set of small sets. This is of
course a limitation, we would like to allow an arbitrary set. This could be done,
but then we must use something like a Σ-type-forming operation on the level of
types. The last judgement expresses that st, es, pu and to have the properties
required for the stack operations. So the semantics of the specification is given

23.1. PARAMETERIZED MODULES 181

in terms of the canonical expressions of the set, or, in other words, in terms of
the correct (canonical) implementations of the specification. The specification
expresses requirements on implementations of the specification and it is, of
course, possible to have requirements which cannot be satisfied. In type theory,
a specification with such requirements does not cause any harm; the result is
just that it is impossible to find an implementation for it. It is sometimes
even possible to show that a specification never can be satisfied by proving it
equivalent to the empty set.

In the stack specification given above, we specified modules which are equal
to objects:

〈st, es, pu, po, to, p〉

where the last component

p ∈ (∀s∈Set(st))(∀n∈N)[po · es =Set(st) es]× [. . .]× [. . .]× [. . .]

only contains information obtained from the proof that the previous compo-
nents of the tuple have the properties required for a stack. This component is
computationally uninteresting, and if we use a subset instead of a Σ-set we have
a specification of a stack without the irrelevant last component:

(Σ StackN ∈ U)
(Σempty ∈ StackN)
(Σpush ∈ N× StackN → StackN)
(Σpop ∈ StackN → StackN)
{top ∈ StackN → N |

(∀t∈StackN)(∀n∈N)
([pop · empty =StackN empty] &
[pop · (push · 〈n, t〉) =StackN t] &
[top · empty =StackN 0] &
[top · (push · 〈n, t〉) =N n])}

As expected, this is a specification of a module which is equal to a 5-tuple:

〈st, es, pu, po, to〉

whose components have the properties we require for a stack.
A small problem with this approach is that the equality we get between

stacks is the equality of the implementation of the stack. At the same time as
we specify a stack we would like to have the possibility to express that two stacks
are considered equal when they are observationally equal, i.e. when they cannot
be distinguished by any operation defined on stacks. This needs something like
a quotient set forming operation, which redefines the equality on a set. This
would be a major change in the set theory and we will not explore it further
here.

23.1 Parameterized modules

Specifications of parameterized modules, such as a stack of A elements, for an
arbitrary set A, are neatly handled in type theory. The parameterized module
is specified by means of the Π-set former. The specification is the set

182 CHAPTER 23. SPECIFICATION OF ABSTRACT DATA TYPES

STACK ≡
(ΠA∈U) in logical notation: (∀A∈U)

(ΣStack ∈ U)
(Σempty ∈ Stack)
(Σpush ∈ Set(A)× Stack → Stack)
(Σpop ∈ Stack → Stack)

...

The canonical expressions of a set (ΠA ∈ U) B are functions λx.s, such that
whenever they are applied to an object C ∈ U, they will yield an object in
the set B[A := C]. This means that an implementation of the specification
STACK is a function, which when applied to an element A of the set U returns
an implementation of a stack of A elements. So, if st ∈ STACK , then st · N̂ is a
module of stacks of natural numbers and st · N̂×̂N̂ is a module of stacks of pairs
of natural numbers. These modules can then be decomposed in the same way
as earlier to get their components.

23.2 A module for sets with a computable equal-
ity

The module
〈X, e〉

is a computable equality if X is (a coding of) a set and e is a boolean function
computing the equality defined on X, i.e.

e · 〈x, y〉 =Bool true, if and only if x =X y

This can be specified by the set

CompEq ≡
(ΣX∈U)

{e ∈ X ×X → Bool |
(∀y, z∈X)([e · 〈y, z〉 =Bool true] ⇔ [y =X z])}

Notice that the specification expresses exactly the requirements on the function
e, an arbitrary boolean valued function will not do!

We can now use this module specification to define a module FSET for finite
sets:

FSET ≡
(ΠA∈CompEq)

(ΣFSet ∈ U)
(Σeset ∈ FSet)
(Σadd ∈ A1 × FSet → FSet)
{mem ∈ A1 × FSet → Bool |

(∀t∈FSet)(∀a∈A1)(∀b∈A1)
([mem · 〈a, eset〉 =Bool false] &
[mem · 〈a, add · 〈b, t〉〉 =Bool

if A2 · 〈a, b〉 then true else mem · 〈a, t〉]}

23.2. A MODULE FOR SETS WITH A COMPUTABLE EQUALITY 183

An object of this set is a function which when applied to an object 〈A, e〉 in
CompEq yields an implementation of FSET for the particular arguments cho-
sen. Note how the Π set-former is used for specifying a dependent function set,
in which the elements are functions for which the value of the first arguments
determines which set the second argument should be a member of.

184 CHAPTER 23. SPECIFICATION OF ABSTRACT DATA TYPES

Bibliography

[1] Peter Aczel. The Type Theoretic Interpretation of Constructive Set The-
ory. In Logic Colloquium ’77, pages 55–66, Amsterdam, 1978. North-
Holland Publishing Company.

[2] Peter Aczel. The Type Theoretic Interpretation of Constructive Set The-
ory: Choice Principles. In The L. E. J. Brouwer Centenary Symposium,
pages 1–40. North-Holland Publishing Company, 1982.

[3] Peter Aczel. The Type Theoretic Interpretation of Constructive Set The-
ory: Inductive Definitions. In Logic, Methodology and Philosophy of Sci-
ence VII, pages 17–49. Elsevier Science Publishing B.V., 1986.

[4] L. Augustsson and T. Johnsson. The Chalmers Lazy-ML Compiler. The
Computer Journal, 32(2):127 – 141, 1989.

[5] Roland Backhouse. Algorithm Development in Martin-Löf’s Type Theory.
Technical report, University of Essex, 1985.

[6] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman.
Do-it-yourself type theory. Formal Aspects of Computing, 1:19–84, 1989.

[7] Roland C. Backhouse. Program Construction and Verification. Prentice-
Hall, 1986.

[8] Joseph L. Bates and Robert L. Constable. Proofs as Programs. ACM
Trans. Prog. Lang. Sys., 7(1):113–136, 1985.

[9] M. J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag,
New York, 1985.

[10] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New
York, 1967.

[11] Errett Bishop. Mathematics as a numerical language. In Myhill, Kino, and
Vesley, editors, Intuitionism and Proof Theory, pages 53–71, Amsterdam,
1970. North Holland.

[12] Errett Bishop and Douglas Bridges. Constructive Analysis. Springer-
Verlag, New York, 1985.

[13] Bror Bjerner. Verifying some Efficient Sorting Strategies in Type Theory.
PMG Memo 26, Chalmers University of Technology, S–412 96 Göteborg,
January 1985.

185

186 BIBLIOGRAPHY

[14] Bror Bjerner. Time Complexity of Programs in Type Theory. PhD thesis,
Dept. of Computer Science, University of Göteborg, Göteborg, Sweden,
January 1989.

[15] R. Boyer and J. S. Moore. A Computational Logic. Academic Press, New
York, 1979.

[16] L. E. J. Brouwer. Collected Works, volume 1. North-Holland Publishing
Company, Amsterdam, 1975. Ed. A. Heyting.

[17] W. H. Burge. Recursive Programming Techniques. Addison-Wesley Pub-
lishing Company, Reading, Mass., 1975.

[18] R. M. Burstall, D. B. McQueen, and D. T. Sannella. Hope: An Experimen-
tal Applicative Language. In Proceedings of the 1980 ACM Symposium on
Lisp and Functional Programming, pages 136–143, Stanford, CA, August
1980.

[19] Rod Burstall. Proving Properties of Programs by Structural Induction.
Computer Journal, 12(1):41–48, 1969.

[20] P. Chisholm. Derivation of a Parsing Algorithm in Martin-Löf’s theory of
types. Science of Computer Programming, 8:1–42, 1987.

[21] A. Church. An unsolvable problem of elementary number theory. Ameri-
can Journal of Mathematics, 58:345–363, 1936.

[22] A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5:56–68, 1940.

[23] R. L. Constable. Constructive mathematics and automatic program writ-
ers. In Proceedings of IFIP Congress, pages 229–233, Ljubljana, 1971.
North-Holland.

[24] R. L. Constable and M. J. O’Donnell. A Programming Logic. Winthrop
Publishing Inc., Cambridge, Massachusetts, 1978.

[25] R. L. Constable et al. Implementing Mathematics with the NuPRL Proof
Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[26] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Tech-
nical Report 530, INRIA, Centre de Rocquencourt, 1986.

[27] Thierry Coquand and Gérard Huet. The Calculus of Constructions. In-
formation and Computation, 76(2/3):95–120, 1988.

[28] H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland,
1958.

[29] O-J Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, 1972.

[30] N. G. de Bruijn. The Mathematical Language AUTOMATH, its usage and
some of its extensions. In Symposium on Automatic Demonstration, vol-
ume 125 of Lecture Notes in Mathematics, pages 29–61, Versailles, France,
1968. IRIA, Springer-Verlag.

BIBLIOGRAPHY 187

[31] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pages 589–606, New York, 1980. Aca-
demic Press.

[32] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[33] M. Dummett. Elements of intuitionism. Clarendon Press, Oxford, 1977.

[34] P. Dybjer, B. Nordström, K. Petersson, and J. Smith (eds.). Proceedings
of the Workshop of Specification and Derivation of Programs. Technical
Report PMG-18, Programming Methodology Group, Chalmers University
of Technology, Göteborg, June 1985.

[35] P. Dybjer, B. Nordström, K. Petersson, and J. Smith (eds.). Proceedings
of the Workshop on Programming Logics. Technical Report PMG-37,
Programming Methodology Group, Chalmers University of Technology,
Göteborg, June 1987.

[36] Peter Dybjer. Inductively Defined Sets in Martin-Löf’s Type Theory. In
Proceedings of the Workshop on General Logic, Edinburgh, February 1987,
number ECS-LFCS-88-52 in LFCS Report Series, 1988.

[37] Roy Dyckhoff. Category Theory as an Extension of Martin-Löf’s type
theory. Technical Report CS/85/3, University of St. Andrews, 1985.

[38] J. E. Fenstad, editor. Proceedings of the Second Scandinavian Logic Sym-
posium. North-Holland Publishing Company, 1971.

[39] G. Frege. Function and concept. In P. Geach and M. Black, editors,
Translations from the Philosophical Writings of Gottlob Frege. Blackwell,
Oxford, 1967.

[40] Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. North-
Holland Publishing Company, Amsterdam, 1969. Ed. E.Szabo.

[41] C. Goad. Computational Uses of the Manipulation of Formal Proofs. PhD
thesis, Computer Science Department, Stanford University, August 1980.

[42] C. Goad. Proofs as Descriptions of Computation. In Proceedings of the
5th Conference on Automated Deduction, volume 87 of Lecture Notes in
Computer Science, pages 39–52. Les Arcs, France, Springer-Verlag, 1980.

[43] Kurt Gödel. Über eine bisher noch nicht benutze erweitrung des finiten
standpunktes. Dialectica, 12, 1958.

[44] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag, 1979.

[45] S. Goto. Program synthesis from natural deduction proofs. In Proceedings
of IJCAI, Tokyo, 1979.

[46] David Gries. The Science of Programming. Springer-Verlag, New York,
1981.

188 BIBLIOGRAPHY

[47] J. V. Guttag. The Specification and Application to Programming of Ab-
stract Data Types. PhD thesis, Department of Computer Science, Univer-
sity of Toronto, 1975.

[48] Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for
Defining Logics. In Proceedings of the Symposium on Logic in Computer
Science, pages 194–204, Ithaca, New York, June 1987.

[49] Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic. Foun-
dations of Computing. The MIT Press, Cambridge, Massachusetts, 1988.

[50] Arend Heyting. Intuitionism: An Introduction. North-Holland, Amster-
dam, 1956.

[51] C. A. R. Hoare. Recursive Data Structures. International Journal of
Computer and Information Sciences, 4(2):105–132, 1975.

[52] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press,
London, 1980.

[53] Gérard Huet. Formal Structures for Computation and Deduction. Lecture
Notes for International Summer School on Logic Programming and Calculi
of Discrete Design, Marktoberdorf, Germany, May 1986.

[54] Gérard Huet. Induction Principles Formalized in the Calculus of Construc-
tions. In Proceedings of TAPSOFT 87, pages 276–286. Springer-Verlag,
LNCS 249, March 1987.

[55] Gérard Huet. A Uniform Approach to Type Theory. Technical report,
INRIA, 1988.

[56] Gérard Huet. The Constructive Engine. Technical report, INRIA, 1989.

[57] R. J. M. Hughes. Why Functional Programming Matters. PMG Report 16,
Department of Computer Sciences, Chalmers University of Technology, S–
412 96 Göteborg, November 1984.

[58] L. S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the AU-
TOMATH system, volume 83 of Mathematical Centre Tracts. Mathema-
tisch Centrum, Amsterdam, 1979.

[59] S. C. Kleene. On the interpretation of intuitionistic number theory. Jour-
nal of Symbolic Logic, 10:109–124, 1945.

[60] A. N. Kolmogorov. Zur Deutung der intuitionistischen Logik. Matema-
tische Zeitschrift, 35:58–65, 1932.

[61] H. Lauchli. An abstract notion of realizability for which intuitionistic pred-
icate logic is complete. In Myhill, Kino, and Vesley, editors, Intuitionism
and Proof Theory. North Holland, Amsterdam, 1970.

[62] Zohar Manna and Richard Waldinger. A Deductive Approach to Program
Synthesis. ACM Trans. Prog. Lang. Sys., 2:90–121, 1980.

BIBLIOGRAPHY 189

[63] Zohar Manna and Richard Waldinger. Deductive synthesis of the unifica-
tion algorithm. Science of Computer Programming, 1:5–48, 1981.

[64] Per Martin-Löf. A Theory of Types. Technical Report 71–3, University
of Stockholm, 1971.

[65] Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated In-
ductive Definitions. In J. E. Fenstad, editor, In Proceedings of the Second
Scandinavian Logic Symposium, pages 179–216. North-Holland Publishing
Company, 1971.

[66] Per Martin-Löf. An Intuitionistic Theory of Types. Technical report,
University of Stockholm, 1972.

[67] Per Martin-Löf. About models for intuitionistic type theories and the
notion of definitional equality. In S. Kanger, editor, In Proceedings of
the Third Scandinavian Logic Symposium, pages 81–109. North-Holland
Publishing Company, 1975.

[68] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In
H. E. Rose and J. C. Shepherdson, editors, Logic Colloquium 1973, pages
73–118, Amsterdam, 1975. North-Holland Publishing Company.

[69] Per Martin-Löf. Constructive Mathematics and Computer Programming.
In Logic, Methodology and Philosophy of Science, VI, 1979, pages 153–
175. North-Holland, 1982.

[70] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[71] Per Martin-Löf. Truth of a Proposition, Evidence of a Judgement, Valid-
ity of a Proof. Transcript of a talk at the workshop Theories of Mean-
ing,Centro Fiorentino di Storia e Filosofia della Scienza, Villa di Mondeggi,
Florence, June 1985.

[72] R. Milner. Standard ML Core Language. Technical Report CSR-168,
University of Edinburgh, Internal report, 1984.

[73] John Mitchell and Gordon Plotkin. Abstract types have existential type.
In Proc. of the 12th ACM Symposium on Principles of Programming Lan-
guages, pages 37–51, New York, 1985.

[74] Christine Mohring. Algorithm Delvelopment in the Calculus of Construc-
tions. In Proceedings Symposium on Logic in Computer Science, pages
84–91, Cambridge, Mass., 1986.

[75] Bengt Nordström. Programming in Constructive Set Theory: Some ex-
amples. In Proceedings 1981 Conference on Functional Languages and
Computer Architecture. ACM, October 1981.

[76] Bengt Nordström. Multilevel Functions in Type Theory. In Proceedings
of a Workshop on Programs as Data Objects, volume 217, pages 206–221,
Copenhagen, October 1985. Springer-Verlag, Lecture Notes in Computer
Science.

190 BIBLIOGRAPHY

[77] Bengt Nordström. Terminating General Recursion. BIT, 28(3):605–619,
October 1988.

[78] Bengt Nordström and Kent Petersson. Types and Specifications. In
R. E. A. Mason, editor, Proceedings of IFIP 83, pages 915–920, Ams-
terdam, October 1983. Elsevier Science Publishers.

[79] Bengt Nordström and Jan Smith. Propositions, Types and Specifications
in Martin-Löf’s Type Theory. BIT, 24(3):288–301, October 1984.

[80] Christine Paulin-Mohring. Extraction de Programmes dans le Calcul des
Constructions. PhD thesis, L’Universite Paris VII, 1989.

[81] Lawrence Paulson. A higher-order implementation of rewriting. Science
of Computer Programming, 3:119–149, 1983.

[82] Lawrence Paulson. Verifying the unification algorithmn in LCF. Science
of Computer Programming, 5:143–169, 1985.

[83] Lawrence C. Paulson. Natural Deduction Proof as Higher-Order Resolu-
tion. Technical report 82, Universtiy of Cambridge Computer Laboratory,
Cambridge, 1985.

[84] Lawrence C. Paulson. Constructing Recursion Operators in Intuitionistic
Type Theory. Journal of Symbolic Computation, 2:325–355, 1986.

[85] Lawrence C. Paulson. Logic and Computation. Cambridge University
Press, 1987.

[86] Kent Petersson. A Programming System for Type Theory. PMG report 9,
Chalmers University of Technology, S–412 96 Göteborg, 1982, 1984.

[87] Kent Petersson and Jan Smith. Program Derivation in Type Theory: A
Partitioning Problem. Computer Languages, 11(3/4):161–172, 1986.

[88] Kent Petersson and Dan Synek. A set constructor for inductive sets in
Martin-Löf’s type theory. In Proceedings of the 1989 Conference on Cat-
egory Theory and Computer Science, Manchester, U. K., volume 389.
Lecture Notes in Computer Science, Springer-Verlag, 1989.

[89] J. A. Robinson. A Machine-oriented Logic Based on the Resolution Prin-
ciple. ACM, 12:23–41, 1965.

[90] A. Salvesen and J. M. Smith. The Strength of the Subset Type in Martin-
Löf’s type theory. In Proceedings of LICS ’88, Edinburgh, 1988. IEEE.

[91] Anne Salvesen. Polymorphism and Monomorphism in Martin-Löf’s Type
Theory. Technical report, Norwegian Computing Center, P.b. 114, Blin-
dern, 0316 Oslo 3, Norway, December 1988.

[92] Anne Salvesen. On Information Discharging and Retrieval in Martin-
Löf ’s Type Theory. PhD thesis, Institute of Informatics, University of
Oslo, 1989.

[93] M. Sato. Towards a mathematical theory of program synthesis. In Pro-
ceedings of IJCAI, Tokyo, 1979.

BIBLIOGRAPHY 191

[94] W. L. Scherlis and D. Scott. First Steps Toward Inferential Programming.
In Proceedings IFIP Congress, Paris, 1983.

[95] David Schmidt. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, 1986.

[96] Peter Schroeder-Heister. Generalized Rules for Operators and the Com-
pleteness of the Intuitionistic Operators &, ∨, ⊃, ⊥, ∀, ∃. In Richter et al,
editor, Computation and Proof Theory, volume 1104 of Lecture Notes in
Mathematics. Springer-Verlag, 1984.

[97] Dana Scott. Constructive validity. In Symposium on Automatic Demon-
stration, volume 125 of Lecture Notes in Mathematics, pages 237–275.
Springer-Verlag, Berlin, 1970.

[98] J. M. Smith. On a Nonconstructive Type Theory and Program Derivation.
In The Proceedings of Conference on Logic and its Applications, Bulgaria.
Plenum Press, 1986.

[99] Jan M. Smith. The Identification of Propositions and Types in Martin-
Löf’s Type Theory. In Foundations of Computation Theory, Proceedings
of the Conference, pages 445–456, 1983.

[100] Jan M. Smith. An interpretation of Martin-Löf’s type theory in a type-free
theory of propositions. Journal of Symbolic Logic, 49(3):730–753, 1984.

[101] Jan M. Smith. The Independence of Peano’s Fourth Axiom from Martin-
Löf’s Type Theory without Universes. Journal of Symbolic Logic, 53(3),
1988.

[102] Jan M. Smith. Propositional Functions and Families of Types. Notre
Dame Journal of Formal Logic, 30(3), 1989.

[103] Sören Stenlund. Combinators, λ-terms, and Proof Theory. D. Reidel,
Dordrecht, The Netherlands, 1972.

[104] Göran Sundholm. Constructions, proofs and the meaning of the logical
constants. The Journal of Philosophical Logic, 12:151–172, 1983.

[105] W. W. Tait. Intensional interpretation of functionals of finite type I. The
Journal of Symbolic Logic, 32(2):198–212, 1967.

[106] S. Takasu. Proofs and Programs. Proceedings of the 3rd IBM Symposium
on Mathematical Foundations of Computer Science, 1978.

[107] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arith-
metic and Analysis, volume 344 of Lecture Notes in Mathematics.
Springer-Verlag, New York, 1973.

[108] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. An
Introduction, volume I. North-Holland, 1988.

[109] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. An
Introduction, volume II. North-Holland, 1988.

192 BIBLIOGRAPHY

[110] D. A. Turner. SASL Language Manual. Technical report, University of
St. Andrews, 1976.

[111] Å. Wikström. Functional Programming Using Standard ML. Prentice-
Hall, London, 1987.

Index

∗, 64
⊕, 64
〈 , 〉, 73
examples:

All elements in a Σ set are pairs,
82

An equality involving the con-
ditional expression, 60

An expression without normal form in the the-
ory with extensional equal-
ity, 90

Associativity of append, 68
Changing the order of univer-

sal quantifiers, 55
Defining the natural numbers as a well-

ordering, 100
Looking at a family of sets as an ob-

ject of a type, 144
Peano’s third axiom, 66
Peano’s fourth axiom, 86
Projection is the inverse of pair-

ing, 75
Substitution with equal elements,

59
Symmetry and transitivity of equal-

ity, 58
The tautology function, 87
x ⊕ − operator, 65
Translating between hypothet-

ical judgements and func-
tions, 144

+, 79, 150
+ – rules, 79–80
+̂, 83
+ elimination rule for propositions,

130
+-subset equality rule, 130
= rules, 125–126
@, 68
0, 18
⊗, 18

→→, 18
→, 148̂{i1, ..., in}, 83
{i1, . . . , in} – rules, 41–42
{i1, . . . , in} elimination rule for propo-

sitions, 128
{} – rules, 43
{}, 151
· , 50, 88
×, 73, 149
× rules, 73–74
& rules, 75
&, 74
∃, 82
∃ rules, 82
∀, 53
∀ rules, 53, 125
⊃ , 54
⊃ rules, 54–55
∨ rules, 80
Π rules, 49–50
Π̂, 83
Π elimination rule for propositions,

129
3PiΠ, 148
Π-subset equality rule, 129
Σ, 81, 149
Σ rules, 82
Σ̂, 83
rΣ rules, 81
Σ elimination rule for propositions,

130
Σ-subset equality rule, 130
α – rule, 20, 143
β – rule, 20, 143
η – rule, 21, 144
η-equality, 62
λ, 48, 148
ξ – rule, 20, 143
0, 63, 151

193

194 INDEX

abstract data type, 179
abstraction, 14
Abstraction rule, 143
absurdity, 43
append, 68
application, 13
Application rule, 143
apply, 48, 148
arity of an expression, 18
Assumption rule, 123, 142
AUTOMATH, 8
axiom of choice, 115

Bishop, 6
Bool, 44
Bool rules, 44–45
Boolean, 44–45

Calculus of Constructions, 8
canonical expression, 26
cartesian product of a family of sets,

47–55, 148
case{i1,...,in}, 41
case, 151
Church, 17
combination, 15
combined expression, 17
conjunction, 74
cons, 67, 152
Constable, 6, 167
constructive mathematics, 6
context, 29, 139
Coquand, 3, 7, 8
Curry, 10
Curry-Howard interpretation, 6
Cut rule for elements in sets, 124
Cut rule for equal elements in sets,

124
Cut rule for equal sets, 123
Cut rule for propositions, 123
Cut rule for true propositions, 124

de Bruijn, 8, 10
definiendum, 19
definiens, 19
definitional equality of expressions,

15
Dijkstra, 167, 171
disjoint union of a family of sets, 81–

82, 149

disjoint union of two sets, 79–80, 150
Dummet, 6

El formation rule, 139
elimination rule, 35
empty set, 43
enumeration sets, 41–42, 151
Eq, 57
Eq rules, 60–61
equality

as a proposition, 57, 117
between canonical elements, 27
between elements in a set, 29,

31, 37, 119, 121
between expressions, 15
between sets, 28, 30, 37, 118,

121
extensional, 57
identity between objects in a type,

138
identity between types, 138
intensional, 57

equality rule, 35
equality sets, 57–62, 150
examples:

Bool has only the elements true
and false, 161

A partitioning problem, 171
Decidable predicates, 162
Division by 2, 155
Even or odd, 159
Module for sets with a computable

equality, 182
Stack of A elements, 182
Stack of natural numbers, 179
Stronger elimination rules, 163

existential quantifier, 81, 82
expressions, 13

arity, 18
canonical —, 26
combined —, 17
saturated —, 17
single —, 17
unsaturated —, 17

extensional equality, 57

wfalse, 44
Fermat’s last theorem, 4
formation rule, 35
Frege, 17

INDEX 195

fst, 73
Fun formation rule, 143
function, 6

as an element in a set, 47, 49,
53

as an expression, 14, 48, 51
as an object in a type, 143

function set, 48
wfunsplit, 51
funsplit’, 164

Goad, 6
Goto, 6

Hayashi, 6
Heyting, 6, 9
Hope, 1
Howard, 10
Huet, 3, 7, 8

Id, 57, 150
Îd, 83
id, 150
Id rules, 57–58
idpeel, 58, 150
if then else , 44
if’, 165
implication, 48, 54
inductive definitions of sets, 101
inl, 79, 150
inr, 79, 150
intensional equality, 57
intensional equality of expressions,

15
introduction rule, 35
Isabelle, 8

Kleene, 6, 10
Kleene’s T -predicate, 115
Kolmogorov, 12

LCF, 8, 168
LF, 8
List, 67, 152
L̂ist, 83
List rules, 67–68
Listrec, 134
listrec, 67, 152
Listrec rules, 134
lists, 67–71, 152

macro, 19
Manna, 167
Martin-Löf, 1–3, 13, 17, 117
ML, 1

N, 63, 151
N̂, 83
N elimination rule for propositions,

128
N rules, 63–65
natrec, 63, 151
natural numbers, 63–66, 151
nil, 67, 152

o’, 92
one element set, 43–44

P rules, 131–133
pair, 149
Paulin-Mohring, 6
Peano’s third axiom, 66
Peano’s fourth axiom, 65, 86
peano4, 86, 163
Peano’s fifth axiom, 65
placeholder, 14
predefined constant, 18
primitive constant, 18
primitive recursion, 64
program derivation, 3, 167
program verification, 3
programming logics, 1, 5
proof theory, 6
Prop rules, 131–133

realizability, 6
record, 48
recursion

primitive —, 64
Reflexivity rule, 37, 141

S rules, 93
Salvesen, 147
Sato, 6
saturated expression, 17
Scherlis, 167
Schroeder-Heister, 55
Scott, 10, 167
scase’, 92
Set, 83
Set formation rule, 139
Set formation rules, 85

196 INDEX

Set introduction rules, 83–85, 133
single expression, 17
snd, 73
specification language, 4
split, 73, 149
split’, 164
stable predicate, 115
Strong elimination rules, 163–165
structured programming, 168
Subset rules, 114–115, 126–127
Substitution in propositions – rule,

123
Substitution in identical objects –

rule, 141
Substitution in identical types – rule,

141
succ, 63, 151
s’, 92
sup, 97
symm, 59
symmetry, 70
Symmetry of propositional equality

– rule, 59
Symmetry rule, 37, 141

T, 43, 151
T rules, 43–44
tactic, 168
Tait, 6
Takasu, 6, 167
taut, 88
trans, 59
transitivity, 70
Transitivity of propositional equal-

ity – rule, 59
Transitivity rule, 37, 141
trd, 172
Tree, 104
tree, 104
Tree – rules, 104–106
treerec, 104
trees, 103–110
Troelstra, 6
true, 44
true proposition, 43
truth, 44
tt, 43, 151
Type identity rule, 141

U, 83

U elimination rule, 94
U equality rules, 95–96
U formation rule, 83
U introduction rules, 83–85, 91, 133
universal quantifier, 48, 53
universes, 83–96
unsaturated expression, 17
urec, 93

van Dalen, 6

W, 97
Ŵ, 83
W – rules, 97–99
Waldinger, 167
well-orderings, 97–101
when, 79, 150
when’, 165
wrec, 97

Appendix A

Constants and their arities

A.1 Primitive constants in the set theory

Name Arity Can/Noncan Type
0 0 canonical N
succ 0→→0 canonical N

natrec 0⊗0⊗(0⊗0→→0)→→0 noncanonical N

nil 0 canonical List(A)
cons 0⊗0→→0 canonical List(A)
listrec 0⊗0⊗(0⊗0⊗0→→0)→→0 noncanonical List(A)

λ (0→→0)→→0 canonical A → B, Π(A,B)
apply 0⊗0→→0 noncanonical A → B, Π(A,B)
funsplit 0⊗(0→→0)→→0 noncanonical A → B, Π(A,B)

〈〉 0⊗0→→0 canonical A×B,Σ(A,B)
split 0⊗(0⊗0→→0)→→0 noncanonical A×B,Σ(A,B)

inl 0→→0 canonical A + B
inr 0→→0 canonical A + B

when 0⊗(0→→0)⊗(0→→0)→→0 noncanonical A + B

sup 0⊗(0→→0)→→0 canonical W(A,B)
wrec 0⊗(0⊗(0→→0)⊗(0→→0)→→0)→→0 noncanonical W(A,B)

tree 0⊗(0→→0)→→0 canonical Tree(A,B, C, d)
treerec 0⊗(0⊗(0→→0)⊗(0→→0)→→0)→→0 noncanonical Tree(A,B, C, d)

197

198 APPENDIX A. CONSTANTS AND THEIR ARITIES

Name Arity Can/Noncan Type
id 0 canonical Id(A, a, b)
idpeel 0⊗(0→→0)→→0 noncanonical Id(A, a, b)

̂{i1, . . . , in} 0 canonical U

N̂ 0 canonical U

L̂ist 0→→0 canonical U

Îd 0⊗0⊗0→→0 canonical U

+̂ 0⊗0→→0 canonical U

Π̂ 0⊗(0→→0)→→0 canonical U

Σ̂ 0⊗(0→→0)→→0 canonical U

Ŵ 0⊗(0→→0)→→0 canonical U
urec (se page 93) noncanonical U

A.2 Set constants

Name Arity
{i1, . . . , in} 0
N 0
List 0→→0
Π 0⊗(0→→0)→→0
→ 0⊗0→→0
Σ 0⊗(0→→0)→→0
× 0⊗0→→0
+ 0⊗0→→0
Id 0⊗0⊗0→→0
W 0⊗(0→→0)→→0
Tree 0⊗(0→→0)⊗(0⊗0→→0)⊗(0⊗0⊗0→→0)→→0→→0
U 0
{|} 0⊗(0→→0)→→0

Appendix B

Operational semantics

The following is a formal description of the operational semantics of the poly-
morphic set theory. We use the notation a ⇒ b to mean that the program a
computes to the value b. We start with programs on constructor form, which
already are evaluated, then we continue with programs on selector form.

i1 ⇒ i1 . . . in ⇒ in

0 ⇒ 0 succ(d) ⇒ succ(d) nil ⇒ nil

cons(d, e) ⇒ cons(d, e) λ(c) ⇒λ(c) inl(d) ⇒ inl(d)

inr(e) ⇒ inr(e) 〈c, d〉 ⇒ 〈c, d〉 sup(c, d) ⇒ sup(c, d)

a ⇒ i1 b1 ⇒ q

casen(a, b1, . . . , bn) ⇒ q

a ⇒ in bn ⇒ q

casen(a, b1, . . . , bn) ⇒ q

a ⇒ 0 b ⇒ q

natrec(a, b, c) ⇒ q

a ⇒ succ(d) c(d, natrec(d, b, c)) ⇒ q

natrec(a, b, c) ⇒ q

a ⇒ nil b ⇒ q

listrec(a, b, c) ⇒ q

a ⇒ cons(d, e) c(d, e, listrec(e, b, c)) ⇒ q

listrec(a, b, c) ⇒ q

a ⇒λ(c) c(b) ⇒ q

apply(a, b) ⇒ q

a ⇒λ(c) b(c) ⇒ q

funsplit(a, b) ⇒ q

a ⇒ inl(d) b(d) ⇒ q

when(a, b, c) ⇒ q

a ⇒ inr(e) c(e) ⇒ q

when(a, b, c) ⇒ q

a ⇒〈c, d〉 b(c, d) ⇒ q

split(a, b) ⇒ q

a ⇒ sup(c, d) b(c, d, (x)wrec(d(x), b)) ⇒ q

wrec(a, b) ⇒ q

199

200 APPENDIX B. OPERATIONAL SEMANTICS

B.1 Evaluation rules for noncanonical constants

The following is an informal description of the operational semantics of type
theory. Only the rules for the selectors are given, since each expression on
constructor form is already evaluated. Let x be a variable and a, b, c, d and e
expressions of suitable arity.

Expression Computation rule
casen(a, b1, . . . , bn) 1. Evaluate a to canonical form
where a ∈ {i1, . . . , in} 2a. If the value is of the form i1

then continue with b1

2b. If the value is of the form i2
then continue with b2

. . .
2u. If the value is of the form in

then continue with bn

natrec(a, b, c) 1. Evaluate a to canonical form
2a. If the value is of the form 0

then continue with b
2b. If the value is of the form succ(d)

then continue with c(d, natrec(d, b, c))

listrec(a, b, c) 1. Evaluate a to canonical form
2a. If the value is of the form nil

then continue with b
2b. If the value is of the form cons(d, e)

then continue with c(d, e, listrec(e, b, c))

apply(a, b) 1. Evaluate a to canonical form
2. If the value is of the form λ(c)

then continue with c(b)

funsplit(a, b) 1. Evaluate a to canonical form
2. If the value is of the form λ(c)

then continue with b(c).

split(a, b) 1. Evaluate a to canonical form
2. If the value is of the form 〈c, d〉

then continue with b(c, d)

B.1. EVALUATION RULES FOR NONCANONICAL CONSTANTS 201

Expression Computation rule
when(a, b, c) 1. Evaluate a to canonical form

2a. If the value is of the form inl(d)
then continue with b(d)

2b. If the value is of the form inr(e)
then continue with c(e)

wrec(a, b) 1. Evaluate a to canonical form
2. If the value is of the form sup(c, d)

then continue with b(c, d, (x)wrec(d(x), b))

