
Syntax and Semantics of DependentTypesMartin Hofmann1 IntroductionDependent types are types which unlike simple types, such as products,function spaces, or natural numbers, depend on or vary with values. Anexample of a dependent type is a type of vectors or arrays Vec�(M) of agiven length M : N over some type �. Its objects are nil� : Vec�(0) andCons�(U; V) : Vec�(Suc(M)) where U : � and V : Vec�(M). We can nowconsider a function which given x:N returns a vector (over N) of length xand all entries 0. This function then has the type �x:N:VecN(x) | a typeof functions with the property that the type of the result depends on theargument. The same algorithm could also be typed as N ! List(N). Thepoint of the dependent typing is that it reveals more information about thefunction. Another example of this kind is the exception-free head functionfor vectors Hd : �x:N:Vec�(Suc(x)) ! �which yields the �rst entry of a vector. The typing prevents the unwantedcase that Hd gets applied to the empty list. In this way the dependent typingcircumvents the need for partial functions in certain cases.Another source for type dependency comes from type variables and typeuniverses. For instance, the type of monoids with carrier XMON (X) def= ((X �X) ! X) � Xis a type depending on X. Type variables such as X above can be treated asordinary variables using universes, that is types containing (names for) othertypes as members. The function constructing the free monoid on a type Xwould then be given the type�X:U :MON (List(X))where U is such a universe.The third important source for dependent types comes from the propositions-as-types analogy under which propositions (in constructive logic) are seen astypes, namely the type of their proofs. For instance, a proof of �^ consistsof a proof of � and a proof of ; a proof of � � consists of a procedure which1

2 Hofmanntransforms a hypothetical proof of � into a proof of . Therefore, conjunc-tion and implication can be identi�ed with cartesian product and functionspace, respectively. Under this correspondence, predicates, i.e. propositionalfunctions become dependent types. We will describe how to view the atomicequality predicate and universal and existential quanti�cation as types andtype formers. In fact universal quanti�cation corresponds to the �-type in-troduced above.If propositions are ordinary types they can be part of other types. Forinstance, we can enrich the above-de�ned type of monoids of monoids by aproposition stating associativity and neutrality:MON 0(X) def=�� : (X �X) ! X:�e : X:(8x; y; z:X: � (�(x; y); z) = �(x; �(y; z))) ^ (8x:X: � (e; x) = x ^ �(x; e) = e)The �-type former is a generalisation of the cartesian product � to dependenttypes and corresponds under the propositions-as-types analogy to existentialquanti�cation. An object of the above generalised signature thus consists of� an object � of type (X �X) ! X� an object e of type X� a proof that � is associative and e is neutralThe main aim of this article is not so much to explain how to use dependenttypes to formalise constructive mathematics or to do program developmentand speci�cation, but rather to introduce the reader to a tool for the meta-theoretic study of dependent type theory: category-theoretic semantics.By semantics we understand a compositional assignment of mathematicalobjects to syntactic objects, for instance sets or sets to types and set-theoreticfunctions to (open) terms of the types. Such interpretation is performed withthe aim of establishing consistency or conservativity of certain type-theoreticconstructs, or simply in order to explain, motivate, and justify them. Due totype dependency the veri�cation that such an interpretation indeed validatesall the rules of type theory can be quite involved which is why it has provenuseful to de�ne a general abstract notion: the category-theoretic semantics,which is proven sound and complete once and for all. Then in order to obtainan interpretation of type theory one \only" needs to check that one has aninstance of the semantic notion.The semantics is not surprising (like maybe the set-theoretic semantics for�rst-order logic) in that we have an almost trivial completeness property likein the case of Heyting algebra semantics for intuitionistic logic. The pointis that the soundness theorem is non-trivial and therefore some work can besaved when presenting a translation of the syntax as a model construction.

Syntax and Semantics of Dependent Types 31.1 OverviewIn the next section we give the syntax for an extensible calculus of dependenttypes which encompasses various \named" type theories like Martin-L�of'stype theory or the Calculus of Constructions. In xx2.4 & 2.3 we introducepre-syntax and syntactic context morphisms. Both are auxiliary syntacticnotions required later to de�ne the interpretation function and to constructa term model. x3 contains the material on category-theoretic semantics. Itintroduces categories with families which provide a category-theoretic coun-terpart of type dependency and form the backbone of the semantics. Wecompare this notion to related concepts and identify the additional struc-ture required to model the type and term formers. Section 3 ends with theinterpretation of the syntax in the semantic structures. Finally, x4 is de-voted to an extended application of the material: we give an interpretationof types as \variable sets" (presheaves) and use it to establish conservativityof Martin-L�of's Logical Framework over ordinary type theory.Every section or larger subsection except the last one ends with severalexercises which either contain de�nitions or proofs which are similar to previ-ously given ones and are required later, or contain applications of the material.The last section contains instead an overview of the literature on applicationsof semantic methods to dependent type theory as a suggestion for furtherreading.This article is self-contained except for the presupposition of some verybasic category theory in xx3 & 4 which have not been included as very goodintroductions are readily available. The required notions are summarised inthe beginning of x3.2 Formal systems for dependent typesA theory of dependent types is a formal system which mainly allows one toderive judgements of the form M : � (the term M has type �) and � type(� is a type). As types may contain terms, typing a�ects typehood and bothkinds of judgements must be de�ned simultaneously. For instance, Vec�(M)is a type if � is a type and M : N. Furthermore, we usually want a notionof de�nitional equality to be built into the theory, for example we wish toconsider 0 : N and 0 + 0 : N as (de�nitionally) equal terms and henceVec�(0) and Vec�(0 + 0) as de�nitionally equal types: if M : Vec�(0) thenalso M : Vec�(0+0). This leads to two more forms of judgement: M = N : �(M and N are de�nitionally equal terms of type �) and � = � type (� and� are de�nitionally equal types). Finally, we must keep track of the typesof the free variables occurring in a judgement; we cannot assert x + y : Nunless we know that x:N and y:N. Since such declarations may depend oneach other like in x:N; y:VecN(x) it is convenient to make all judgements

4 Hofmannrelative to a list of variable declarations including at least the free variablesoccurring inside the judgement. Such lists of declarations are called contextsand sometimes also type assignments. Intuitively, a context x1: �1; : : : ; xn: �nis well-formed if each �i is a type in the context x1: �1; : : : xi�1:�i�1 and the xiare pair-wise distinct. So typehood (and thus typing) a�ects context validityand we �nally arrive at six kinds of judgements:` � ctxt � is a valid context� ` � type � is a type in context �� `M : � M is a term of type � in context �` � = � ctxt � and � are de�nitionally equal contexts� ` � = � type � and � are de�nitionally equal types in context �� `M = N : � M and N are def. equal terms of type � in context �.Well-formedness and equality of contexts can be de�ned in terms of the otherjudgements, but it is technically easier to include them as primary notions.Regardless of which rules we later introduce to describe particular typeand term formers such as the natural numbers or �-types we always have thefollowing structural rules.� Rules for context formation:` � ctxt C-Emp � ` � type` �; x: � ctxt C-Ext` � = � ctxt � ` � = � type` �; x:� = �; y: � ctxt C-Ext-EqThe variables x and y in rules C-Ext and C-Ext-Eq are assumed to befresh.� The variable rule ` �; x: �;� ctxt�; x:�;� ` x : � Var� Rules expressing that de�nitional equality is an equivalence relation:` � ctxt` � = � ctxt C-Eq-R` � = � ctxt` � = � ctxt C-Eq-S` � = � ctxt ` � = � ctxt` � = � ctxt C-Eq-T

Syntax and Semantics of Dependent Types 5� ` � type� ` � = � type Ty-Eq-R� ` � = � type� ` � = � type Ty-Eq-S� ` � = � type � ` � = � type� ` � = � type Ty-Eq-T� `M : �� `M = M : � Tm-Eq-R� `M = N : �� ` N = M : � Tm-Eq-S� `M = N : � � ` N = O : �� `M = O : � Tm-Eq-T� Rules relating typing and de�nitional equality:� `M : � ` � = � ctxt � ` � = � type� `M : � Tm-Conv` � = � ctxt � ` � type� ` � type Ty-Conv� For convenience (cf. E2.7 below) we also introduce the following weak-ening and substitution rules where J ranges over one of the judgementsM : �, � type, M = N : �, � = � type.�;� ` J � ` � type�; x: �;� ` J Weak�; x: �;� ` J � ` U : ��;�[U=x] ` J [U=x] SubstHere J [U=x] (and similarly �[U=x]) denotes the capture-free substitutionof U for x in J . This means that bound variables in J are systematicallyrenamed so as to prevent any free variables in U from becoming bound inJ [U=x]. We will henceforth consider all contexts, types, and terms as equalif they agree up to names of bound variables and assume the existence ofa capture-free substitution function on these equivalence classes. One canuse a de Bruijn style presentation of the syntax to avoid this identi�cation.A good reference is (Huet 1990). The de Bruijn presentation gives rise tocanonical representatives of the equivalence classes and yields an algorithmimplementing capture-free substitution.

6 Hofmann2.1 Type formersType and term formers are introduced by formation, introduction, elimina-tion, and equality rules. There is no de�nitive set of type formers and newones can be invented as needed. We present several of them to give an ideaof the general pattern.2.1.1 Dependent function spaceThe dependent function space also called dependent product or �-type cor-responds to the set-theoretic notion of cartesian product over a family of sets�i2IBi which has as elements functions mapping an index i to an element ofthe corresponding set Bi. In type theory this is expressed as follows:� ` � type �; x:� ` � type� ` �x: �:� type �-F� ` �1 = �2 type �; x: � ` �1 = �2 type� ` �x: �1:�1 = �x: �2:�2 type �-EqThe �rst rule expresses that a dependent function space consists of a type� (possibly depending on other types recorded in �) and a type dependingon � (and �), viz. � . The rule �-Eq expresses that de�nitional equality isrespected by the �-former. The variable x becomes bound in �x: �:� andthus this type is subject to the convention on renaming of variables set outabove. To form elements of the �-type we have the introduction rule withassociated congruence rule: �; x:� `M : �� ` �x: �:M � : �x: �:� �-I�; x: � `M1 = M2 : � � ` �1 = �2 type �; x: � ` �1 = �2 type� ` �x: �1:M �11 = �x: �2:M2�2 : �x: �1:�1 �-I-EqSo to give an element of �x: �:� one must give an element of � [x] in thepresence of a variable x of type �. The congruence rule �-I-Eq expresses thatde�nitional equality preserves �-introduction (�). We will henceforth refrainfrom writing down congruence rules. Such rules are silently understood forevery type and term former we will introduce.Elements of a �-type are consumed using application like in the set-theoretic situation where an element of �i2IBi and a speci�c i0 2 I givesan element of Bi0 : � `M : �x: �:� � ` N : �� ` App [x:�]� (M;N) : � [N=x] �-E

Syntax and Semantics of Dependent Types 7Notice that the square brackets in the typing annotation [x: �]� are an integralpart of the term former for application and indicate the binding of x in � . Nowwe encounter a source for de�nitional equality: applying a function �x: �:M �to a term N : � results in M with x replaced by N :� ` �x: �:M � : �x: �:� � ` N : �� ` App [x:�]� (�x: �:M � ; N) = M [N=x] : � [N=x] �-CNotice that substitution plays a more prominent role in dependently typedcalculi as it is needed to formulate even the typing rules, not only the con-version rules (as in the case of simply-typed lambda calculus).The attribute \de�nitional" for en equation like �-C is certainly arguable.It is motivated by the understanding of �x: �:M � as a canonical element of�x: �:� and application as a derived concept de�ned by equation �-C. Thisview becomes important if one wants to see type theory as a foundation ofconstructive mathematics which accordingly is to be justi�ed by a philosoph-ical argument rather than via an interpretation in some other system, see(Martin-L�of 1975;(1984)). For us the distinction between canonical and non-canonical elements is not important. However, we will use it to motivatefurther de�nitional equalities.A more pragmatic explanation for �-C is that in applications one often usesabstraction as a means for making de�nitions and application to instantiatea de�nition. Thus when the �-type is used in this way then both sides of�-C are indeed de�nitionally equal in the proper sense of the word.2.1.2 Dependent sumThe next type former we introduce is the �-type (or dependent sum) cor-responding to disjoint union in set theory. If we are given a family of sets(Bi)i2I we can form the set �i2IBi def= f(i; b) j i 2 I ^ b 2 Big whose elementsconsist of an index i and an element of the corresponding set Bi. In typetheory the corresponding formation and introduction rules look as follows.� ` � type�; x:� ` � type� ` �x: �:� type �-F � `M : �� ` N : � [M=x]� ` Pair [x:�]� (M;N) : �x: �:� �-IThe elimination rule looks a bit complicated at �rst sight:�; z: �x: �:� ` � type�; x: �; y: � ` H : �[Pairx:�:� (x; y)=z]� `M : �x: �:�� ` R�[z:�x:�:�]�([x: �:y: �]H;M) : �[M=z] �-EHere the variable z in � and the variables x; y in H become bound inside R�as indicated by the square brackets. The idea behind R� is that in order to

8 Hofmanngive a (possibly dependent) function out of �x: �:� , it is enough to specifyit on canonical elements, viz. the pairs. This is expressed by the followingde�nitional equality� ` R�[z:�x:�:�]�([x: �; y: �]H;Pair [x:�]� (M;N)) : �[Pair [x:�]�=z]� ` R�[z:�x:�:�]�([x: �; y: �]H;Pair [x:�]� (M;N)) =H[M=x;N=y] : �[Pair [x:�]�=z] �-Cwhich says that a function on �x: �:� de�ned using the eliminator R� behaveson canonical elements as speci�ed by the argumentH. As an example we showhow to de�ne projections for the �-type. Assume � ` � type, �; x: � ` � type,and � `M : �x: �:� . We de�neM:1 def= R�[z:�x:�:�]�([x: �; y: �]x;M) : �Now, in the particular case where M is canonical, i.e. M � Pair [x:�]� (U; V)the rule �-C gives � `M:1 = U : � as expected. A second projection can bede�ned similarly:M:2 def= R�[z:�x:�:�]� [z:1=x]([x: �; y: �]y;M) : � [M:1]Notice that the de�niens (the right-hand side) is well-typed by virtue of rules�-C and Ty-Conv which allow us to conclude�; x: �; y: � ` y : � [(Pair [x:�]� (x; y):1)=x]One can restrict the elimination operator R� to those cases where the type �does not depend on �x: �:� . One can then still de�ne the �rst projection, butno longer the second one. This is called weak �-elimination, see (Luo 1994).Important special cases of �x: �:� and �x: �:� arise when � does not ac-tually depend on �. In this case, i.e. when � ` � type and � ` � type wewrite � ! � def= �x: �:�and � � � def= �x: �:�indicating that in these cases the �- and �-types correspond to ordinarynon-dependent function space and cartesian product, respectively.A (constructive) proof of an existential statement 9x: �:P (x) consists ofan element M of � (the witness) together with a proof that P (M), that is anelement of P (M). Thus under the propositions-as-types analogy the �-typeis the counterpart to existential quanti�cation.

Syntax and Semantics of Dependent Types 92.1.3 Natural numbersAn example of a basic type is provided by the type of natural numbers givenby the rules` � ctxt� ` N type N-F ` � ctxt� ` 0 : N N-I-0 � `M : N� ` Suc(M) : N N-I-SThe elimination rule is similar to the one for �-types; in order to de�ne a(possibly dependent) function on N it is enough to give it on the canonicalelements 0 and Suc(M). In the case of Suc(M) the function may be called(primitive) recursively for M .�; n:N ` � type� ` Hz : �[0=n]�; n:N; x:� ` Hs : �[Suc(n)=n]� `M : N� ` RN[n:N]�(Hz; [n:N; x:�]Hs;M) : �[M=n] N-EThe primitive-recursive behaviour of RN is expressed by the following tworules for de�nitional equality:� ` RN[n:N]�(Hz; [n:N; x: �]Hs; 0) : �[0=n]� ` RN[n:N]�(Hz; [n:N; x: �]Hs; 0) = Hz : �[0=n] N-C-0� ` RN[n:N]�(Hz; [n:N; x:�]Hs; Suc(M)) : �[Suc(M)=n] N-C-S� ` RN[n:N]�(Hz; [n:N; x:�]Hs; Suc(M)) =Hs[M=n;RN[n:N]�(Hz; [n:N; x:�]Hs;M)=x] : �[Suc(M)=n]The elimination rule for natural numbers allows for both the de�nition offunctions by primitive recursion and proof of properties of the natural num-bers by mathematical induction. For instance, we can de�ne addition asfollows M +N def= RN[n:N]N(N; [n:N; x:N]Suc(x);M) : Nand|writing �n for the closed term Suc(: : :Suc(| {z }n times 0) : : :)|we have� ` �n+ �m = m+ n : Nfor all (set-theoretic) natural numbers m, n by m-fold application of rule N-C-S followed by N-C-Z. We will see an example of the use of mathematicalinduction below.

10 Hofmann2.1.4 NotationWe will henceforth freely suppress type annotations if this increases readabil-ity. For instance, we may write �x: �:M or even �x:M instead of �x: �:M � .We sometimes omit a prevailing context � and thus write ` J instead of� ` J . We write � ` J if we want to emphasise that a judgement holds inthe empty context. If � contains among others the free variable x then wecan write �[x] to emphasise this and use the notation �[M] for �[M=x] in thiscase.In implementations of type theory many more such conventions are beingused and sometimes they are even made part of the o�cial syntax. It is alwaysan important question whether such shorthands should be treated formallyor informally. Here we have decided to have a syntax as explicit as possibleso as to facilitate its meta-theoretic study. For doing proofs within the theoryobviously the syntactic sugar is unavoidable.2.1.5 Identity typesAs we have explained, de�nitional equality is the congruence generated by thecomputational equations like N-C-Z and �-C. Its main purpose is to facilitatethe construction of inhabitants of types; in some examples, like the de�nitionof the second projection for �-types above, its use is unavoidable. However,de�nitional equality is merely a judgement, and not a type, that is, not aproposition, and therefore cannot be established by induction, i.e., using RNor R�. Also, we cannot have de�nitional equalities as assumptions in a con-text. In order to enable equality reasoning inside type theory one is thereforelead to introduce a type corresponding to equality|the identity type. Forevery two terms of the same type we have a (not necessarily inhabited) typeof proofs of their equality� `M : � � ` N : �� ` Id�(M;N) type Id-Fand the identity types have canonical inhabitants corresponding to re
exivity� `M : �� ` Re
�(M) : Id�(M;M) Id-IWe call two terms � ` M;N : � propositionally equal if the type � `Id�(M;N) is inhabited. By the (implicit) congruence rules and rule Ty-Conv propositional equality extends de�nitional equality, that is, we have� ` Re
�(M) : Id�(M;N) provided � `M = N : �.So far we only know that propositional equality is a re
exive relation.The further properties like symmetry, transitivity, Leibniz' principle are all

Syntax and Semantics of Dependent Types 11consequences of the following elimination rule for identity types� ` � type� ; x: �; y:� ; p: Id�(x; y) ` � type�; z: � ` H : � [z=x; z=y;Re
�(z)=p]� `M : � � ` N : �� ` P : Id�(M;N)� ` RId[x:�;y:�;p:Id�(x;y)]� ([z: �]H ; M;N; P) : � [M=x;N=y; P=p] Id-Eand the associated equality rule� ` RId[x:�;y:�;p:Id�(x;y)]� ([z: �]H ; M;M;Re
�(M)) : � [M=x;M=y;Re
�(M)=p]� ` RId[x:�;y:�;p:Id�(x;y)]� ([z: �]H ; M;M;Re
�(M))= H[M=z] : � [M=x;M=y;Re
�(M)=p] Id-CThe eliminator RId is an induction principle like RN and R� which roughlystates that every element of an indentity type behaves as if it were a canonicalone of the form Re
�(M). We demonstrate how to derive Leibniz' principlefrom RId : Suppose that x: � ` �[x] type, and that we are given two propo-sitionally equal terms of type �, i.e., ` M;N : � and ` P : Id�(M;N). If` H : �[M] then we can construct an element Subst [x:�]�(P;H) of �[N] asfollows. We de�ne � [x: �; y:�; p: Id�(x; y)] def= �[x]) �[y](Recall that �) abbreviates �x:�: .) Now �h: �[x]:h is an inhabitant ofx: � ` � [x; x;Re
�(x)], soSubst [x:�]�(P;H) def= App(RId[x:�;y:�;p:Id(x;y)]([x: �]�h: �[x]:h ; M;N; P) ; H) : �[N]and from Id-C and �-C we get the derived rule Subst [x:�]�(Re
�(M); H) =H : �[M].From Subst we can derive symmetry, transitivity, and congruence proper-ties of propositional equality in the usual way. For example, if x: � ` U [x] : �and ` P : Id�(M;N) thenResp�;� ([x: �]U ; P) def=Subst [x:�]Id� (U [M];U [x])(P;Re
 � (U [M])) : Id � (U [M]; U [N])We can derive a similar congruence property in the case that � depends onx; for this and other derived properties and combinators for propositionalequality we refer to (Nordstr�om, Petersson, and Smith 1990; Streicher 1993;Hofmann 1995a).We have now collected enough material to carry out the promised exampleof a proof by induction. We wish to construct an element of the typem:N ` IdN(m + 0; m) type

12 Hofmannwhere + is the addition operation de�ned above. Notice that we have n:N `Re
N(n) : IdN(0 + n; n) immediately by N-E-Z and the de�nition of +. Letus de�ne �[m:N] def= IdN(m+ 0; m). So � is now a type with a distinguishedfree variable m. By N-C-Z we have` Re
N(0) : �[0]Now by N-E-S we havem:N ` �[Suc(m)] = IdN(Suc(m); Suc(m + 0)) typeTherefore, m:N; h:�[m] ` RespN;N([x:N]Suc(x) ; h) : �[Suc(m)]and we can �nally concludem:N ` RN[m:N]�([t]Re
N(0);[m:N; h:�]RespN;N([x:N]Suc(x) ; h);m) : �[m]Again, we refer to (Nordstr�om, Petersson, and Smith 1990) for more ex-amples of this kind. The metatheory and the strength of the present andother formulations of the identity type have been analysed in (Hofmann1995a;(1996);Streicher 1993).We remark that propositional equality does not a�ect the de�nitional onewhich even in the presence of identity types remains con�ned to intensionalequality. Therefore, type theory together with identity types as de�ned hereis called intensional type theory, see (Martin-L�of 1982). There exists anotherformulation of identity types in which one may conclude � ` M = N : �from � ` P : Id�(M;N). This rule is called equality re
ection and makesit possible to derive \de�nitional" equalities by induction and thus makes itextensional. Therefore, type theory with equality re
ection is called exten-sional type theory. Since the proof P is discarded upon application of thisrule, de�nitional equality (then rather called judgemental equality) and thustyping become undecidable. See also E3.30.2.1.6 UniversesA universe is a type containing codes for types. This is expressed by thefollowing two rules̀ � ctxt� ` U type U-F � `M : U� ` El(M) type El-FSo if M : U is such a \code" then we can form the type associated to M ,namely El(M). So far the universe does not contain any closed codes. This

Syntax and Semantics of Dependent Types 13may be achieved by stipulating that the universe be closed under certain typeformers. For instance, closure under �-types is expressed by� ` S : U �; s:El(S) ` T : U� ` �̂(S; [s:El(S)]T) : U U-��; s:El(S) `M : El(T)� ` �̂s:El(S):MEl(T) : El(�̂(S; [s:El(S)]T)) U-�-I� `M : El(�̂(S; [s:El(S)]T)) � ` N : El(S)� ` ^App[s:El(S)]El(T)(M;N) : El(T [N=s]) U-�-E� ` ^App[s:El(S)]El(T)(�̂s:El(S):MEl(T); N) : El(T [N=s])� ` ^App [s:El(S)]El(T)(�̂s:El(S):MEl(T); N) = M [N=s] : El(T [N=s]) U-�-CA more economic syntax for universes closed under �-types is obtained if wereplace the last three above rules by a single new type equality� ` �̂(S; [s:El(S)]T) : U� ` El(�̂(S; [s:El(S)]T)) = �s:El(S):El(T) type U-�-Tywhich states that El(�̂(S; [s:El(S)]T)) is the product of the El(T) ratherthan behaving like it. One does not need the new application and abstractionoperators �̂ and ^App then. This syntax, which in fact is often used in theliterature, has the disadvantage that it is no longer the case that equal typesshare the same outermost type former. This makes it more di�cult to showthat the type formers are injective; an auxiliary property required to establishthe subject reduction property for an untyped rewrite system derived fromde�nitional equality. Also, in many models rule U-�-Ty is not valid under thecanonical interpretation of �, see (Streicher 1991) and the example followingDef. 3.20.Closure under natural numbers is described by` � ctxt� ` N̂ : U U-Nand further rules introducing term formers 0̂, ^Suc, and R̂N witnessing thatEl(N̂) behaves like N. Again we could instead impose the equality � `El(N̂) = N type if the type theory already contains natural numbers.In a similar way closure under other type formers including another uni-verse can be stipulated. A �nal important closure property for universes isimpredicative quanti�cation:� ` � type �; x:� ` T : U� ` 8x: �:T : U U-8

14 Hofmann�; x: � `M : El(T)� ` �̂x: �:MEl (T) : El(8x: �:T) U-8-I� `M : El(8x: �:T) � ` N : �� ` ^App[x:�]El(T)(M;N) : El(T [N=x]) U-8-E� ` ^App [x:�]El(T)�̂x: �:MEl(T); N) : El(T [N=x])� ` ^App [x:�]El(T)(�̂x: �:MEl (T); N) = M [N=x] : El(T [N=x]) U-8-CThe di�erence to closure under �-types is that the \domain-type" � is arbi-trary and not con�ned to a \small type" of the form El(S). In particular �can be U itself and we can form terms likepolyone = 8c:U :8s:El(c):cwhere El(polyone) has the closed inhabitant� ` �̂C:U :�̂x:El(C):x : El(polyone)|the polymorphic identity function known from polymorphic lambda calcu-lus.Universes are employed for modularisation and abstraction. For instance,they permit the de�nition of a type of a certain algebraic structure. In thisway the type of semigroups with carrier X : U can be de�ned asSEM (X) def= ��:El(X)� El(X) ! El(X):�x:El(X):�y:El(X):�z:El(X):IdEl(X)(�(�(x; y); z) ; �(x; �(y; z)))An element of type SEM (X) consists of a binary function on El(X), anda proof that this function is associative. We can now write a function F :�X:U :MON (X) ! SEM (X) which \forgets" the neutral element. We canalso form �X:U :SEM (X); the type of semigroups. More complex examplesof this kind may be found in (Luo 1991). An application of this pattern tosemantics of modules in functional languages is (Harper and Mitchell 1993).Under the propositions-as-types analogy we can view a universe also asa type of propositions. For instance, the type � ! U can be viewed as ananalogue to the power-set of �.2.1.7 Miscellaneous typesA counterpart to absurdity in logic is the following empty type:` � ctxt� ` 0 type 0-F � ` � type � `M : 0� ` R0�(M) : � 0-E

Syntax and Semantics of Dependent Types 15There are no canonical elements in 0 so there is no \computation rule" likeN-C-Z. It is sometimes useful to have a type with a single canonical elementcorresponding to the true proposition:` � ctxt� ` 1 type 1-F ` � ctxt� ` ? : 1 1-I�; x: 1 ` � type � ` H : �[?=x] � `M : 1� ` R1[x:1]�(H;M) : �[M=x] 1-E� ` R1[x:1]�(H; ?) : �[?=x]� ` R1[x:1]�(H;M) = H : �[M=x] 1-CThere are a number of other types considered in the literature like co-producttypes corresponding to binary disjoint union, �nite types with n elements foreach natural number n, types of well-founded trees, subset types, and quotienttypes to name the most important ones. In implementations like Lego andCoq new type formers can be de�ned \on the
y" by giving the rules for theircanonical elements (like Suc and 0 in the case of N). The elimination rulesare then generated automatically. In Alf this is also possible, but eliminationrules are replaced by the more general device of pattern-matching on the formof the constructors.Finally, we can consider arbitrary theories of dependent types de�ned bytype symbols, constants, and equations. This is described in (Pitts 1997).2.2 Examples of type theoriesIn this section we brie
y describe some \named" type theories and how they�t into the formal framework described here.2.2.1 Martin-L�of's type theoryThis is a collective name for type theories containing several of the above-described type formers, but not a universe closed under impredicative quan-ti�cation. A characteristic feature of Martin-L�of's type theory is the presenceof identity types either with or without equality re
ection. Martin-L�of in-vented his type theories with the aim of extending the propositions as typescorrespondence to predicate logic and to provide a universal language forconstructive mathematics (Martin-L�of 1984; Martin-L�of 1975). A standardreference on Martin-L�of's type theories is (Nordstr�om, Petersson, and Smith1990). An implementation of extensional Martin-L�of type theory is the Nuprlsystem (Constable et al. 1986).

16 Hofmann2.2.2 The Logical FrameworkMartin-L�of's Logical Framework (LF), see Part IV of (Nordstr�om, Petersson,and Smith 1990), is a type theory with �-types and a universe. Its intendeduse is to de�ne theories, in particular Martin-L�of type theory, as extensionsof the LF by constants and equations.The idea is that types and type formers are declared as constants in theuniverse and that term-formers are declared as constants of the appropriateEl -types. To distinguish from object level type formers some di�erent nota-tion is used: the �-type of the framework is written (x: �)� instead of �x: �:�and (�)� instead of � ! � . Iterated �-types are written (x1:�1; : : : ; xn: �n)�instead of �x1:�1: : : :�xn: �n:� . Abstraction is written as [x: �]M insteadof �x: �:M � and application is written M(N) instead of App [x:�]� (M;N).1Iterated abstractions and applications are written [x1:�1; : : : ; xn: �n]M andM(N1; : : : ; Nn), respectively. The lacking type information can be inferred.The universe is written Set instead of U . The El -operator is omitted.For example the �-type is described by the following constant and equalitydeclarations (understood in every valid context):` � : (�:Set; � : (�)Set)Set` App : (�:Set; � : (�)Set;m: �(�; �); n: �)�(m)` � : (�: Set; � : (�)Set;m: (x: �)�(x))�(�; �)�: Set; � : (�)Set;m: (x: �)�(x); n: � `App(�; �; �(�; �;m); n) = m(n)Notice, how terms with free variables are represented as framework abstrac-tions (in the type of �) and how substitution is represented as frameworkapplication (in the type of App and in the equation).In this way the burden of dealing correctly with variables, substitution,and binding is shifted from the object language to the Logical Frameworkand so can be handled once and for all.Of course, the LF can also cope with type formers other than the dependentfunction space. Since we refer to it later in x4, we consider here an ad hoctype former (creating a copy of its argument) de�ned by the two rules� ` � type� ` L(�) type � `M : �� ` l(M) : L(�)In LF it would have to be rendered by two constants L : (Set)Set and l :(�:Set; �)L(�).The Alf system (Magnusson and Nordstr�om 1994) is based on the LogicalFramework. It allows for the de�nition of types in Set simply by giving their1In loc. cit. and in the Alf system the type annotations in functional abstractions areomitted. We include them for the sake of consistency.

Syntax and Semantics of Dependent Types 17constructors. Functions on the types are then de�ned by pattern-matchingover the constructors as needed.The Logical Framework can also be used to encode the syntax of otherlogical systems such as predicate logic and modal logic. The interestedreader is referred to (Harper, Honsell, and Plotkin 1993).2.2.3 The Calculus of ConstructionsThe Calculus of Constructions (CC) (Coquand and Huet 1988) is a type the-ory with �-types and a universe closed under impredicative quanti�cation(U-Impr). The universe is traditionally denoted by Prop and the correspond-ing El -operator is either written Prf (�) or omitted. The idea is that theuniverse Prop corresponds to a type of propositions and that Prf (�) asso-ciates the type of proofs to a proposition. Originally, it was intended thatProp not only contains propositions, but also datatypes like the natural num-bers which are de�nable by their \impredicative encodings", for instance onehas Nat def= Prf (8c:Prop:8z:Prf (c):8s:Prf (c) ! Prf (c):c)and for this type constants 0 and Suc(�) can be de�ned as well as an operatorpermitting de�nition of functions by primitive recursion. The point is thatNat itself is of the form Prf (�) and so can serve as the argument c to anelement of Nat . Also other inductive datatypes like lists or trees can bede�ned in this way. Similarly, logical connectives can be de�ned on the typeProp by their usual higher-order encodings (Coquand and Huet 1988).The encoding of datatypes inside Prop proved insu�cient as no internalinduction principles (like RN) are available for these. This gave rise to twoextensions of the pure Calculus of Constructions: Luo's Extended Calculusof Constructions (ECC) implemented in the Lego system (Luo 1994; Luo andPollack 1992) and the Calculus of Inductive De�nitions (CID) implementedin the Coq system (Coquand and Paulin-Mohring 1989; Dowek et al. 1991).ECC extends the Calculus of Constructions by a sequence of universes U0,U1, : : : where each Ui+1 contains a code for Ui and Prop is contained in U0.Datatypes reside in U0 and are given by inductive rules like the ones for N.The higher universes are used for modularisation as hinted at in the exampleabove. Prop is used for propositions only.In the CID we have two universes both closed under impredicative quanti�-cation, Set and Prop. The datatypes reside in Set and are given by inductiverules as in ECC. The implementation of the CID, Coq, comes with a programextraction facility which extracts executable ML programs from derivationsin CID essentially by removing all terms and types coming from the universeProp, see also (Paulin-Mohring 1989).

18 Hofmann2.3 Pre-syntaxThe syntax of types, terms, and contexts has been given together with thetyping and equality rules. For certain purposes it is convenient to have asimpler inductive de�nition of possibly non well-typed terms, out of whichthe actual ones are singled out by the rules. For instance, we might wantto consider App [x:N]N(0; 0) as a term albeit not a well-typed one. These pre-terms, -types, and -contexts have been used to give semantics to type theoryin terms of untyped computation (Allen 1987; Martin-L�of 1984); we will usethem as an auxiliary device in the de�nition of the interpretation of typetheory in semantic structures and also in the de�nition of context morphismsbelow.The pre-contexts (�), pre-types (�, �), and pre-terms (M , N) for a typetheory with ��, ��, identity types, and natural numbers are given by thefollowing grammar.� ::= �j �; x: � provided x is not declared in ��; � ::= �x: �:� j �x: �:� j Id�(M;N) j NM;N;H; P ::= x j �x: �:M � j App [x:�]� (M;N) jPair [x:�]� (M;N) j R�[z:(�x:�:�)]�([x: �; y: �]H;M) jRe
�(M) j RId[x:�;y:�;p:Id�(x;y)]j� ([z: �]H ; M;N; P) j0 j Suc(M) j RN[n:N]�(Hz; [n:N; x: �]Hs;M)Capture-free substitution and identi�cation of terms with di�erent boundvariables can then be dealt with on the level of the pre-syntax. We will usethe predicates well-formed or valid for those pre-terms/-types/-contexts whichactually occur in derivable judgements. Note that the variables declared in apre-context are pairwise distinct.ExercisesE2.1 Construct an inhabitant of the typem:N; n:N ` IdN(m+ n; n+m) typeE2.2 Show that for arbitrary types � ` � type, � ` � type, and �; x:�; y: � `� type the following type corresponding to the axiom of choice is inhabited:� ` (�x: �:�y: �:�)) (�f : �) �:�x: �:�[(f x)=y]) type

Syntax and Semantics of Dependent Types 19E2.3 By analogy to the type of natural numbers de�ne the rules for a listtype former which to any type � associates a type List(�) consisting of �nitesequences of elements of �. Hint: think of lists as inductively generated fromthe empty list by successive additions of elements of � (\cons"). De�ne alength function of type List(�) ! N and de�ne a type Vec�(M) of lists oflength M for each M : N using lists, the identity type, and the �-type.E2.4 De�ne a type of binary natural numbers with three constructors: Zero,Suc0, and Suc1 and de�ne a conversion function from these binary represen-tations to N.E2.5 Give the rules for a universe U containing a code 0̂ for the empty type0 and a code 1̂ for the unit type 1. Show that in a type theory which supportsnatural numbers, this universe, and the empty type itself the following typein the empty context is inhabited� ` IdN(0; Suc(0)) ! 0 typecorresponding to Peano's fourth axiom 0 6= 1. Hint: de�ne using RN afunction f :N ! U such that � ` f0 = 1̂ : U and � ` f(Suc(0)) = 0̂ : U .Later on we will show by a semantic argument that the above type is notinhabited in the absence of a universe (Smith 1988).E2.6� (Troelstra and van Dalen 1988) Show that in type theory without theempty type 0 such an empty type can be de�ned as IdN(0; Suc(0)). Theelimination operator R0� must then be de�ned by induction on the structureof �. Notice that in view of the semantic result anticipated in the previousexercise this de�nition hinges on the fact that there is no empty type in the�rst place.E2.7� Show that for any type theory containing some or all of the typeformers described above the rules Weak and Subst are admissible.E2.8� (Weak �-types in the Calculus of Constructions) For ` � type andx: � ` T : Prop de�ne9x: �:P def= 8c:Prop:(8x: �:P) c)) cwhere X) Y abbreviates 8p:Prf (X):Y . De�ne a pairing operation whichto M : � and N :Prf (P [M]) associates an element 9-I(M;N) : Prf (9x: �:P)and de�ne in the case that � = Prf (S) for some S:Prop a �rst projectionwitnessS : Prf (9x:Prf (S):T) ! Prf (S). Show that for M and N as aboveone has ` witnessS 9-I(M;N) = M .

20 HofmannE2.9 Give the rules for a universe closed under impredicative quanti�cationusing the \economic syntax" exempli�ed in rule U-�-TyE2.10� Prove that whenever � `M : � and � ` M : � then � ` � = � typeby induction on derivations. Find some type annotations in term formerswhich can safely be omitted without violating this property. Discuss theproperties a type theory must have so that the type annotation in applicationcan be omitted. In other words when can we replace App [x:�]� (M;N) byApp(M;N) in the o�cial syntax without violating uniqueness of types. See(Streicher 1991) for a thorough discussion of this point.2.4 Context morphismsDe�nition 2.11 Let � and � def= x1: �1; : : : ; xn:�n be valid contexts. If f def=(M1; : : : ;Mn) is a sequence of n pre-terms we write� ` f) �and say that f is a context morphism from � to � if the following n judge-ments hold: � `M1 : �1� `M2 : �2[M1=x1]: : :� `Mn : �n[M1=x1][M2=x2] : : : [Mn�1=xn�1]Examples. For any context � we have the empty context morphism () from �to � and this is the only context morphism from � to �. If � � x1: �1; : : : ; xn: �nis a context and � ` � type and x is a fresh variable, then (x1; : : : xn) formsa context morphism from �; x: � to � which we denote by p(�; �). A moreconcrete example is (0;Re
N(0)) which forms a context morphism from � ton:N; p: IdN(0; n) as �0:N and �Re
N(0) : (IdN(0; n))[0=n]. The same se-quence of terms also forms a context morphism from � to n:N; p: IdN(0; 0)which shows that the \target context" � is not uniquely determined by f .For any term � ` M : � we can form a context morphism � ` M) �; x: �where M � (x1; : : : ; xn;M) if � � x1: �1; : : : ; xn: �n. Finally, we have theidentity context morphism � ` id�) � given by id� � (x1; : : : ; xn).2.4.1 Generalised substitutionWe denote syntactic identity up to renaming of variables by �. If � ` f) �and � is a pre-type we write � [f=�] for the simultaneous replacement of the�-variables in � by the corresponding terms in f , more precisely, if � �x1:�1; : : : ; xn: �n and f � (M1; : : : ;Mn) then� [f=�] � � [M1=x1][M2=x2] : : : [Mn=xn]

Syntax and Semantics of Dependent Types 21The attribute \simultaneous" means that the variables in � should be madedisjoint from those in � before performing the substitution. We de�ne �[f=�]analogously for pre-terms, pre-contexts, and judgements J of the form M : �,� type, M = N : �, � = � type.By induction on the length of � and using rules Weak and Subst we canthen establish the following property:Proposition 2.12 If � ` f) � and �;� ` J then �;�[f=�] ` J [f=�].One is only interested in the case where � � � as this subsumes the generalcase with f replaced by the context morphism q(f;�) from �;�[f=�] to �;�given by q(f;�) � (f; z1; : : : ; zk) for � � z1: �1; : : : ; zk: �k. However, in orderto get the inductive argument through one needs the case of non-empty �.When � � � and when no confusion can arise we write � [f] for � [f=�] andsimilarly for terms, contexts, and judgements.Notice the special case of the context morphism p(�; �) de�ned above.If � ` J then �; x:� ` J [p(�; �)], but J � J [p(�; �)] so the generalisedsubstitution subsumes weakening. Similarly, for �; x: � ` J and � ` M : �we have J [M] � J [M=x] so ordinary substitution is subsumed, too.The de�ned substitution operation allows us to establish the followingderived typing rule for non-empty context morphisms:� ` f) � ` �; x: � ctxt � `M : �[f]� ` (f;M)) �; x: � Mor-ConsThis rule together with ` � ctxt� ` ()) � Mor-Emptygenerates all valid judgements of the form � ` f) �.If � ` f) � and � ` g) � where g � (N1; : : : ; Nk) we can formthe list of terms g � f � (N1[f]; : : : ; Nk[f]). In other words g � f is obtainedby simultaneously replaceming the �-variables in g by the correspondingterms in f . This list g � f forms a context morphism from � to � and �as indicated is an associative operation. Although this can be seen directlywith some intuition about substitutions we prefer to state it as a propositiontogether with some other properties which the reader is invited to prove bysimultaneous induction on the length of g.Proposition 2.13 Assume B ` e) �, � ` f) �, and � ` g) �. Further-more let � ` � type and � ` M : �. Then the following equations hold upto syntactic identity. � ` g � f) ��[g � f] � �[g][f]M [g � f] �M [g][f](g � f) � e � g � (f � e)

22 HofmannHint for the proof: de�ne g � f inductively by () � f def= () and (g;M) � f def=(g � f;M [f]) where (g;M) denotes the list g extended by M . Use the factthat � [f] � � if none of the �-variables occurs in � and that � [N=x][f] �� [f=�][N [f]=x]. �2.4.2 Context morphisms and de�nitional equalityLet f � (M1; : : : ;Mn) and g � (N1; : : : ; Nn). If � ` f) � and � ` g) �then we write � ` f = g) � as an abbreviation for the n judgements� ` M1 = N1 : �1, � ` M2 = N2 : �2[M1=x1], : : : , � ` Mn = Nn :�n[M1=x1] : : : [Mn�1=xn�1] if � � x1: �1; : : : ; xn:�n. Notice that we couldequivalently replace the second judgement by � ` M2 = N2 : �2[N1=x1]in view of the �rst one and the congruence rules for de�nitional equality.If � ` f = g) � we say that f and g are de�nitionally equal contextmorphisms from � to �. By straightforward induction it is now possibleto derive congruence rules for the de�ned operators on context morphisms,w.r.t. this de�nitional equality and we also have that if ` � = �0 ctxt, ` � =�0 ctxt, and � ` f = g) � then �0 ` f = g) �0.ExercisesE2.14 Show that the above-de�ned context morphisms p(�; �), M , andq(f;�) have the following properties:� If � ` f) � then id� � f � f � f � id�.� If � `M : � then p(�; �) �M � id�.� If � ` (f;M)) �; x: � then p(�; �) � (f;M) � f and x[(f;M)] �M .� If � ` f) � and ` �; x: � ctxt then p(�; �)�q(f; x: �) � f �p(�; �[f]).� If � ` f) � and � `M : � then M � f � q(f; x: �) �M [f].� If � ` � type and x fresh then id�;x:� � (p(�; �); x).E2.15 Show that if � ` �x: �:� type and � ` f) � then (�x: �:�)[f] ��x: �[f]:� [q(f; x: �)]. Hint: you may assume that x does not occur in � astypes are identi�ed up to renaming of bound variables.3 Category-theoretic semantics of type theoryNow we develop an abstract notion of semantics for theories of dependenttypes of which most known interpretations of type theory form an instance.

Syntax and Semantics of Dependent Types 23The main purpose in de�ning such an abstract semantics is that it is easierto show that a mathematical structure forms an instance of the abstractframework rather than de�ning an interpretation function for it directly. Thisis achieved by essentially three properties of the abstract semantics:� Substitution is a primitive operation rather than inductively de�ned.� Variables are replaced by combinators for substitutions.� De�nitional equality is modelled by true (set-theoretic) equality.Category-theoretic semantics is based on an abstraction from the combinators(like �, p, (�;�), q(�;�)) and equations for context morphisms identi�ed inthe previous section. The key concept is the one of a category: a collection ofobjects (the contexts), and for any two objects a collection of morphisms (thecontext morphisms) together with an associative composition and identities.For lack of space we cannot give an introduction to categories here and needto presuppose some very basic notions, in particular categories, functors,natural transformations, isomorphisms, terminal objects, and the category ofsets and functions. Reading the relevant parts of the �rst chapter of (Lambekand Scott 1985), for instance, should su�ce to attain the required state ofknowledge. If C is a category we write jCj or C for its collection of objectsand C(A;B) for the collection of morphisms from A to B. We also writef : A ! B instead of f 2 C(A;B). A �nal prerequisite: if � is an informalproposition then we de�ne the set [�] by [�] � f?g if � is true and [�] � ; if� is false.3.1 Categories with familiesWe choose the semantic framework of categories with families (CwFs) (Dybjer1996) a variant of Cartmell's categories with attributes which have the advan-tage of being equationally de�ned, rather than using conditional equations.Furthermore, CwFs are closer to the syntax than categories with attributesand therefore|this is the hope of the author|should be easier to understand.The de�nition of a CwF follows the structure of the judgements in typetheory except that context morphisms and substitution are part of the struc-ture rather than de�ned afterwards. Along with the explanation of CwFswe de�ne two important instances: the term model T of the calculus of de-pendent types described in x 2. and the set-theoretic model Set as runningexamples.If we include context morphisms the syntax contains four kinds of objects:contexts, context morphisms, types, and terms. Accordingly, for each of thesewe have a domain of interpretation in the model. More precisely, a CwF Ccontains

24 Hofmann� a category C of semantic contexts and context morphisms� for � 2 C a collection TyC(�) of semantic types� for � 2 C and � 2 TyC(�) a collection TmC(�; �) of semantic termsWhere appropriate we leave out the attribute \semantic" and write TmC(�)instead of TmC(�; �). We also omit the subscripts if they are clear from thecontext.In the term model T the collection of contexts is the quotient by de�-nitional equality of well-formed contexts, that is pre-contexts � such that` � ctxt. Two such contexts � and � are identi�ed if ` � = � ctxt. We tendto denote equivalence classes by their representatives. A morphism from �to � is an equivalence class with respect to de�nitional equality of syntacticcontext morphisms � ` f) �. This is well-de�ned in view of the obser-vations in x2.4.2. Composition and identities are given by the correspondingoperations on syntactic context morphisms. TyT (�) is the set of pre-types �such that � ` � type again factored by de�nitional equality, that is � and �are identi�ed if � ` � = � type. Finally, Tm(�; �) is the set of pre-terms Mwith � `M : � factored by de�nitional equality.The set-theoretic model Set has as category of contexts the category ofsets and functions. An element of TySet(�) is a family of sets (�
)
2� indexedover �. An element of TmSet(�; �) is an assignment of an element M(
) of�
 for each
 2 �.Next, we need constants and operations on these domains in order to in-terpret the rules of type theory. Moreover, substitution must be axiomatisedin such a way that it corresponds to the de�ned syntactic substitution. Thede�nition of CwFs only accounts for the structural rules common to all sys-tems of dependent types as set out in x 2. The interpretation of the varioustype and term formers will be given afterwards as additional structure.Semantic substitution is described by two operations for each context mor-phism, one for types and one for terms: if f : � ! � then there is a function�ffg : Ty(�) ! Ty(�) and for � 2 Ty(�) a function �ffg : Tm(�; �) !Tm(�; �ffg). These operations must be compatible with composition andidentities in the following sense. If �;�;� 2 C, f : � ! �, g : � ! �,� 2 Ty(�), and M 2 Tm(�; �) then the following equations are required tohold:�fid�g = � 2 Ty(�) (Ty-Id)�fg � fg = �fggffg 2 Ty(�) (Ty-Comp)Mfid�g = M 2 Tm(�; �) (Tm-Id)Mfg � fg = Mfggffg 2 Tm(�; �fg � fg) (Tm-Comp)Notice that the former two equations are required for the two latter to \type-check". Notice also, that substitution together with equations (Ty-Id) and

Syntax and Semantics of Dependent Types 25(Ty-Comp) makes Ty a contravariant functor from C to Set . The sets Tmcan also be organised into a functor, see x3.1.1 below.In the term model substitution is the \generalised substitution" de�ned inx2.4.1. This means that we have �ffg def= �[f] and Mffg def= M [f]. In theset-theoretic model substitution is given by pre-composition. If f : � ! � isa function and (�
)
2� is a family of sets then �ffg is the family of sets givenby �ffg� def= �f(�). Similarly, if M 2 Tm(�; �) then Mffg(�) def= M(f(�)). Itis easy to see that the required equations hold.Next we want to interpret the context formation rules. To model theempty context we require a terminal object > in the category C. We usuallywrite hi� for the unique morphism from � to >. In the term model and inthe set-theoretic model these terminal objects are the empty context and anarbitrary singleton set, respectively.To interpret context extension we require for each � 2 C and � 2 Ty(�)a context �:� 2 C and a morphism p(�) : �:� ! �. The context �:� iscalled the comprehension of � and p(�) is called the projection associatedto �. In the term model �:� is the extended context �; x: � and p(�) isthe context morphism given by �; x: � ` p(�; �)) � as de�ned in x2.4.In the set-theoretic model �:� is the disjoint union of the �
 , i.e. the setf (
; x) j
 2 � ^ x 2 �
 g. The function p(�) then sends (
; x) to
.The morphism p(�) can be seen as the �rst projection out of the gen-eralised product �:�. The second projection takes the form of an elementv� 2 Tm(�:�; �fp(�)g) corresponding to the judgement �; x: � ` x : �.In the term model this is the term x in �; x: � ` x : �, whereas in theset-theoretic model we de�ne it by the assignment (
; x) 7! x. Note that, inthis model, �fp(�)g(
;x) = �
 .According to the de�nition of syntactic context morphisms we need anoperation which extends a semantic context morphism by a terms. If f :� ! �, � 2 Ty(�), and M 2 Tm(�; �ffg) then there is a context mor-phism hf;Mi� : � ! �:�|the extension of f by M|satisfying the followingequations for f : � ! �, g : B ! �, � 2 Ty(�), M 2 Tm(�; �ffg).p(�) � hf;Mi� = f : � ! � (Cons-L)v�fhf;Mi�g = M 2 Tm(�; �ffg) (Cons-R)hf;Mi� � g = hf � g;Mfggi� : B ! �:� (Cons-Nat)hp(�); v�i� = id�:� : �:� ! �:� (Cons-Id)In the term model the extension of f by M is � ` (f;M)) �; x: �, whereas inthe set-theoretic model we have hf;Mi�(
2�) def= (f(
);M(
)). We includethe \type" information � in hf;Mi� as it cannot be inferred from the \types"of f and M .This completes the de�nition of categories with families. Let us summarisethat a CwF is a structure (C;Ty ;Tm;�f�g;>; hi�;�:�; p; v�; h�;�i�) of

26 Hofmannsorts and operations subject to the requirements set out above. (The substi-tution �f�g is understood to work for both types and terms.)3.1.1 A more abstract de�nitionWe give in this section an equivalent, but more abstract and more compactde�nition of CwF based on family-valued functors and a universal property.The idea of using family-valued functors is due to Peter Dybjer.De�nition 3.1 The category Fam of families of sets has as objects pairs B =(B0; B1) where B0 is a set and (B1b)b2B0 is a family of sets indexed over B0.A morphism from B to C = (C0; C1) is a pair (f 0; f 1) where f 0 : B0 ! C0 isa function and f 1 = (f 1b)b2B0 is a family of functions f 1b : B1(b) ! C1(f 0(b)).The carrier sets Ty and Tm of a CwF over category C can now be given morecompactly as a single functor F : Cop ! Fam. Indeed, given Ty and Tm weobtain a functor functor F with object partF(�) = (Ty(�); (Tm(�; �))�2Ty(�))The morphism part of F is induced by semantic substitution. Conversely,given a functor F : Cop ! Fam we de�ne Ty(�) := F 0 and Tm(�; �) = F 1(�)where F(�) = (F 0; F 1). If f : � ! � then writing F(f) = (f 0; f 1) we havef 0 : Ty(�) ! Ty(�) and f 1� : Tm(�; �) ! Tm(�; f 0(�)) giving us semanticsubstitution. The required equations follow from functoriality of F .De�nition 3.2 Let C be a category and F = (Ty;Tm) : Cop ! Fam be afunctor. Furthermore, let � be an object of C and � 2 Ty(�). A compre-hension of � is given by an object �:� of C together with two projectionsp(�) : �:� ! � and v� 2 Tm(�:�; �fp(�)g) such that for each f : � ! � andM 2 Tm(�ffg) there exists a unique morphism hf;Mi� : � ! �:� satisfyingp(�) � hf;Mi� = f and v�fhf;Mi�g = M .De�nition 3.3 (Dybjer) A category with families is given by the followingdata.� a category C with terminal object,� a functor F = (Ty ;Tm) : Cop ! Fam,� a comprehension for each � 2 C and � 2 Ty(�).This de�nition is equivalent to the one in x3.1. The proof is left to the reader.The fact that comprehensions enjoy a universal property and thus areunique up to isomorphism (see E3.12) means that up to a choice of represen-tatives a CwF is fully determined by its underlying family-valued functor.

Syntax and Semantics of Dependent Types 273.1.2 Terms and sectionsAssume a CwF. If M 2 Tm(�; �) then also M 2 Tm(�; �fid�g) and thusM def= hid�;Mi� : � ! �:�By (Cons-L) we have p(�) �M = id� thus M is a right inverse or a so-calledsection of p(�). Conversely, if f : � ! �:� is a section of p(�), that is,p(�) � f = id� thenv�ffg 2 Tm(�; �fp(�)gffg) = Tm(�; �fp(�) � fg) = Tm(�; �)by (Ty-Comp), (Ty-Id), and assumption. These two operations establish abijective correspondence between the collection Sect(p(�)) of sections of p(�)and Tm(�; �), as v�f �Mg = M by (Cons-L) and v�ffg = hid�; v�ffgi� =hp(�) � f; v�ffgi� = hp(�); v�i� � f = f by (Cons-Nat) and (Cons-Id).3.1.3 WeakeningSuppose that f : B ! � and � 2 Ty(�). A context morphism q(f; �) :B:�ffg ! �:� called the weakening of f by � is de�ned byq(f; �) = hf � p(�ffg); v�ffgi�In the term model q(f; �) is the eponymous syntactic context morphism de-�ned in x2.4; in the set-theoretic model we have q(f; �)(�2B; x2 �f(�)) =(f(�); x).A weakening map is a morphism of the form p(�) : �:� ! � or (induc-tively) a morphism of the form q(w; �) where w is a weakening map. In theterm model a weakening map takes the form of a projection from �; x:�;�to �;�.We introduce the abbreviations �+ and M+ for �fwg and Mfwg if w is aweakening map which is clear from the context. Furthermore, if f : � ! � isany context morphism we may write f+ for q(f; �). For example, as demon-strated in E2.15 we have in the term model �x: �:�ffg = �x: �ffg:�ff+g.ExercisesE3.4 Show that in a CwF the de�ned morphisms q(f; �) from x3.1.3 dosatisfy the coherence requirements q(id�; �) = id�:� and q(f �g; �) = q(f; �) �q(g; �ffg).E3.5 Transform the following equations into the explicit notation; provethem, and explain their intuitive meaning. (1) p(�)+ �v� = p(�+) �v� = id�:�;(2) f+ �Mffg = M �f ; (3) f = hp(�)�f; v�ffgi�. Also expand the expression�:�:� when �; � 2 Ty�.

28 HofmannE3.6 Check that equations (Cons-L) : : : (Cons-Id) hold in the set-theoreticmodel.E3.7 This exercise will be taken up in later sections and will lead us up toJan Smith's proof of the independence of Peano's fourth axiom from Martin-L�of's type theory without universes (Smith 1988). Let P be the poset of truthvalues fff; ttg where ff � tt viewed as a category. Show that P has a terminalobject, viz. tt. Extend P to a CwF by putting TyP(tt) = TyP(ff) = fff; ttgand TmP(�; �) = [� � �]. Hint: de�ne comprehension by �:� def= � ^ �. Anintuition for this model (or rather for the interpretation of the syntax in it)is to view tt as \potentially inhabited" and ff as \always empty".3.2 Other notions of semanticsIn the literature other notions of model have been o�ered which mostly areequivalent to CwFs. A key property of these models is that substitution onterms is a de�ned concept rather than a primitive. To understand how thisworks we need the notion of pullback in a category.De�nition 3.8 Let C be a category, f : X ! Y and g : Z ! Y morphismswith common codomain. A pullback of g along f is a pair of morphismsp : P ! Y and q : P ! Z such that f � p = g � q and whenever p0 : P 0 ! Xand q0 : P 0 ! Z are two morphisms with f � p0 = g � q0 then there exists aunique morphism h : P 0 ! P such that p � h = p0 and q � h = q0. 2P 0AAAAAAAAAAAAAp0 U
HHHHHHHHHHHHq0 j..............h R P q - Z

Xp? f - Y?gA quadruple (p; q; f; g) of morphisms with f � p = g � q (a commuting square)is called a pullback if p and q form a pullback of g along f .In the category Set the pullback of g : Z ! Y along g : X ! Y alwaysexists and is (e.g.) given by P def= f(x; z) j x 2 X ^ z 2 Z ^ f(x) = g(z)g. Thetwo projections p, q send a pair (x; z) 2 P to x and z, respectively.2This and the following diagrams were typeset using Paul Taylor's Latex diagram pack-age the use of which is herewith gratefully acknowledged.

Syntax and Semantics of Dependent Types 29In Set we can view a morphism g : Z ! Y as a family of sets indexed overY , namely the family of sets (g�1(y))y2Y where g�1(y) def= fz 2 Z j g(z) = yg.Conversely, if we are given a family of sets (Gy)y2Y we can construct a functiong into Y as the projection from the disjoint unionZ def= f(y;
) j y 2 Y ^
 2 Gygto Y which sends (y;
) to y. (This is precisely p((Gy)y2Y) in the notation ofx3.1.) Now a pullback of the thus de�ned g : Z ! Y along f : X ! Y isgiven by applying this construction to the composite family (Gf(x))x2X , moreprecisely, we can put P def= f(x;
) j x 2 X ^
 2 Gf(x)gwith projections p(x;
) = x and q(x;
) = (f(x);
). Note that this is notequal to the canonical pullback of g along f which is f(x; (x0;
)) j x =x0 and
 2 Gf(x0)g.A more general correspondence between pullbacks and substitution arisesin the framework of CwFs:Proposition 3.9 Let C be a CwF, f : B ! �, and � 2 Ty(�). The followingsquare is a pullback B:�ffg q(f; �)- �:�
Bp(�ffg)? f - �?p(�)

Proof. The diagram commutes by equation (Cons-L). To see that it is indeeda pullback assume p0 : � ! B and q0 : � ! �:� such that f �p0 = p(�)�q0. Wecan decompose q0 as q0 = hp(�); v�i� � q0 = hp(�) � q0; v�fq0gi� = hf � p0; Ni�,where N def= v�fq0g. We have N 2 Tm(�fp(�)gfq0g) = �fp(�) � q0g = �ff �p0g = �ffgfp0g. Therefore,h def= hp0; Ni�ffg : � ! B:�ffgWe have p(�ffg) � h = q0 by (Cons-L) andq(f; �) � h= hf � p(�ffg); v�ffgi� � h by de�nition= hf � p(�ffg) � h; v�ffgfhgi� by (Cons-Nat)= hf � p0; v�ffgfhgi� by (Cons-L)= hf � p0; v�fq0gi� by (Cons-R)= hp(�) � q0; v�fq0gi� by assumption= q0 by (Cons-Nat) and (Cons-Id)

30 HofmannFor uniqueness assume a morphism h0 : � ! B:�ffg such that p(�ffg)�h0 =p0 and q(f; �) � h0 = q0. We must show h0 = h. To see this, we expandh0 as hp(�ffg) � h0; v�ffgfh0gi�ffg using (Cons-Id), (Id-L), (Cons-Nat). Byassumption we can rewrite this to hp0;Mi�ffg whereM def= v�ffgfh0g 2 Tm(�ff �p(�ffg)�h0g) = Tm(�ff �p0g) = Tm(�fp(�)�q0g)Now we havev�fq0g= v�fq(f; �) � h0g by assumption= v�ffgfh0g by de�nition of q and (Cons-R)= Mso we are done. �The pullback property of substitution may be taken as primitive therebymaking substitution on terms super
uous.De�nition 3.10 A category with attributes (Cartmell 1978; Moggi 1991; Pitts1997) consists of� A category C with terminal object >.� A functor Ty : Cop ! Set , i.e., a set Ty(�) for each � 2 C and afunction �ffg : Ty(�) ! Ty(B) for each f : B ! � such that (Ty-Id)and (Ty-Comp) from x3.1 hold.� For each � 2 Ty(�) an object �:� and a morphism p(�) : �:� ! �.� For each f : B ! � and � 2 Ty(�) a pullback diagramB:�ffg q(f; �)- �:�
Bp(�ffg)? f - �?p(�)

such that q(id�; �) = id�:� and q(f � g; �) = q(f; �) � q(g; �ffg).It follows from Prop. 3.9 and E3.4 that every CwF is a category with at-tributes if we forget about the terms.Conversely, given a category with attributes we can construct a CwF byputting Tm(�; �) def= Sect(p(�)) and for M 2 Tm(�; �) de�ning Mffg as theunique morphism with p(�ffg) �Mffg = idB and q(f; �) �Mffg = M � f .

Syntax and Semantics of Dependent Types 31For f : B ! �;M 2 Tm(B; �ffg) we put hf;Mi� def= q(f; �) � M and�nally de�ne v� as the unique morphism v� : �:� ! �:�:�+ with p(�+) � v� =p(�)+ �v� = id�:�. We leave it as an exercise to verify that this de�nes indeeda CwF.If one starts out with a category with attributes, constructs a CwF, andfrom this CwF again a category with attributes one ends up with the one tostart o� with. The other way round one gets back the original CwF with theset of terms Tm(�; �) replaced by the set of right inverses to p(�) (cf. x3.1.2).Notice that context extensions in categories with attributes are not uniqueup to isomorphism. For instance, if � 2 Ty(�) nothing prevents us fromde�ning �:� simply as � and the corresponding morphisms p and q as iden-tities.There are various other notions of model all of which are essentially equiv-alent as far as interpretation of type theory in them is concerned. Locally-cartesian closed categories (Seely 1984) and categories with display maps(Taylor 1986; Lamarche 1987; Hyland and Pitts 1989) are less general thanCwFs because semantic types are identi�ed with their associated projections.Usually, in these models the conditions corresponding to (Ty-Comp) and(Ty-Id) only hold up to isomorphism, which makes the de�nition of the in-terpretation function more complicated. See (Hofmann 1995b; Curien 1993).Models based on �brations (Jacobs 1991; Jacobs 1993; Ehrhard 1988) and in-dexed categories (Curien 1989; Obtu lowicz 1989) are more general since theyallow for morphisms between semantic types. These morphisms make it pos-sible to describe certain type formers more elegantly, but do not have a directcounterpart in the syntax. Mention must also be made of contextual cate-gories where semantic contexts carry an explicit tree structure correspondingto context extensions (see (Streicher 1991; Cartmell 1978) and E3.13).For a good taxonomy of the di�erent notions and various back-and-forthconstructions see (Jacobs 1993).ExercisesE3.11 (Agnes Diller) Show that the requirement q(id�; �) = id�:� in Def. 3.10is actually redundant.E3.12� Prove that comprehensions are indeed unique up to isomorphism inthe following sense: If � 2 Ty(�) and p : � ! � and v 2 Tm(�ffg) is acomprehension of � then there exists an isomorphism f : �:� ! � satisfyingp � f = p(�) and vf�g = v�.Now give another proof of Prop. 3.9 by showing that (�; p0; v�fq0g) is acomprehension of �ffg.

32 HofmannE3.13� A contextual category (Cartmell 1978; Streicher 1991) is a categoryC with terminal object > and a tree structure on the objects given by afunction f on the objects of C such that f(>) = > and f (\father") isinjective on C n f>g and for each � 2 C there is a minimal n|the level of�|such that fn(�) = >. Moreover, the assignment Ty(�) = f� j f(�) = �gextends to a category with attributes over C. Spell this out without using thenotion of a category with attributes and de�ne a canonical construction of acontextual category out of a CwF. The objects of the contextual category arelists (�1; � � � ; �k) where �1 2 Ty(>) and �i+1 2 Ty(>:�1: � � � :�i).The advantage of contextual categories is that they rule out semantic con-texts which do not arise from the empty context by successive applications ofcomprehension. This can be used to establish properties of semantic contextsby induction on the level. Examples of this can be found in (Streicher 1991).E3.14� Assume a CwF C. For each � 2 C we de�ne a category D(�) withobjects the types over � and in which a morphism from � to � is a C-morphismf : �:� ! �:� such that p(�) � f = p(�). Equivalently a morphism from �to � can be de�ned as an element of Tm(�:�; �+) (Why?). Explain why thisde�nes indeed a category and �nd an extension of the assignment D to acontravariant functor from C to the category of categories.Such a functor is called an indexed category and forms the heart of Curienand Ehrhard's notion of D-categories (Curien 1989; Ritter 1992).3.3 Semantic type formersIn order to interpret a type theory in a CwF we must specify how the var-ious type and term formers are to be interpreted. This results in certainrequirements on a CwF which follow very closely the syntactic rules. Wegive a precise de�nition for closure under �;�; Id ; 8 to convey the generalpattern. The reader may then by herself de�ne the conditions for the othertype formers. Some are treated in the exercises.De�nition 3.15 A CwF supports �-types if for any two types � 2 Ty(�) and� 2 Ty(�:�) there is a type �(�; �) 2 Ty(�) and for each M 2 Tm(�:�; �)there is a term ��;� (M) 2 Tm(�;�(�; �)) and for each M 2 Tm(�;�(�; �))and N 2 Tm(�; �) there is a term App�;� (M;N) 2 Tm(�; �fMg) such that(the appropriately typed universal closures of) the following equations hold:App�;� (��;� (M); N) = MfNg �-C�(�; �)ffg = �(�ffg; �fq(f; �)g) 2 Ty(B) �-S��;� (M)ffg = ��ffg;�fq(f;�)g(Mfq(f; �)g) �-SApp�;� (M;N)ffg = App�ffg;�fq(f;�)g(Mffg; Nffg) App-S

Syntax and Semantics of Dependent Types 33The third equation typechecks by virtue of the second. The last equationmakes implicit use of (Ty-Comp) and the fact thatq(f; �) �Mffg = M � fwhich follows by rewriting both sides to hf;Mffgi�.We see that we stipulate exactly the same type and term formers as in thesyntax together with an equation corresponding to �-C. Congruence rulesare not needed on the semantic level as everything preserves equality, but weneed extra equations to specify that substitution commutes with the semantictype and term formers.Since substitution is a primitive notion in the semantics we can obtaina more economic de�nition of dependent function spaces by restricting theApp-combinator to variables and replacing it by an appropriate morphism.Proposition 3.16 A CwF supports dependent function spaces i� there areoperations � and � as in Def. 3.15 and for any two types � 2 Ty(�) and� 2 Ty(�:�) a morphismApp�;� : �:�:�(�; �)+ ! �:�:�such that p(�) � App�;� = p(�(�; �)+) App-Tand for every term M 2 Tm(�)App�;� �Mfp(�)g = M �-C'and, �nally, for every morphism f : B ! �App�;� � q(q(f; �);�(�; �)fq(f; �)g) = q(q(f; �); �) � App�ffg;�fq(f;�)gProof. The �rst equation states that App�;� leaves its �rst two argumentsunchanged, and thus corresponds to a term of �+. The second equation cor-responds to �-C, and the third one to App-S; stability under substitution.From the App-morphism we can de�ne an application combinator as follows.Given M 2 Tm(�(�; �)) and N 2 Tm(�) then v�fApp�;� � hN;M+i�(�;�)+g 2Tm(�fp(�) �App�;� �hN;M+i�(�;�)+g = Tm(�fNg) by Eqn. App-T and it fol-lows from the other two equations that this term has the required properties.Conversely, suppose that a model supports dependent function spaces in thesense of Def. 3.15. Let � be �:�:�(�; �)+. We have N def= v+� 2 Tm(�; �++)and M def= v�(�;�)+ 2 Tm(�;�(�; �)++) = Tm(�;�(�++; �++)). Accordingly,we have App�;� (M;N) 2 Tm(�; �++fNg) = Tm(�; �+)We de�ne the application morphism ashp(�(�; �)+;App�;� (M;N)i�The veri�cations are left to the reader. �

34 HofmannThis second de�nition of dependent function spaces allows for the follow-ing restriction by which ��;� (M) is required to be the unique element ofTm(�(�; �)) for which �-C' holds.De�nition 3.17 A CwF supports �-types in the strict sense if it supports themand whenever M 2 Tm(�:�; �) and U 2 Tm(�(�; �)) and App�;� � U+ = Mthen U = ��;� (M).The syntactic counterpart to these strict �-types is an �-rule which allowsone to conclude � ` �x: �:(M x)� = M : �x: �:� from � `M : �x: �:� .If �-types are supported in the strict sense then Eqn. �-S can be derived.Moreover, the operation �(�;�) then becomes part of an adjunction, see, e.g.(Pitts 1997).The term model of a type theory with �-types supports �-types with theobvious settings: �(�; �) def= �x: �:���;� (M) def= �x: �:M �App�;� (M;N) def= App [x:�]� (M;N)The corresponding application morphism is the context morphism de�ned by�; y:�; z: �x: �:� ` (~x;App [x:�]� (z; y))) �; x:�; w: � where ~x are the variablesin �. Notice that these �-types are not strict unless we enrich our type theorywith the abovementioned �-equation.The set-theoretic model supports �-types in the strict sense. If (�
)
2� 2Ty(�) and (�(
;x))(
;x) 2 �:� then we de�ne �(�; �)
 def= �x2�
�(
;x) and ab-straction and application as their set-theoretic companions.De�nition 3.18 A CwF supports �-types if the following data are given:� for any two types � 2 Ty(�) and � 2 Ty(�:�) there is a type �(�; �) 2Ty(�) such that�(�; �)ffg = �(�ffg; �ff+g) �-Swhenever f : B ! �.� A morphism Pair�;� : �:�:� ! �:�(�; �) such that p(�(�; �))�Pair�;� =p(�) � p(�) and such thatf+ � Pair�;� = Pair�ffg;�ff+g � f++ Pair -Swhenever f : B ! �.

Syntax and Semantics of Dependent Types 35� For every type � 2 Ty(�:�(�; �) and term H 2 Tm(�fPair�;�g) a termR��;�;�(H) 2 Tm(�) such thatR��;�;�(H)fPair�;�g = H �-CandR��;�;�(H)ff+g =R��ffg;�ff+g;�ff+g(Hff++g) R�-SThe term model supports �-types as follows: if �; x: � ` � type then �(�; �) def=�x: �:� and Pair�;� is the context morphism�; x: �; y: � ` (
;Pair [x:�]� (M;N))) �; z: �x: �:�Finally, if �; x: �; y: � ` H : �[Pair [x:�]� (x; y)] then �; z: �x: �:� ` R�(H; z) : �.Also the set-theoretic model supports �-types as follows.�(�; �)
2� def= f(x; y) j x 2 �
 ^ y 2 �(
;x)gand Pair�;� (
; x; y) def= (
; (x; y))This morphism Pair is surjective and thus we can take �-C as the de�ningequation for R��;�;� which also ensures that R��;�;�(H) is the unique term withproperty �-C. Again, we say that �-types are supported in the strict senseif this is the case.De�nition 3.19 A CwF supports (intensional) identity types if for each type� 2 Ty(�) the following data are given:� a type Id� 2 Ty(�:�:�+),� a morphism Re
� : �:� ! I(�) where I(�) = �:�:�+:Id� such thatp(Id�) � Re
� equals v� : �:� ! �:�:�+; the diagonal morphism,� for each � 2 Ty(I(�)) a function RId�;� 2 Tm(�fRe
�g) ! Tm(�)in such a way that these data are stable under substitution w.r.t. morphismsf : B ! � and such that whenever � 2 Ty(I(�)) and H 2 Tm(�fRe
�g)then RId�;� (H)fRe
�g = H.The term model of intensional type theory supports identity types withthe following settings: if � ` � type then Id� is the type �; x:�; y:� `Id�(x; y) type and Re
� is the context morphism�; x: � ` (
; x; x;Re
�(x))) �; x: �; y:�; p: Id�(x; y)

36 HofmannIf �; x: �; y:�; p: Id�(x; y) ` � [x; y; p] type and �; x: � ` H : � [x; x;Re
�(x)]then �; x: �; y:�; p: Id�(x; y) ` RId([x: �]H; x; y; p) : � [x; y; p]which de�nes the required function.The set-theoretic model supports identity types with (Id�)(
;x;y) def= [x = y]and Re
�(
; x) def= (
; x; x; ?). For H 2 TmSet(�fRe
�g) we putRId�;� (H)(
; x; y; p) def= H(x)which is type correct because in the presence of p 2 Id�(x; y) we have x = yand furthermore p itself equals ?.The semantic interpretation of natural numbers, unit types, empty typesfollows the pattern of the �-types and is left to the reader. We conclude thede�nition of semantic analogues to type formers by specifying the interpreta-tion of a universe closed under impredicative quanti�cation.De�nition 3.20 A CwF supports the Calculus of Constructions if it supports�-types and the following data are given:� a type Prop 2 Ty(>). We write Prop also for >:Prop,� A type Prf 2 Ty(Prop),� for � 2 Ty(�) and p : �:� ! Prop a morphism 8�(p) : � ! Prop,� a term former ��;p(�) and a morphism App�;p like in Prop 3.16 estab-lishing that Prf f8�(p)g is a dependent function space of Prf fpg over�such that all these data are stable under substitution.The term model is a model for the Calculus of Constructions with Prop equalto the type of propositions Prop in � ` Prop type and the type of proofs equalto Prf (x) in x:Prop ` Prf (x) type. A morphism from �:� to Prop takes theform of a term �; x: � ` P : Prop. Then � ` 8x: �:P : Prop is a morphismfrom � to Prop with the required properties.The set-theoretic model is a model for the Calculus of Constructions withthe settings Prop def= fff; ttg and Prf x def= [x = tt]. If p : �:� ! Prop then wede�ne 8�(p)(
) def= [\p(
; x) = tt for all x 2 �
"].Notice that in this model all elements of a type Prf (A) are equal. By\Reynolds' paradox" (Reynolds and Plotkin 1988) this has to be so in anyset-theoretic interpretation of the Calculus of Constructions. In x3.4 belowwe describe a model where this is not the case.Notice that Prf f8�(p)g is not equal to �(�;Prf fpg) but in bijective cor-respondence because if p(
; x) = tt for each x 2 �
 then Prf f8�(p)g = f?g,whereas �(�;Prf fpg)
 is the set of functions from �
 to f?g which is a sin-gleton set, but not f?g. However, this bijective correspondence enables us tode�ne the required operations ��;p and App�;p.

Syntax and Semantics of Dependent Types 37ExercisesE3.21 Show that the truth value model from E3.7 supports � and �-typeseach in the strict sense, as well as identity types with the settings �(�; �) def=� � � and �(�; �) def= � ^ � and Id� def= tt, where � and ^ denote implicationand conjunction of truth values.E3.22� Show that a CwF supports �-types in the strict sense i� it supportsthem and each morphism Pair�;� is an isomorphism.E3.23 Spell out what it means that Id and Re
 are stable under substitu-tion.E3.24 Explain how a CwF C supports unit types if (but not only if) thereexists 1 2 Ty(>) such that >:1 is a terminal object in C or equivalently >:1is isomorphic to >.E3.25 De�ne what it means for a model to support natural numbers. Showthat the set-theoretic model supports natural numbers by N def= ! and thatthe truth value model supports natural numbers by N def= tt.E3.26� De�ne what it means to support an empty type in the sense of x2.1.7and show that the set-theoretic model supports it by 0 def= ; and that thetruth value model supports it by 0 def= ff and that this interpretation is theonly possibility. Conclude that if M;N 2 Tm(�; �) in this model then theset Tm(�:Id�fhM;N+i�+g; 0) is empty.E3.27 Show that the truth value model forms a model of the Calculus ofConstructions with Prop def= tt, Prf (?) def= tt, 8�(?) def= ?.E3.28� De�ne the semantics of a universe containing a code for the emptytype and a code for the unit type. Show that the set-theoretic model supportssuch a universe, but that the truth value model does not.E3.29� Let Poset be the category of posets and monotone functions. ExtendPoset to a CwF by de�ning Ty(�) for poset � as the set of down-closed subsets(ideals) of �. If � 2 Ty(�) then de�ne �:� as � considered as a poset andlet p(�) be the inclusion from � to �. Finally, de�ne Tm(�; �) as [� = �].For � 2 Ty(�:�) let �0(�; �) 2 Ty(�) be f
2� j 8x 2 �:x �
) x 2 �g.Show that Tm(�;�0(�; �)) = Tm(�:�; �), but that nevertheless �0 does notdetermine dependent function spaces on Poset because it is not stable under

38 Hofmannsubstitution. In fact, the CwF Poset does not support dependent functionspaces.E3.30� (Extensional type theory) Say that a CwF with identity types sup-ports them in the strict sense if whenever � 2 Ty(�) and � 2 Ty(I(�))(recall that I(�) def= �:�:�+:Id�) and H 2 Tm(�) then H = RId�;� (HfRe
�g).Note that this is the case for the CwFs Set and P (Why?). (1) Show that aCwF with identity types supports them in the strict sense i� the morphismRe
� : �:� ! I(�) is an isomorphism (with inverse Re
�1� def= (p(�+))+). (2)Extensional type theory is usually formulated as a type theory with identitytypes where rules Id-E and Id-C are replaced by the rules� ` P : Id�(M;N)� `M = N : � Re
ection � ` P : Id�(M;N)� ` P = Re
�(M) Id-CanShow that the term model of extensional type theory supports identity typesin the strict sense. (3) Show that rule Id-Can is independent of Re
ectionby considering the set-theoretic model with the setting (Id�)(
;x;y) = f?; ?0gif x = y and ; otherwise. \Independence" is understood informally here;to establish that Id-Can cannot be derived from Re
ection one needs thesoundness theorem 3.35 below. (4) Show that if a model supports identitytypes in the strict sense then it supports �-types i� it supports them in thestrict sense.3.4 The !-set modelIn this section we present another important CwF which provides a non-trivialinterpretation of the Calculus of Constructions in which there is a propositionN̂ 2 Tm(Prop>) such that Tm(Prf (N̂)) has more than one element.An !-set X consists of a set (denoted jXj or X) and a relation
X� !�jXjbetween natural numbers and elements of X with the property that for eachx 2 jXj there is an n 2 ! such that n
X x. If n
X x one says that nrealises x or codes x or is a code/realiser for x so the condition on
X meansthat every x 2 X has a realiser.A morphism from !-set X to Y is a function f from X to Y with theproperty that there exists a partial recursive function e (thought of as anatural number) such that whenever n
X x then feg(n)|the application ofe to n|is de�ned and realises f(x). The !-sets together with their morphismsform a category.An example of an !-set is N where jNj = ! and n
N m i� n = m.The morphisms in the category of !-sets from N to N are exactly the totalrecursive functions. Another example is > with j>j = f?g and n
> ? for alln 2 !. This !-set is readily seen to be a terminal object. If X is a set thenwe form an !-set 4X by j 4Xj = X and n
4X x for all n 2 ! and x 2 X.

Syntax and Semantics of Dependent Types 39The category of !-sets can be extended to a CwF as follows. For !-set �the set Ty(�) consists of families of !-sets indexed over �. Thus, � 2 Ty(�)means that � = (�
)
2� and each �
 is an !-set. A term M 2 Tm(�; �) isa function assigning to each
 2 � an element M(
) 2 �
 such that thereexists a partial recursive function e with the property that for each
 2 � andn
�
 the computation feg(n) is de�ned and feg(n)
�
 M(
).The !-set �:� has as underlying set the disjoint union �
2��(
) and n
�:�(
; x) if L(n)
�
 and R(n)
�(
) x where L and R are the inverses toa bijection like P (m;n) def= 2m(2n + 1) from ! � ! to !. The remainingcomponents are left to the reader as an exercise.The !-set model supports �-types with the setting �(�; �)
 = fM 2�x2 �
 :�(
;x) j 9e such that T (e;M)g where T (e;M) means that n
�
 ximplies feg(n)
 M(x) for all x 2 �
 and n 2 !. If M 2 �(�; �)
 and e 2 �then e
�(�;�)
 M if T (e;M). Application and abstraction are de�ned as inthe set-theoretic model. The required realisers are obtained from untypedapplication and abstraction (\smn-theorem").All the other type formers we have considered and many more are alsosupported by the !-set model.3.4.1 Modest setsIn an !-set X two di�erent elements can have the same realiser. An !-setwhere this is not so is called a modest set. In other words a modest set consistsof a set X and a partial surjective function
X from ! to X. More generally,� 2 Ty(�) is modest if each �
 is a modest set. It is easy to see that if � 2Ty(�:�) is modest then so is �(�; �) for arbitrary �. A modest set X inducesa symmetric, transitive relation �X (a partial equivalence relation, per) onthe set ! of natural numbers by putting m �X n if there exists a (necessarilyunique) x 2 X such that m
X x and n
X x. Conversely, if R � !�! is anyper we can de�ne a modest set Prf (R) having as underlying set the quotientof fn j nRng by R (which restricted to this set is an equivalence relation). Wehave m
Prf (R) [n]R if mRn. If X is modest then X is isomorphic to Prf (�X)in the category of !-sets and a per R is equal to �Prf (R). This suggests tointerpret the Calculus of Constructions by putting Prop = 4(PER) wherePER is the set of symmetric and transitive relations on !. Notice that Propis not modest. The above-de�ned operation Prf then yields a type Prf 2Ty(Prop). If p : � ! Prop then p(
) is a per for each
 2 � and we havePrf fpg
 = Prf (p(
)).If p : �:� ! Prop then we de�ne 8�(p) : � ! Prop by (8�(p))(
) def=��(�;Prf fpg)
 . The veri�cations are tedious but essentially straightforward.For mRn i� m = n we have that Prf (R) is isomorphic to the !-set Nwhich means that we can interpret a type theory in which the impredicativeuniverse Prop contains a code for the natural numbers. Prop also contains

40 Hofmanncodes for other reasonable data types and indeed the !-sets furnish a modelfor the CID mentioned in x2.2.3. Beeson (1985) and Allen (1987) show howto model type theory with non-impredicative universes (no 8) entirely withinthe pers.ExercisesE3.31 Let X be any set. Show that every morphism in !-set from 4X to Nis constant and that for arbitrary !-set Y every set-theoretic function fromY to X is a morphism in !-set from Y to 4X.E3.32 Explain how the set-theoretic model supports lists, cf. E2.3.E3.33 Explain how the !-set model supports identity types in the strictsense.E3.34� For any !-set X a per I(X) is de�ned as the transitive closure ofthe relation which relates two numbers if they realise a common elementof X. De�ne a morphism �X : X ! Prf (I(X)) which sends x 2 X tothe equivalence class of a realiser of x. Show that if Y is a modest set andf : X ! Y then there exists a unique morphism f̂ : Prf (I(X)) ! Y such thatf = f̂ ��X . This means that the modest sets form a re
ective sub-category ofthe !-sets. One can de�ne impredicative quanti�cation in the !-set model by8�(M)
2� def= I(�x: �:Prf (M)
). In (Ehrhard 1989) such a re
ection is madepart of the de�nition of a model for the Calculus of Constructions.3.5 Interpretation of the syntaxWe have already implicitly spoken about interpretation of type theory inCwFs by appealing to the informal analogy between components of CwFsand type-theoretic entities. In this section we make this precise by de�ningan interpretation function and establishing a soundness property.Assume for the rest of this section a �xed type theory and a CwF C sup-porting the type and term formers present in this theory. For simplicity werestrict our attention to �-types.We de�ne a partial interpretation function [[�]] which maps:� pre-contexts to objects of C� pairs � ;�, where � is a pre-context and � is a pre-type, to families inTy([[�]])� pairs � ;M , where � is a pre-context and M is a pre-term to elementsof Tm(�) for some � 2 Ty([[�]]).

Syntax and Semantics of Dependent Types 41The de�nition is by induction on the lengths of the involved pre-terms, -types,and -contexts. We show below in Thm. 3.35 that the semantic function isde�ned on all contexts, types, and terms.The semantic clauses are the following, where we adopt the conventionthat an expression containing an unde�ned subexpression is itself unde�ned.We also adopt the convention that expressions which do not \typecheck", like�:� if � 62 Ty(�), are unde�ned.� [[�]] = >� [[�; x:�]] = [[�]]:[[� ;�]] if x not in �, unde�ned otherwise.� [[� ; �x: �:�]] = �([[� ;�]] ; [[�; x: � ; �]])� [[�; x:� ; x]] = v[[� ;�]]� [[�; x:�;�; y: � ;x]] = [[�; x: �;� ; x]]fp([[�; x: �;� ; �]])g� [[� ;App [x:�]� (M;N)]] = App [[� ;�]];[[�;x:� ; �]] � h[[� ;M]]; [[� ;N]]+i[[� ;�x:�:�]]+� [[� ;�x: �:M �]] = �[[� ;�]];[[�;x:� ; �]]([[�; x: � ; M]])Notice that the semantics of variables is de�ned by induction on the depth oftheir declaration as an appropriate weakening of a v�-expression.Theorem 3.35 The interpretation function enjoys the following soundnessproperties� If � ` then [[�]] is an object of C.� If � ` � then [[� ;�]] is an element of Ty([[�]]).� If � `M : � then [[� ;M]] is an element of Tm([[� ;�]]).� If ` � = � ctxt then [[�]] = [[�]].� If � ` � = � type then [[� ; �]] = [[� ; �]].� If � `M = N : � then [[� ;M]] = [[� ;N]].The proof of this theorem, although essentially straightforward, presents sur-prising technical di�culties. The idea is to �rst establish a substitution lemmawhich relates syntactic substitution (and weakening) and semantic substitu-tion (�f�g). This is necessary because the equations governing semantictype formers such as �-C are formulated w.r.t. �f�g, whereas their syntac-tic counterparts (here �-C) refer to syntactic substitution which is de�nedby structural induction. Due to type dependency one needs to account forsubstitution and weakening in the middle and not merely at the end of acontext.

42 HofmannWe need some notation �rst. For pre-contexts �;� and pre-type � wede�ne the expression P(�; �; �) inductively byP(�; �; �) = p([[� ; �]])P(�; �; �; x:�) = q(P(�; �; �); [[�;� ;�]])Now let �;�; � be as before and M be a pre-term. We de�ne the expressioninductively by the following clauses.T(�; �; �;M) = [[�;M]]T(�; �; �; x: �;M) = q(T(�; �; �); [[�; z: �;� ; �]]) z freshThe idea is that P(�; �; �) is a morphism from [[�; z: �;�]] to [[�;�]] projectingout the �-part. Similarly, T(�; �; �;M) is intended to go from [[�;�[M=z]]]to [[�; z: �;�]] yielding [[� ;M]] at the z: � position and variables otherwise.But that this is really the case has to be proved simultaneously with theweakening and substitution lemmas.For possibly unde�ned expressions s; t we write s ' t to mean that if eitherside is de�ned then so is the other and both agree (Kleene equality).Lemma 3.36 (Weakening) Let �;� be pre-contexts, �; � be pre-types, N bea pre-term and z be a fresh variable. Let X 2 f�;Ng. The expressionP(�; �; �) is de�ned i� [[�; z: �;�]] and [[�;�]] are de�ned and in this case isa morphism from the former to the latter. If [[�;� ;X]] is de�ned then[[�; z: �;� ;X]] ' [[�;� ;X]]fP(�; �; �)gLemma 3.37 (Substitution) Let �;� be pre-contexts, �; � be pre-types, M;Nbe pre-terms, and z a fresh variable. Let X 2 f�;Ng and suppose that [[� ;M]]is de�ned.The expression T(�; �; �;M) is de�ned i� [[�;�[M=z]]] and [[�; z: �;�]] areboth de�ned and in this case is a morphism from the former to the latter. If[[�; z: �;� ;X]] is de�ned then[[�;�[M=z] ;X]] ' [[�; z: �;�]]fT(�; �; �;M)gThe proofs of both lemmas proceed by induction on the lenghts of the involvedpre-terms,-types, and -contexts. The most di�cult case arises when the termN is a variable. One must then make a case distinction on whether it isdeclared in � or in � and perform some equational reasoning. The other casesfollow by applying stability under substitution of the participating semantictype and term formers such as �-S. If the type � or the term N is a binderlike �x:�: the inductive hypothesis must be used with � extended by z: �.In order to prove the correct typing of the P and T morphisms one uses thesecond part of each lemma with shortened �.

Syntax and Semantics of Dependent Types 43After this introduction we leave the proofs themselves to the reader asfollowing the calculations seems to require as much e�ort as doing them byoneself.Given the above two lemmas the proof of the soundness theorem becomesa straightforward induction on derivations. For the same reason as before thisproof will not be reproduced here; the reader is instead encouraged to carryout at least a few cases of the inductive argument by himself and in case ofserious di�culty consult Streicher's monograph (1991) where the veri�cationof the corresponding interpretation in contextual categories is spelt out in avery detailed fashion.The method of partially interpreting pre-syntax �rst and proving de�ned-ness by induction on derivations was invented by Streicher (1991) and is usedin order to ensure that the interpretation does not depend on the particu-lar derivation chosen. Notice that derivations of a given judgement are notunique as instances of the conversion rules Ty-Conv and Tm-Conv are notrecorded in judgements. Alternatively, one could de�ne the interpretationby induction on derivations and then use the device of pre-syntax to estab-lish coherence of the semantics with respect to the conversion rules, but thiswould result in a more complicated proof. For a particular model this hasbeen carried out in (Palmgren and Stoltenberg-Hansen 1990).ExercisesE3.38 Extend the interpretation function to �-typesE3.39� Formulate a completeness theorem for the semantics and use theterm model to prove it. Deduce from the term model that if � ` M : � and� `M : � then � ` � = � type.E3.40 Explain why the interpretation function cannot be de�ned in the sameway as we did in case application is not typed, i.e., with App [x:�]� (M;N)replaced by (M N). Also explain why it would not matter to leave out thetype annotation � in �x: �:M � and similar situations.E3.41 Try to de�ne the interpretation function on triples � ;M ; � of typedterms in context rather than on the pairs � ;M . What goes wrong?E3.42� Extend the interpretation function to syntactic context morphismsand state a general substitution lemma for context morphisms (Pitts 1997).It seems di�cult to prove this general substitution lemma directly withoutusing Lemmas 3.36 & 3.37.

44 HofmannE3.43 Deduce from E3.26 and the soundness theorem that the followingtype is not inhabited in a type theory without universes.� ` IdN(0; Suc(0)) ! 0 typeE3.44 Use the !-set model to derive that in the Calculus of Constructionswith natural numbers there does not exist a term � ` M : Prop ! N andpropositions � ` P : Prop and � ` Q : Prop such that � ` App(M;P) = 0 : Nand � ` App(M;Q) = Suc(0) : NE3.45� Show that the interpretation of existential quanti�cation 9x: �:P asde�ned in E2.8 in the set-theoretic model is tt if P (x) is tt for some x 2 [[�]]and ff otherwise. Conclude that the following extension of the Calculus ofConstructions by a choice function is consistent in the sense that neither theempty type (if it exists) nor the type Prf (8c:Prop:c) is inhabited in the emptycontext: � ` H : Prf (9x: �:P)� ` Choice(H) : �It is known that such choice function becomes inconsistent if in addition oneimposes the equation ` Choice(9-I(M;N)) = M : �for all M : � and N :Prf (P [M]), see (Coquand 1990).4 Extended example: presheaf modelsIn this section we encounter a family of interpretations of type theory whichgeneralises the set-theoretic model in that types are interpreted as variablesets (presheaves) or families of such. There are various applications of suchinterpretations, see for example (Asperti and Martini 1992) and (Altenkirch,Hofmann, and Streicher 1996) where they are used to de�ne models of thepolymorphic lambda calculus in which type quanti�cation is interpreted ascartesian product. We use a presheaf interpretation here to show that theLogical Framework in the sense of x2.2.2 forms a conservative extension ofordinary type theory. This result appears here for the �rst time; a moredetailed version will be published elsewhere.Preliminaries. Let K be a (small) category. A presheaf over K is a con-travariant functor from K to the category Set of sets and functions. Wedenote by K̂ the functor category SetKop of presheaves over K. We denotepresheaf application by subscripting. That is, if F 2 K̂ and u 2 K(I; J) then

Syntax and Semantics of Dependent Types 45Fu : FJ ! FI . If � 2 K̂(F;G) then �I : FI ! GI . We may think of K asa category of stages or worlds and of a presheaf as a set varying with thesestages. The Yoneda embedding y : K ! K̂ sending I to K(�; I) is a full andfaithful embedding of the stages into K̂. See (Barr and Wells 1990) for moreinformation on presheaves.4.1 Presheaves as a CwFOur aim is to construct a CwF which has K̂ as the category of contexts.This category has a terminal object given by >I = f?g. We de�ne types,substitution, terms, and comprehension in order. From now on we will use thegeneric letters �; f; �; : : : to range over presheaves, natural transformations,families of presheaves, etc. if these arise in the context of a CwF.If � is a presheaf then we form its category of elements R (�) with objects(I;
) where I 2 K and
 2 �I . A morphism from (J;
0) to (I;
) is a K-morphism u 2 K(J; I) such that �u(
) =
0. In other words, if u 2 K(J; I) and
 2 �I then u is an R (�)-morphism from (J;�u(
)) to (I;
). If appropriatewe may also write (u;
) for this morphism. Composition is inherited from K.For presheaf � 2 K̂ we de�ne the set Ty(�) to consist of the presheaves overR (�). If � 2 Ty(�) and (I;
) 2 R (�) then we write �I(
) rather than �(I;
) for� at argument (I;
) and similarly for morphisms. That � is a presheaf meansthat if u 2 K(J; I) and
 2 �I and x 2 �I(
) then �u(
)(x) 2 �J(�u(
)) andthis action is compatible with composition and identities in K.Now suppose that f : � ! � is a natural transformation. We de�ne afunctor R (f) : R (�) ! R (�) by R (f)(I; �) = (I; fI(�)) and for u 2 K(J; I),� 2 �I we de�ne R (f)(u; �) = (u; fI(�)). Now if � 2 Ty(�) is a family ofpresheaves then we de�ne �ffg 2 Ty(�) as the composition � � R (f). So, wehave �ffgI(�) = �I(fI(�)). It is clear that this has the required functorialityproperties.Next we de�ne terms. If � 2 Ty(�) then an element M of Tm(�) assignsto each stage I and element
 2 �I an element MI(
) 2 �I(
) in such a waythat if u 2 K(J; I) then �u(
)(MI(
)) = MJ(�u(
)). If M 2 Tm(�) andf : � ! � then Mffg 2 Tm(�ffg) is given by composition as MffgI(�) =MI(fI(�)).If � 2 Ty(�) then the presheaf �:� is de�ned by (�:�)I = f(
; x) j
2�I ; x2 �I(
)g. If u 2 K(J; I) and (
; x) 2 (�:�)I then (�:�)u(
; x) =(�u(
); �u(
)(x)). The projection p(�) is de�ned by p(�)I(
; x) =
; the vari-able v� 2 Tm(�fp(�)g) is de�ned by (v�)I(
; x) = x. Finally, if f : � ! �and M 2 Tm(�ffg) then (hf;Mi�)I(�) = (fI(�);MI(�)). The veri�cationsare straightforward expansions of the de�nitions. We have thus establishedthat presheaves over K furnish a CwF.

46 Hofmann4.2 Type formers in K̂The presheaf model supports most of the type formers the set-theoretic modelsupports, often by the very same constructions. The major di�erence is theinterpretation of �-types which is carried out in a way similar to the treatmentof implication in Kripke models, and of course similar to the de�nition ofexponentiation in functor categories.. Suppose that � 2 Ty(�) and � 2Ty(�:�). Following the convention from x2.2.2 we will write (�)� rather than�(�; �) for the dependent function space of � and � . It is de�ned as follows.If I 2 K and
 2 �I then an element f of (�)�I(
) associates to J 2 K andw : J ! I and x 2 �J(�w(
)) an element f(w; x) 2 �J(�w(
); �w(
)(x)).Notice that w 2 R (�)((J;�w(
)) ; (I;
)) and thus �w(
)(x) 2 �I(�w(
)).Moreover the assignment f must be natural in the sense that if in additionw0 : J 0 ! J thenf(w � w0; �w0(�w(
))(x)) = �w0(�w(
); �w(
)(x))(f(w; x))The generalisation to \later stages" J is necessary to make (�)� a presheafand not merely an assignment of sets to stages. Indeed, if v : I 0 ! I andf 2 (�)�I(
) then we can de�ne (�)�v(�v(
))(f) 2 (�)� 0I(�v(
)) by(�)�v(�v(
))(f)(w:J ! I 0; x2 �J(�w(�v(
)))) def= f(v � w; x)which is valid because �w(�v(
)) = �v�w(
).If M 2 Tm(�:�; �) then ��;� (M) 2 Tm((�)�) is given by�(M)I(
2�I ; J2K; w : J ! I; x2 �J(�w(
))) def= MJ(�w(
); x)The application morphism App�;� : �:�:(�)�+ ! �:�:� maps at stage Ielements
 2 �I and x 2 �I(
) and f 2 (�)�I(
) to f(id I ; x) 2 �I(
; x).It is routine to check that this de�nes dependent function spaces in the strictsense.The dependent sum �(�; �) of the presheaves above is given by stage-wiseset-theoretic dependent sum. This means that�(�; �)I(
) = f(x; y) j x2 �I(
) ^ y2 �I(
; x)gWe omit the associated term formers. We remark without proof that K̂ sup-ports natural numbers and other inductive types; it also supports universes ifthe ambient set theory w.r.t. which the presheaves are formed supports them.4.3 Conservativity of the logical frameworkLet T be a theory of dependent types like one of those set out in x2. Theprecise nature of T is unimportant.

Syntax and Semantics of Dependent Types 47Furthermore, we let TLF denote the Logical Framework presentation of T ,i.e., a dependent type theory with �-types and one universe Set together withconstants and equations corresponding to the type and term formers in T .We have a conversion map i translating terms, types, and judgements in Tinto ones in TLF in such a way that judgements are preserved. More precisely,if � ` J in T then i(�) ` i(J) in TLF . For distinction, we write `T and `TLFfor the judgement relations in the two type theories. For example, in T wemight have x:N `T �y:N:Id(x; y) ! Id(y; x) typeApplying the translation yields the following judgement in TLF :x:El(N̂) `TLF El(�̂y:El(N̂):Îd(x; y)!̂Îd(y; x)) typeIn other words, i(N) = El(N̂), etc. If we omit the El -operator and the �̂-decorations then the translated judgement looks exactly like the one to startwith. We will do so in the sequel and omit the coercion i.Due to the presence of type variables TLF is a proper extension of T .Judgements like ` Set type or F :N ! Set ` F (0) are not in the image ofi. A natural question to ask is whether TLF is conservative over T . Thereis more than one way to extend the notion of conservativity from logic totheories of dependent types. We will here use the simplest one and prove thefollowing theorem:Theorem 4.1 If � `T � type and � `TLF M : � for some term M then thereexists a term M 0 such that � `T M 0 : �.Notice that M itself need not be a legal T -term, it could for instance contain asubterm like ([X: Set]Suc(0))(N) which is equal, but not identical to Suc(0).Our strategy for proving this theorem consists of exhibiting a model of TLFwith the property that the interpretation of T in it (notice that such a modelalso models T) is full. That is to say, if Tm([[� ;�]]) 6= ; for some � `T � typethen there exists M with � `T M : �. Such a model is furnished by thepresheaf model T̂ where T is the (category of contexts of the) term model ofT . The fullness of the interpretation of T in T̂ is essentially a consequenceof the Yoneda lemma and will be proved at the end of this section.Let us �rst show how T̂ models the Logical Framework. We have alreadydemonstrated that T̂ (like every presheaf model) supports dependent functionspaces. We interpret Set 2 Ty T̂ (>) �= T̂ as the presheaf TyT which to acontext � 2 T associates the T -types in context � quotiented by de�nitionalequality. The interpretation of El 2 Ty T̂ (>:Set) �\R (Set) is de�ned as thepresheaf TmT which to � 2 jT j and � 2 TyT (�) = Set� associates the setTmT (�; �) of terms of type � in context � factored by de�nitional equality.This extends to a presheaf by term substitution.

48 HofmannFor the demonstration that T̂ models TLF it remains to show that Setcontains codes for all the type and term formers present in T . We will dealwith this task by way of example and assume that T contains �-types andthe (ad hoc) operator L from x2.2.2.We deal with the L-operator �rst. In order to simplify the notationand in view of the soundness and completeness of the semantics we willuse the syntax of type theory with named variables to denote entities inT̂ . Thus we require an element L̂ 2 Tm(>; (Set)Set) and an element l̂ 2Tm(>; (�: Set;m:El(�))El(L(�))). Since the dependent function spaces inT̂ are strict the �rst task is equivalent to exhibiting an element, for simplicityalso denoted L̂, of Tm T̂ (�: Set ; Set) which we describe explicitly byL̂�(� 2 TyT (�)) def= L(�)Recall that Set� = TyT (�). The naturality of this assignment amounts tochecking that for f : B ! � and � 2 TyT (�) we have L(�)[f] = L(�[f])which is immediate from the properties of syntactic substitution.Similarly, the second task is equivalent to �nding a terml̂ 2 Tm T̂ (�: Set;M :El(�) ; El(L̂(�)))Again, we de�ne it explicitly byl̂�(�2TyT (�);M2TmT (�; �)) = l(M) 2 TmT (�; �)Recall here that El�(�) = TmT (�; �). Naturality is again a consequence ofstability under substitution. Notice that up to the necessary abstraction e.g.from Tm(�: Set ; Set) to Tm((Set)Set) the required constants in K̂ are givenexactly by their counterparts in T .In essence, this is also the case for the �-type, but due to the binding be-haviour we encounter a slight complication. We wish to construct an elementof Tm T̂ (>; (�: Set; � : (El(�))Set)Set)By \uncurrying" this amounts to constructing a term �̂ ofTm T̂ (�: Set; � : (El(�))Set ; Set)At stage � the arguments to �̂ are a type � 2 TyT (�) and an element of(El(�))Set�. Call the latter set X temporarily. An element � of X associatesby de�nition of dependent function spaces in K̂ to f : B ! � and M 2TmT (B; �ffg) a type �(B; f;M) 2 Ty(B). This assignment is natural in thesense that for f 0 : B0 ! B we have �(B0; f � f 0;Mff 0g) = �(B; f;M)ff 0g 2Ty(B0). But this means that the whole of � can be reconstructed from itsparticular instance �0 def= �(�:�; p(�); v�) 2 Ty(�:�). Indeed, for arbitrary

Syntax and Semantics of Dependent Types 49f : B ! � and M 2 Ty(�ffg we have that �(B; f;M) = �0fhf;Mi�g bynaturality and equations (Cons-L) and (Cons-R). By (Cons-Id) we also getthe converse and have thus established a bijective correspondence between thesets (El(�))Set� and TyT (�:� = Set�:�. Therefore, the arguments at stage �to the term �̂ which we aim to construct amount to a type � 2 Ty(�) and atype �0 2 Ty(�:�). We de�ne the result as the syntactic dependent functionspace �(�; �0) in T . Summing up, we have de�ned��(�2 Set�; �2 (El(�))Set) = �T (�; �(�:�; p(�); v�))So up to the bijection between the function space (El(�))Set� and the setof types in �:� the �-constant in TLF has again been obtained directly fromits syntactic companion. The same goes for the other constants �̂ and ^Appwhose de�nition we omit. In the case of �̂ we face again an argument ofthe dependent function space type (x:El(�))El(�) which at stage � is iso-morphic to TmT (�:� ; �) by an analysis similar to the one which led to thecharacterisation of (El(�))Set before.One can more generally characterise the dependent function spaces of theform (El(�))F for arbitrary presheaf F as certain \shifts" of F . This al-lows for a systematic translation of arbitrary type and term formers possiblybinding variables from T to TLF . The general strategy should have becomeclear from the example of �. The important point is that in K̂ the functionspace (El(�))Set is so strongly con�ned by the naturality condition that itonly contains functions induced by a syntactic type with free variable of type�.Proof of Thm. 4.1 Suppose that � `T � type and that � `TLF M : �. Byinduction on derivations we �nd that the interpretations of � and � in T̂ havethe following properties: [[�]]� �= T (�;�)and [[� ;�]]�(f 2 T (�;�)) = �[f] 2 Set�Thus, in particular, we have [[� ;�]]�(id�) = �. Therefore, the interpretationof M in T̂ yields [[� ;M]]�(id�) 2 TmT (�; �); thus � `T M 0 : � for anyrepresentative M 0 in the class [[� ;M]]. The theorem is proved. �One may consider a Logical Framework which does not only support �-types, but several other type formers like �-types, e.g. for modularisationand natural numbers, e.g. to de�ne syntax. As long as these type formers aresupported by T̂ (� and N are) the conservativity theorem continues to holdby the same proof. Using a dependent version of the glueing construction(Crole 1993) it is possible to obtain the stronger property that the term M 0in Thm. 4.1 is TLF -equal to M .

50 HofmannWe also remark that we have not used any particular properties of the termmodel in the construction of the presheaf model so that it can be formed outof any CwF and thus gives a canonical way to lift a model of some type theoryto a model for the presentation of this type theory in the Logical Framework.5 Other applications of semantic methodsWe give some directions for further reading on the subject of semantical meth-ods in the study of theories of dependent types. Independence results are thesubject of (Streicher 1992) and (Hofmann and Streicher 1994). Semanticalmethods in order to derive syntactic properties of type theories like strongnormalisation and thus decidability of type checking have been used in (Hy-land and Ong 1993; Altenkirch 1994; Goguen 1995). In (Moggi 1991) and(Harper, Mitchell, and Moggi 1990) categories with attributes are used togive an account of higher-order modules in functional programming. Thereis an intriguing connection with Paulin's work on program extraction in typetheory (Paulin-Mohring 1989) and the \deliverables" approach to programdevelopment (Burstall and McKinna 1993). In each of these works a type ismodelled as a type or a set together with a predicate or a dependent typeand terms are modelled as terms which preserve these predicates. A similarinterpretation has been used in (Hofmann 1995a) where a translation of atype theory with a quotient type former into ordinary type theory and otherapplications of syntactic models are described.Connections between category-theoretic semantics and abstract machineshave been noticed in (Curien 1986) and (Ehrhard 1988) and were subsequentlyexploited and applied in (Ritter 1992) where an evaluator for the Calculus ofConstructions is derived from its category-theoretic semantics.Last, but not least we mention the use of domain-theoretic interpreta-tions of type theory in order to establish the consistency of general recursionand �xpoint combinators with dependent types (Palmgren and Stoltenberg-Hansen 1990). In a similar direction goes (Reus 1995) where an interpretationof type theory using synthetic domain theory has been employed to estab-lish the consistency of a very powerful dependent type theory incorporatinghigher-order logic, general recursion, and impredicativity.ReferencesAllen, S. (1987). A non-type-theoretic account of Martin-L�of's types. InSymposium on Logic in Computer Science.Altenkirch, T. (1994). Proving strong normalization of CC by modifyingrealizability semantics. In H. Barendregt and T. Nipkow (Eds.), Typesfor Proofs and Programs, Springer LNCS Vol. 806, pp. 3{18.

Syntax and Semantics of Dependent Types 51Altenkirch, T., M. Hofmann, and T. Streicher (1996). Reduction-free nor-malisation for a polymorphic system. In Proc. of the 11th IEEE Symp.on Logic in Comp. Sci. (LICS), New Brunswick, New Jersey.Asperti, A. and S. Martini (1992). Categorical models of polymorphism.Information and Computation 99, 1{79.Barr, M. and C. Wells (1990). Category Theory for Computing Science.International Series in Computer Science. Prentice Hall.Beeson, M. (1985). Foundations of Constructive Mathematics. Springer.Burstall, R. and J. McKinna (1993). Deliverables: An approach to programsemantics in constructions. In Proc. MFCS '93, Springer LNCS, Vol.711. Also as LFCS technical report ECS-LFCS-91-133.Cartmell, J. (1978). Generalized Algebraic Theories and Contextual Cate-gories. Ph. D. thesis, Univ. Oxford.Constable, R. et al. (1986). Implementing Mathematics with the NuprlDevelopment System. Prentice-Hall.Coquand, T. (1990). Metamathematical investigations of a calculus of con-structions. In P. Odifreddi (Ed.), Logic and Computer Science, pp. 91{118. Academic Press Ltd.Coquand, T. and G. Huet (1988). The Calculus of Constructions. Informa-tion and Computation 76, 95{120.Coquand, T. and C. Paulin-Mohring (1989). Inductively de�ned types. InLNCS 389. Springer.Crole, R. (1993). Categories for Types. Cambridge University Press.Curien, P.-L. (1986). Categorical Combinators, Sequential Algorithms andFunctional Programming. Pitman.Curien, P.-L. (1989). Alpha-conversion, conditions on variables and cate-gorical logic. Studia Logica 3, 318{360.Curien, P.-L. (1993). Substitution up to isomorphism. Fundamenta Infor-maticae 19, 51{86.Dowek, G. et al. (1991, Dec.). The COQ proof assistant user's guide, V5.6.Rapport technique 134, INRIA Rocquencourt.Dybjer, P. (1996). Internal type theory. In Proc. BRA TYPES workshop,Torino, June 1995, Springer LNCS. To appear.Ehrhard, T. (1988). Une s�emantique cat�egorique des types d�ependants.Application au Calcul des Constructions. Ph. D. thesis, Univ. ParisVII.Ehrhard, T. (1989). Dictoses. In Proc. Conf. Category Theory and Com-puter Science, Manchester, UK, pp. 213{223. Springer LNCS Vol. 389.

52 HofmannGoguen, H. (1995). Typed operational semantics. In Proc. TLCA '95, Ed-inburgh, Springer LNCS Vol. 902.Harper, R., F. Honsell, and G. Plotkin (1993, January). A framework forde�ning logics. Journal of the ACM 40(1), 143{184.Harper, R. and J. C. Mitchell (1993). On the type structure of StandardML. ACM Trans. Programming Lang. and Systems 15(2), 211{252.Harper, R., J. C. Mitchell, and E. Moggi (1990). Higher-order modules andthe phase distinction. In Conference record of the 17th ACM Sympo-sium on Principles of Programming Languages (POPL), San Francisco,CA USA, pp. 341{354.Hofmann, M. (1995a). Extensional Concepts in Intensional Type Theory.Ph. D. thesis, Univ. of Edinburgh.Hofmann, M. (1995b). On the interpretation of type theory in locally carte-sian closed categories. In J. Tiuryn and L. Pacholski (Eds.), Proc. CSL'94, Kazimierz, Poland, Springer LNCS, Vol. 933, pp. 427{442.Hofmann, M. (1996). Conservativity of equality re
ection over intensionaltype theory. In Proc. BRA TYPES workshop, Torino, June 1995,Springer LNCS. To appear.Hofmann, M. and T. Streicher (1994). A groupoid model refutes uniquenessof identity proofs. In Proceedings of the 9th Symposium on Logic inComputer Science (LICS), Paris.Huet, G. (1990). A uniform approach to type theory. In Logical Foundationsof Functional Programming. Addison-Wesley.Hyland, J. M. E. and C.-H. L. Ong (1993). Modi�ed realisability toposesand strong normalisation proofs. In J. F. Groote and M. Bezem (Eds.),Typed Lambda Calculi and Applications, Springer LNCS, Vol. 664.Hyland, M. and A. Pitts (1989). The Theory of Constructions: Categori-cal Semantics and Topos-Theoretic Models. In Categories in ComputerScience and Logic. AMS.Jacobs, B. (1991). Categorical Type Theory. Ph. D. thesis, University ofNijmegen.Jacobs, B. (1993). Comprehension categories and the semantics of typetheory. Theoretical Computer Science 107, 169{207.Lamarche, F. (1987). A simple model for the theory of constructions. InJ. W. Gray and A. Scedrov (Eds.), Proc. of AMS Research Conf., Boul-der, Colorado, pp. 137{199. AMS.Lambek, J. and P. Scott (1985). Introduction to Higher-Order CategoricalLogic. Cambridge University Press.

Syntax and Semantics of Dependent Types 53Luo, Z. (1991). Program speci�cation and data re�nement in type theory.In S. Abramsky and T. S. E. Maibaum (Eds.), Proc. TAPSOFT '91,Springer LNCS, Vol. 493, pp. 142{168.Luo, Z. (1994). Computation and Reasoning. Oxford University Press.Luo, Z. and R. Pollack (1992). LEGO Proof Development System: User'sManual. Technical Report ECS-LFCS-92-211, University of Edinburgh.Magnusson, L. and B. Nordstr�om (1994). The ALF proof editor and itsproof engine. In H. Barendregt and T. Nipkow (Eds.), Types for Proofsand Programs, Springer LNCS Vol. 806, pp. 213{237. Springer-Verlag.Martin-L�of, P. (1975). An intuitionistic theory of types: Predicative part.In H. E. Rose and J. C. Sheperdson (Eds.), Logic Colloquium 1973, pp.73{118. North-Holland.Martin-L�of, P. (1982). Constructive mathematics and computer program-ming. In Proceedings of the Sixth International Congress for Logic,Methodology and Philosophy of Science, pp. 153{175.Martin-L�of, P. (1984). Intuitionistic Type Theory. Bibliopolis�Napoli.Moggi, E. (1991). A category-theoretic account of program modules. Math.Struct. in Comp. Sci. 1(1), 103{139.Nordstr�om, B., K. Petersson, and J. M. Smith (1990). Programming inMartin-L�of's Type Theory, An Introduction. Clarendon Press, Oxford.Obtu lowicz, A. (1989). Categorical and algebraic aspects of Martin-L�oftype theory. Studia Logica 3, 299{317.Palmgren, E. and V. Stoltenberg-Hansen (1990). Domain interpretationof Martin-L�of's partial type theory. Ann. of Pure and Appl. Logic 48,135{196.Paulin-Mohring, C. (1989). Extracting F!'s programs from proofs in thecalculus of constructions. In Principles of Programming Languages(POPL), pp. 1{17. ACM.Pitts, A. (1997). Categorical logic. In Handbook of Logic in ComputerScience (Vol. VI). Oxford University Press. To appear.Reus, B. (1995). Program veri�cation in Synthetic Domain Theory. Ph. D.thesis, LMU, M�unchen.Reynolds, J. C. and G. D. Plotkin (1988, May). On functors expressible inthe polymorphic typed lambda calculus. Technical Report ECS-LFCS-88-53, University of Edinburgh.Ritter, E. (1992). Categorical Abstract Machines for Higher-Order TypedLambda Calculi. Ph. D. thesis, University of Cambridge.

54 HofmannSeely, R. A. G. (1984). Locally cartesian closed categories and type theory.Mathematical Proceedings of the Cambridge Philosophical Society 95,33{48.Smith, J. (1988). The independence of Peano's fourth axiom from Martin-L�of's type theory without universes. Journal of Symbolic Logic 53(3).Streicher, T. (1991). Semantics of Type Theory. Birkh�auser.Streicher, T. (1992). Dependence and independence results for (impredica-tive) calculi of dependent types. Math. Struct. Comp. Sci. 2, 29{54.Streicher, T. (1993). Semantical Investigations into Intensional Type The-ory. Habilitationsschrift, LMU M�unchen.Taylor, P. (1986). Recursive Domains, Indexed Category Theory, and Poly-morphism. Ph. D. thesis, University of Cambridge.Troelstra, A. and D. van Dalen (1988). Constructivism in Mathematics,An Introduction, Volume I. North-Holland.

