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1 Introduction

Dependent types are types which unlike simple types, such as products,
function spaces, or natural numbers, depend on or vary with values. An
example of a dependent type is a type of vectors or arrays Vec,(M) of a
given length M : N over some type o. Its objects are nil, : Vec,(0) and
Consy,(U, V) : Vecy(Suc(M)) where U : 0 and V' : Vec,(M). We can now
consider a function which given x: N returns a vector (over N) of length x
and all entries 0. This function then has the type Ilz: N. Veen(x) — a type
of functions with the property that the type of the result depends on the
argument. The same algorithm could also be typed as N — List(IN). The
point of the dependent typing is that it reveals more information about the
function. Another example of this kind is the exception-free head function

for vectors
Hd : TIx: N. Vec, (Suc(z)) = o

which yields the first entry of a vector. The typing prevents the unwanted
case that Hd gets applied to the empty list. In this way the dependent typing
circumvents the need for partial functions in certain cases.

Another source for type dependency comes from type variables and type
universes. For instance, the type of monoids with carrier X

MONX)E (X x X) > X) x X

is a type depending on X. Type variables such as X above can be treated as
ordinary variables using universes, that is types containing (names for) other
types as members. The function constructing the free monoid on a type X
would then be given the type

11X: U.MON (List(X))

where U is such a universe.

The third important source for dependent types comes from the propositions-
as-types analogy under which propositions (in constructive logic) are seen as
types, namely the type of their proofs. For instance, a proof of ¢ A ¢ consists
of a proof of ¢ and a proof of 1; a proof of ¢ D 1) consists of a procedure which



transforms a hypothetical proof of ¢ into a proof of ). Therefore, conjunc-
tion and implication can be identified with cartesian product and function
space, respectively. Under this correspondence, predicates, i.e. propositional
functions become dependent types. We will describe how to view the atomic
equality predicate and universal and existential quantification as types and
type formers. In fact universal quantification corresponds to the Il-type in-
troduced above.

If propositions are ordinary types they can be part of other types. For
instance, we can enrich the above-defined type of monoids of monoids by a
proposition stating associativity and neutrality:

MON'(X) &
Yot (X x X) = X
Ye: X.
(Va,y,2: X.o (o(2,9),2) = o(x,0(y,2))) N (Va: X.o(e,2) =2 Ao(x,€) =€)

The Y-type former is a generalisation of the cartesian product x to dependent
types and corresponds under the propositions-as-types analogy to existential
quantification. An object of the above generalised signature thus consists of

e an object o of type (X x X) = X
e an object e of type X
e a proof that - is associative and e is neutral

The main aim of this article is not so much to explain how to use dependent
types to formalise constructive mathematics or to do program development
and specification, but rather to introduce the reader to a tool for the meta-
theoretic study of dependent type theory: category-theoretic semantics.

By semantics we understand a compositional assignment of mathematical
objects to syntactic objects, for instance sets or sets to types and set-theoretic
functions to (open) terms of the types. Such interpretation is performed with
the aim of establishing consistency or conservativity of certain type-theoretic
constructs, or simply in order to explain, motivate, and justify them. Due to
type dependency the verification that such an interpretation indeed validates
all the rules of type theory can be quite involved which is why it has proven
useful to define a general abstract notion: the category-theoretic semantics,
which is proven sound and complete once and for all. Then in order to obtain
an interpretation of type theory one “only” needs to check that one has an
instance of the semantic notion.

The semantics is not surprising (like maybe the set-theoretic semantics for
first-order logic) in that we have an almost trivial completeness property like
in the case of Heyting algebra semantics for intuitionistic logic. The point
is that the soundness theorem is non-trivial and therefore some work can be
saved when presenting a translation of the syntax as a model construction.



1.1 Overview

In the next section we give the syntax for an extensible calculus of dependent
types which encompasses various “named” type theories like Martin-Lof’s
type theory or the Calculus of Constructions. In §§2.4 & 2.3 we introduce
pre-syntax and syntactic context morphisms. Both are auxiliary syntactic
notions required later to define the interpretation function and to construct
a term model. §3 contains the material on category-theoretic semantics. It
introduces categories with families which provide a category-theoretic coun-
terpart of type dependency and form the backbone of the semantics. We
compare this notion to related concepts and identify the additional struc-
ture required to model the type and term formers. Section 3 ends with the
interpretation of the syntax in the semantic structures. Finally, §4 is de-
voted to an extended application of the material: we give an interpretation
of types as “variable sets” (presheaves) and use it to establish conservativity
of Martin-Lof’s Logical Framework over ordinary type theory.

Every section or larger subsection except the last one ends with several
exercises which either contain definitions or proofs which are similar to previ-
ously given ones and are required later, or contain applications of the material.
The last section contains instead an overview of the literature on applications
of semantic methods to dependent type theory as a suggestion for further
reading.

This article is self-contained except for the presupposition of some very
basic category theory in §§3 & 4 which have not been included as very good
introductions are readily available. The required notions are summarised in
the beginning of §3.

2 Formal systems for dependent types

A theory of dependent types is a formal system which mainly allows one to
derive judgements of the form M : o (the term M has type o) and o type
(0 is a type). As types may contain terms, typing affects typehood and both
kinds of judgements must be defined simultaneously. For instance, Vec, (M)
is a type if o is a type and M : N. Furthermore, we usually want a notion
of definitional equality to be built into the theory, for example we wish to
consider 0 : N and 0+ 0 : N as (definitionally) equal terms and hence
Vec,(0) and Vec,(0 + 0) as definitionally equal types: if M : Vec,(0) then
also M : Vec,(0+0). This leads to two more forms of judgement: M = N : o
(M and N are definitionally equal terms of type o) and o = 7 type (o and
7 are definitionally equal types). Finally, we must keep track of the types
of the free variables occurring in a judgement; we cannot assert x +y : N
unless we know that z:IN and y: N. Since such declarations may depend on
each other like in z: N, y: Veen(z) it is convenient to make all judgements



relative to a list of variable declarations including at least the free variables
occurring inside the judgement. Such lists of declarations are called contexts
and sometimes also type assignments. Intuitively, a context xy:0q,...,7,:0,
is well-formed if each o; is a type in the context x1: 01, ...2; 1:0; 1 and the z;
are pair-wise distinct. So typehood (and thus typing) affects context validity
and we finally arrive at six kinds of judgements:

FT ctat [' is a valid context
['- o type o is a type in context I’
I'-M:o M is a term of type o in context I’

FT'= A ctet T and A are definitionally equal contexts
' 0 =r71type o and 7 are definitionally equal types in context I'
I'FM=N:0 M and N are def. equal terms of type ¢ in context I'.

Well-formedness and equality of contexts can be defined in terms of the other
judgements, but it is technically easier to include them as primary notions.

Regardless of which rules we later introduce to describe particular type
and term formers such as the natural numbers or II-types we always have the
following structural rules.

e Rules for context formation:

C.E [' - o type CLExt
e — - m e — - )
Fo ctat P FI', 2o ctat *

FT = A ctat ['+0 =71 type

C-Ext-E
Fl,xio=A,y:7 ctat R

The variables x and y in rules C-Ext and C-Ext-Eq are assumed to be
fresh.

e The variable rule
FI x:0,A ctat

o AFz:0

ar

e Rules expressing that definitional equality is an equivalence relation:

FT ctat
——— C-Eg-R
FT =T ctxt
FT' = A ctat CLEq.S
FA=T ctat s

FT' = A ctat FA =0 ctxt
FIT =0 ctat

C-Eq-T



['F o type

Ty-Eqg-R
['-0 =0 type Y

['Fo0=r1type

Ty-Eqg-S
['-7=0type Y

I'Fo =7 type I'F7=ptype

Ty-Eq-T
['Fo = ptype Y
I'-M:o Tm-EoR
TFM=M:0 T
'-M=N:o¢o
Tm-Eqg-S
'-N=M:o¢o
'FM=N:0 'FN=0O:o0
Tm-Eq-T

'FM=0:0
e Rules relating typing and definitional equality:

'EM:o FIT = A ctat ['Fo =7 type

NS Tm-Conv

T = A ctat ['F o type
A F o type

Ty-Conv

e For convenience (cf. E2.7 below) we also introduce the following weak-
ening and substitution rules where J ranges over one of the judgements
M : 0, 0type, M =N : 0, 0 =T type.

AR JT ' ptype

Weak
TopAFJ e

Dyep, AT 'EU:p
D, AU/ - J[0/4]

Subst

Here J[U/x] (and similarly A[U/z]) denotes the capture-free substitution
of U for x in J. This means that bound variables in J are systematically
renamed so as to prevent any free variables in U from becoming bound in
JU/x]. We will henceforth consider all contexts, types, and terms as equal
if they agree up to names of bound variables and assume the existence of
a capture-free substitution function on these equivalence classes. One can
use a de Bruijn style presentation of the syntax to avoid this identification.
A good reference is (Huet 1990). The de Bruijn presentation gives rise to
canonical representatives of the equivalence classes and yields an algorithm
implementing capture-free substitution.



2.1 Type formers

Type and term formers are introduced by formation, introduction, elimina-
tion, and equality rules. There is no definitive set of type formers and new
ones can be invented as needed. We present several of them to give an idea
of the general pattern.

2.1.1 Dependent function space

The dependent function space also called dependent product or Il-type cor-
responds to the set-theoretic notion of cartesian product over a family of sets
IT,; B; which has as elements functions mapping an index ¢ to an element of
the corresponding set B;. In type theory this is expressed as follows:

'+ o type I'x:0 b 7 type
yp yPe g

I'F Ilx: 0.7 type

I'to01=09type D' ,z:0F 7 =1y type

II-Eq
' Tlx:01.7q = [z: 09.79 type

The first rule expresses that a dependent function space consists of a type
o (possibly depending on other types recorded in T') and a type depending
on o (and I'), viz. 7. The rule TI-Eq expresses that definitional equality is
respected by the II-former. The variable x becomes bound in Ilz: 0.7 and
thus this type is subject to the convention on renaming of variables set out
above. To form elements of the II-type we have the introduction rule with
associated congruence rule:

Ie:obEM: 7
F'FXe:oM™ Uz o1

I1-1

oMy =My:7 I'Foy=o0ytype [',z:0bF 17 =7 type
C'EAzioy. M7 = Axio9. My™ 1z oy.my

M-1-Eq

So to give an element of Ilz: 0.7 one must give an element of 7[z| in the
presence of a variable x of type . The congruence rule II-1-Eq expresses that
definitional equality preserves Il-introduction (A). We will henceforth refrain
from writing down congruence rules. Such rules are silently understood for
every type and term former we will introduce.

Elements of a II-type are consumed using application like in the set-
theoretic situation where an element of Il;c;B; and a specific ig € I gives
an element of B;;:

M :llz:0r I'EN:o
I'E App[’rrf}’r(MJ N) : T[N/.’E]

[I-E



Notice that the square brackets in the typing annotation [x: o]7 are an integral
part of the term former for application and indicate the binding of x in 7. Now
we encounter a source for definitional equality: applying a function Ax: 0. M7
to a term N : o results in M with x replaced by N:

F'FXe:ooM™ :llx:or T'HN:o

I-C
['F Apppy.-(Av:0.M", N) = M[N/x] : T[N/ 1]

Notice that substitution plays a more prominent role in dependently typed
calculi as it is needed to formulate even the typing rules, not only the con-
version rules (as in the case of simply-typed lambda calculus).

The attribute “definitional” for en equation like I1-C is certainly arguable.
It is motivated by the understanding of A\z:0.M" as a canonical element of
[1z: 0.7 and application as a derived concept defined by equation II-C. This
view becomes important if one wants to see type theory as a foundation of
constructive mathematics which accordingly is to be justified by a philosoph-
ical argument rather than via an interpretation in some other system, see
(Martin-Lof 1975;(1984)). For us the distinction between canonical and non-
canonical elements is not important. However, we will use it to motivate
further definitional equalities.

A more pragmatic explanation for II-C is that in applications one often uses
abstraction as a means for making definitions and application to instantiate
a definition. Thus when the Il-type is used in this way then both sides of
[1-C are indeed definitionally equal in the proper sense of the word.

2.1.2 Dependent sum

The next type former we introduce is the ¥-type (or dependent sum) cor-
responding to disjoint union in set theory. If we are given a family of sets

(B;)ies we can form the set Sic;B; & {(i,b) | i € I Ab € B;} whose elements
consist of an index ¢ and an element of the corresponding set B;. In type

theory the corresponding formation and introduction rules look as follows.

'+ o type I'EM:o

['x:o b 7 type '-N:7|M/x

2o P Type o o . T[M/x] S
I'E Yax: 0.7 type I Pairg.q,(M,N) : Yz:0.7

The elimination rule looks a bit complicated at first sight:

[, z:¥x: 0.7 F p type
Uyz:o,y:7H H: plPairy.q.(x,y)/z]
'EM:XYx o1
'R ([z:0.y: 7] H, M) : p[M /2]

[z2:Xx:0.7]p

Y-E

Here the variable z in p and the variables x,y in H become bound inside R*
as indicated by the square brackets. The idea behind R* is that in order to



give a (possibly dependent) function out of Yx: 0.7, it is enough to specify
it on canonical elements, viz. the pairs. This is expressed by the following
definitional equality
'+ R[X;:Z%U_T}p([m: o,y: T|H, Pairg.,. (M, N)) : p[Pair 3.0/ 2]
'+ R[X;:Zm:mﬂp([x: o,y:T|H, Pair...(M,N)) = |
H[M/xz,N/y| : p|Pairiz.q; /2]

¥-C

which says that a function on ¥2: 0.7 defined using the eliminator R* behaves
on canonical elements as specified by the argument H. As an example we show
how to define projections for the X-type. Assume I' - o type, I', z: 0 b 7 type,
and I' = M : Yx:0.7. We define
def

M1 R[Zz:m:mﬂﬂ([x:a,y:ﬂx,M) e
Now, in the particular case where M is canonical, i.e. M = Pairy,,. (U, V)
the rule -C gives I' = M.1 = U : 0 as expected. A second projection can be
defined similarly:

def

M2 = R[E:Zm:o’.ﬂ’r[z.]/:r}([x: 0,Y: T]y’ M) : T[M]']

Notice that the definiens (the right-hand side) is well-typed by virtue of rules
3-C and Ty-Conv which allow us to conclude

F,.’E: o,Y.T F Yy T[(PGZT[TU}T('TJU)I)/‘T]

One can restrict the elimination operator R* to those cases where the type p
does not depend on Yz: o.7. One can then still define the first projection, but
no longer the second one. This is called weak ¥-elimination, see (Luo 1994).

Important special cases of [lz: 0.7 and Yx: 0.7 arise when 7 does not ac-
tually depend on o. In this case, i.e. when I' = o type and ' - 7 type we
write

o— 1 Y07

and
def
OXT=Xx.0.T

indicating that in these cases the II- and }-types correspond to ordinary
non-dependent function space and cartesian product, respectively.

A (constructive) proof of an existential statement Jx:0.P(x) consists of
an element M of o (the witness) together with a proof that P(M), that is an
element of P(M). Thus under the propositions-as-types analogy the X-type
is the counterpart to existential quantification.



2.1.3 Natural numbers

An example of a basic type is provided by the type of natural numbers given
by the rules

FT ctat FT ctat I'EM:N
——— N-F —— N-I-0 N-I-S
'+ N type '0:N I'E Sue(M): N

The elimination rule is similar to the one for ¥-types; in order to define a
(possibly dependent) function on N it is enough to give it on the canonical
elements 0 and Suc(M). In the case of Suc(M) the function may be called
(primitive) recursively for M.

['yn:NF o type

't H,:o[0/n]
I',n:N,z:0 b Hy : 0[Suc(n)/n]
'EM:N

N-E
'+ RE:N}”(HZ, [n:N,x:0|Hg, M) : o[M/n]

The primitive-recursive behaviour of RN is expressed by the following two
rules for definitional equality:

I+ RE:N}U(HZ, [n: N, x:0]Hy, 0) : 0[0/n]

N-C-0
'+ RN (Hz, [0: N, 2:0]H,, 0) = H. : 0[0/n]

'k RE:N}G(HM [n: N, z:0|Hg, Suc(M)) : o[Suc(M)/n] N-C-S
N RE:N}U(H,Z, n:N, z:0]Hy, Suc(M)) =
H [ M/n, RE:N}U(HZ, [n: N, x:0|Hs, M) /2] : o[Suc(M)/n]

The elimination rule for natural numbers allows for both the definition of
functions by primitive recursion and proof of properties of the natural num-
bers by mathematical induction. For instance, we can define addition as

follows
M4+ N R (N, [n: N, 2:N]Suc(z), M) : N

and writing 7 for the closed term Suc(...Suc(0)...) we have
—_——

n times

oFkn+m=m+n:N

for all (set-theoretic) natural numbers m, n by m-fold application of rule N-
C-S followed by N-C-Z. We will see an example of the use of mathematical
induction below.



2.1.4 Notation

We will henceforth freely suppress type annotations if this increases readabil-
ity. For instance, we may write A\z:0.M or even Ax.M instead of Ax:0.M7.
We sometimes omit a prevailing context I' and thus write = J instead of
I' = J. We write ¢ = J if we want to emphasise that a judgement holds in
the empty context. If o contains among others the free variable x then we
can write o[z] to emphasise this and use the notation o[M| for o[M/xz] in this
case.

In implementations of type theory many more such conventions are being
used and sometimes they are even made part of the official syntax. It is always
an important question whether such shorthands should be treated formally
or informally. Here we have decided to have a syntax as explicit as possible
so as to facilitate its meta-theoretic study. For doing proofs within the theory
obviously the syntactic sugar is unavoidable.

2.1.5 Identity types

As we have explained, definitional equality is the congruence generated by the
computational equations like N-C-Z and I1-C. Its main purpose is to facilitate
the construction of inhabitants of types; in some examples, like the definition
of the second projection for X-types above, its use is unavoidable. However,
definitional equality is merely a judgement, and not a type, that is, not a
proposition, and therefore cannot be established by induction, i.e., using RN
or R¥. Also, we cannot have definitional equalities as assumptions in a con-
text. In order to enable equality reasoning inside type theory one is therefore
lead to introduce a type corresponding to equality—the identity type. For
every two terms of the same type we have a (not necessarily inhabited) type
of proofs of their equality

'-M:o I'EN:o

Id-F
T+ Id,(M, N) type

and the identity types have canonical inhabitants corresponding to reflexivity

I'EM:o

Id-1
T'F Refl,(M) : Id,(M, M)

We call two terms I' = M, N : o propositionally equal if the type I'
Id,(M,N) is inhabited. By the (implicit) congruence rules and rule Ty-
Conv propositional equality extends definitional equality, that is, we have
I'E Refl (M) : Id,(M,N) provided T M =N : 0.

So far we only know that propositional equality is a reflexive relation.
The further properties like symmetry, transitivity, Leibniz’ principle are all



consequences of the following elimination rule for identity types

['- o type
[, z0,y:0,p:1ld,(z,y) F 7 type
[,zoob H:7lz/z, 2]y, Refl,(2)/p]
I'-M:o I'-N:o
[k P:Id,(M,N)
I+ RM ([z:0]H , M,N,P): 7[M/x,N/y, P/p]

[#:0,y:0,p:1ds (2,y)]T

Id-E

and the associated equality rule

I R[Igza,yza,pzida(m,y)h([Z: U]H ) M, M: Reﬂo(M)) : T[M/.Z‘, M/U, Reﬂo(M)/p]
(z y)}T([ZO-]H ’ M, M: Beﬂo’(M))

I+ R

[z:0,y:0,p:1d (2,

R T [M ., My, Refl, (M)/p) 1d-C

The eliminator R’ is an induction principle like RN and R* which roughly
states that every element of an indentity type behaves as if it were a canonical
one of the form Refi (M). We demonstrate how to derive Leibniz’ principle
from R'®: Suppose that x:0 + p[z] type, and that we are given two propo-
sitionally equal terms of type o, i.e., F M,N : o0 and - P : Id,(M,N). If
= H : p[M] then we can construct an element Subst|,.,,(P, H) of p[N] as
follows. We define

ef
oz 0,y 0, 1o, )] 2 pla] = ply)
(Recall that ¢ = 1) abbreviates Ilz: ¢.¢p.) Now Ah: p[z]|.h is an inhabitant of
x:o b 7[x,x, Refl ()], so

Substiay (P, H) & App (R ([z: o] Ah: pla].h , M, N, P) , H) : p[N]

[x:0,y:0,p:1d(z,y)]

and from Id-C and TI-C we get the derived rule Subst(;.,j,(Refl,(M), H) =
H : p[M].
From Subst we can derive symmetry, transitivity, and congruence proper-

ties of propositional equality in the usual way. For example, if z:0 & Ulz] : 7
and - P : Id,(M,N) then

Resp, ,([r:0)U , P) &

Subst[mm}mr(U[MLU[Q«,D(P, RPﬂT(U[M])) : I(]T(U[ML U[N])

We can derive a similar congruence property in the case that 7 depends on
x; for this and other derived properties and combinators for propositional
equality we refer to (Nordstrom, Petersson, and Smith 1990; Streicher 1993;
Hofmann 1995a).

We have now collected enough material to carry out the promised example
of a proof by induction. We wish to construct an element of the type

m: N F Idn(m + 0,m) type



where + is the addition operation defined above. Notice that we have n: N
Reflg(n) : Idn(0 4+ n,n) immediately by N-E-Z and the definition of +. Let
us define o[m: N] & Idn(m 4 0,m). So o is now a type with a distinguished
free variable m. By N-C-Z we have

= Refix(0) : o[0)
Now by N-E-S we have
m: N F ofSuc(m)] = Idn(Suc(m), Suc(m + 0)) type
Therefore,
m: N, h:o[m] & Respy n([2: N]Suc(x) , h) : o[Suc(m)]
and we can finally conclude

mi N R, (1 Refg (0),
[m): N,[h:]a]RespN’N([x: N]Suc(z) , h),

Again, we refer to (Nordstrom, Petersson, and Smith 1990) for more ex-
amples of this kind. The metatheory and the strength of the present and
other formulations of the identity type have been analysed in (Hofmann
1995a;(1996);Streicher 1993).

We remark that propositional equality does not affect the definitional one
which even in the presence of identity types remains confined to intensional
equality. Therefore, type theory together with identity types as defined here
is called intensional type theory, see (Martin-Lof 1982). There exists another
formulation of identity types in which one may conclude ' - M = N : o
from I' = P : Id,(M,N). This rule is called equality reflection and makes
it possible to derive “definitional” equalities by induction and thus makes it
extensional. Therefore, type theory with equality reflection is called exten-
sional type theory. Since the proof P is discarded upon application of this
rule, definitional equality (then rather called judgemental equality) and thus
typing become undecidable. See also E3.30.

2.1.6 Universes

A universe is a type containing codes for types. This is expressed by the
following two rules

FI1 ctat '=M:U
—— U-F El-F
' U type '+ EI(M) type

So if M : U is such a “code” then we can form the type associated to M,
namely El(M). So far the universe does not contain any closed codes. This



may be achieved by stipulating that the universe be closed under certain type
formers. For instance, closure under II-types is expressed by

'-S:U IL,s:EU(S)FT:U
[ +11(S, [s: EI(S)|T) : U

U-I1

I',s: EI(S)F M : EI(T)
T+ As: EI(S).M™T) . EI(TI(S, [s: EL(S)|T))
T+ M : EI(TI(S,[s: EI(S)]T)) Tk N: EI(S)
I A%)p[s:F)l(S)}E‘l(T)(MJ N): EI(T[N/s])

U-II-I

U-II-E

T+ Appjsmsymer (st BI(S).M™T) N : EI(T[N/s))
T b Appiemsymry(Ast BL(S).MP T Ny = M[N/s] : EI(T[N/s])

A more economic syntax for universes closed under Il-types is obtained if we
replace the last three above rules by a single new type equality

T+ 11(S, [s: EI(S)|T) : U
T+ EI(II(S, [s: BI(S)|T)) = Is: EI(S).El(T) type

U-II-Ty

which states that EI(T1(S, [s: EI(S)]T)) is the product of the EI(T) rather
than behaving like it. One does not need the new application and abstraction
operators A and A})p then. This syntax, which in fact is often used in the
literature, has the disadvantage that it is no longer the case that equal types
share the same outermost type former. This makes it more difficult to show
that the type formers are injective; an auxiliary property required to establish
the subject reduction property for an untyped rewrite system derived from
definitional equality. Also, in many models rule U-II-Ty is not valid under the

canonical interpretation of I1, see (Streicher 1991) and the example following
Def. 3.20.

Closure under natural numbers is described by

FT ctat
'-N:U

and further rules introducing term formers 0, Suc, and RN witnessing that

EI(N) behaves like N. Again we could instead impose the equality I' F
FEI(N) = N type if the type theory already contains natural numbers.

In a similar way closure under other type formers including another uni-
verse can be stipulated. A final important closure property for universes is
impredicative quantification:

' o type a:obET: U

U-v
I'tEVe:oT: U




[ z:ob M : EIT)
T+ \e:o. MPT)  El(Ya: 0.T)
I'EM: El(Vz:0.T) 'FN:o
I A})p[w:U]E‘l(T)(MJ N) : EI(T[N/z])

U-V-1

I+ A})p[m:g}m(nj\x: o.MPT) N EI(T[N/z))
T F Ab ey (0 M N) = MINJ] < BUT[Na])

The difference to closure under II-types is that the “domain-type” o is arbi-
trary and not confined to a “small type” of the form EI(S). In particular o
can be U itself and we can form terms like

polyone = Ve: UNs: El(c).c
where El(polyone) has the closed inhabitant
o+ AC: U.Ax: EI(C).x : El(polyone)

—the polymorphic identity function known from polymorphic lambda calcu-
lus.

Universes are employed for modularisation and abstraction. For instance,
they permit the definition of a type of a certain algebraic structure. In this
way the type of semigroups with carrier X : U can be defined as

SEM(X) ¥ So: BI(X) x EI(X) — EI(X).
z: BI(X).I1y: EI(X).Iz: EI(X).Id gy x)(o(o(2,y), 2) , o(2,0(y, 2)))

An element of type SEM(X) consists of a binary function on El(X), and
a proof that this function is associative. We can now write a function F' :
IIX: U.MON(X) — SEM(X) which “forgets” the neutral element. We can
also form L X: U.SEM (X); the type of semigroups. More complex examples
of this kind may be found in (Luo 1991). An application of this pattern to
semantics of modules in functional languages is (Harper and Mitchell 1993).

Under the propositions-as-types analogy we can view a universe also as
a type of propositions. For instance, the type 0 — U can be viewed as an
analogue to the power-set of o.

2.1.7 Miscellaneous types
A counterpart to absurdity in logic is the following empty type:

T ctat ['F o type 'FM:0
— 0-F o 0-E
[0 type R (M) :o




There are no canonical elements in 0 so there is no “computation rule” like
N-C-Z. Tt is sometimes useful to have a type with a single canonical element
corresponding to the true proposition:

FT ctxt F T octxt
' -1 type Ex:1

[ z:1F o type ['FH:olx/z] '-M:1
Ik R[l,'n:l}(r(Ha M) : O'[M/.’E]

1-E

[ - Ry, (H, %) 1 alx/2]

1-C
[ F Rba,(H M) =H: o[M/x]

There are a number of other types considered in the literature like co-product
types corresponding to binary disjoint union, finite types with n elements for
each natural number n, types of well-founded trees, subset types, and quotient
types to name the most important ones. In implementations like Lego and
Coq new type formers can be defined “on the fly” by giving the rules for their
canonical elements (like Suc and 0 in the case of N). The elimination rules
are then generated automatically. In Alf this is also possible, but elimination
rules are replaced by the more general device of pattern-matching on the form
of the constructors.

Finally, we can consider arbitrary theories of dependent types defined by
type symbols, constants, and equations. This is described in (Pitts 1997).

2.2 Examples of type theories

In this section we briefly describe some “named” type theories and how they
fit into the formal framework described here.

2.2.1 Martin-Lof’s type theory

This is a collective name for type theories containing several of the above-
described type formers, but not a universe closed under impredicative quan-
tification. A characteristic feature of Martin-Lof’s type theory is the presence
of identity types either with or without equality reflection. Martin-Lof in-
vented his type theories with the aim of extending the propositions as types
correspondence to predicate logic and to provide a universal language for
constructive mathematics (Martin-Lof 1984; Martin-Lof 1975). A standard
reference on Martin-Lof’s type theories is (Nordstrom, Petersson, and Smith
1990). An implementation of extensional Martin-Lof type theory is the Nuprl
system (Constable et al. 1986).



2.2.2 The Logical Framework

Martin-Lof’s Logical Framework (LF), see Part IV of (Nordstrom, Petersson,
and Smith 1990), is a type theory with TI-types and a universe. Its intended
use is to define theories, in particular Martin-Lof type theory, as extensions
of the LF by constants and equations.

The idea is that types and type formers are declared as constants in the
universe and that term-formers are declared as constants of the appropriate
El-types. To distinguish from object level type formers some different nota-
tion is used: the II-type of the framework is written (z: 0)7 instead of Ilz: 0.7
and (0)7 instead of 0 — 7. Tterated II-types are written (xy: 07, ..., 2, 0,)T
instead of Ilxq:04....1lx,:0,.7. Abstraction is written as [z:o]M instead
of Az:0.M™ and application is written M(N) instead of Appi,.,, (M, N).!
[terated abstractions and applications are written [z1:07,...,%,:0,]|M and
M(Ny, ..., N,), respectively. The lacking type information can be inferred.
The universe is written Set instead of U. The FEl-operator is omitted.

For example the II-type is described by the following constant and equality
declarations (understood in every valid context):

F11: (0: Set, : (0)Set) Set

= App : (o: Set, 7: (o) Set, m:1(o, T),

=X (o Set, T (0)Set, m: (z:0)71(x))(0, T)

o: Set, : (0)Set,m: (x:0)7(x),n:o b+
App(o,1,\o,7,m),n) =m

Notice, how terms with free variables are represented as framework abstrac-
tions (in the type of \) and how substitution is represented as framework
application (in the type of App and in the equation).

In this way the burden of dealing correctly with variables, substitution,
and binding is shifted from the object language to the Logical Framework
and so can be handled once and for all.

Of course, the LF can also cope with type formers other than the dependent
function space. Since we refer to it later in §4, we consider here an ad hoc
type former (creating a copy of its argument) defined by the two rules

I' - o type 'EM:o
['FL(o) type ['F1(M):L(o)

In LF it would have to be rendered by two constants L : (Set)Set and 1 :
(0: Set,o)L(0).

The Alf system (Magnusson and Nordstrém 1994) is based on the Logical
Framework. It allows for the definition of types in Set simply by giving their

'In loc. cit. and in the Alf system the type annotations in functional abstractions are
omitted. We include them for the sake of consistency.



constructors. Functions on the types are then defined by pattern-matching
over the constructors as needed.

The Logical Framework can also be used to encode the syntax of other
logical systems such as predicate logic and modal logic. = The interested
reader is referred to (Harper, Honsell, and Plotkin 1993).

2.2.3 The Calculus of Constructions

The Calculus of Constructions (CC) (Coquand and Huet 1988) is a type the-
ory with Il-types and a universe closed under impredicative quantification
(U-Impr). The universe is traditionally denoted by Prop and the correspond-
ing Fl-operator is either written Prf(—) or omitted. The idea is that the
universe Prop corresponds to a type of propositions and that Prf(—) asso-
ciates the type of proofs to a proposition. Originally, it was intended that
Prop not only contains propositions, but also datatypes like the natural num-
bers which are definable by their “impredicative encodings”, for instance one
has
Nat % prf (Ve: Prop Nz: Prf(c).Ns: Prf(¢) — Prf(c).c)

and for this type constants 0 and Suc(—) can be defined as well as an operator
permitting definition of functions by primitive recursion. The point is that
Nat itself is of the form Prf(—) and so can serve as the argument ¢ to an
element of Nat. Also other inductive datatypes like lists or trees can be
defined in this way. Similarly, logical connectives can be defined on the type
Prop by their usual higher-order encodings (Coquand and Huet 1988).

The encoding of datatypes inside Prop proved insufficient as no internal
induction principles (like RN) are available for these. This gave rise to two
extensions of the pure Calculus of Constructions: Luo’s Extended Calculus
of Constructions (ECC) implemented in the Lego system (Luo 1994; Luo and
Pollack 1992) and the Calculus of Inductive Definitions (CID) implemented
in the Coq system (Coquand and Paulin-Mohring 1989; Dowek et al. 1991).
ECC extends the Calculus of Constructions by a sequence of universes Uy,
Uy, ... where each U;;; contains a code for U; and Prop is contained in U.
Datatypes reside in Uy and are given by inductive rules like the ones for N.
The higher universes are used for modularisation as hinted at in the example
above. Prop is used for propositions only.

In the CID we have two universes both closed under impredicative quantifi-
cation, Set and Prop. The datatypes reside in Set and are given by inductive
rules as in ECC. The implementation of the CID, Coq, comes with a program
extraction facility which extracts executable ML programs from derivations
in CID essentially by removing all terms and types coming from the universe
Prop, see also (Paulin-Mohring 1989).



2.3 Pre-syntax

The syntax of types, terms, and contexts has been given together with the
typing and equality rules. For certain purposes it is convenient to have a
simpler inductive definition of possibly non well-typed terms, out of which
the actual ones are singled out by the rules. For instance, we might want
to consider App, nn(0,0) as a term albeit not a well-typed one. These pre-
terms, -types, and -contexts have been used to give semantics to type theory
in terms of untyped computation (Allen 1987; Martin-Lo6f 1984); we will use
them as an auxiliary device in the definition of the interpretation of type
theory in semantic structures and also in the definition of context morphisms
below.

The pre-contexts ('), pre-types (o, 7), and pre-terms (M, N) for a type
theory with II—, ¥—, identity types, and natural numbers are given by the
following grammar.

r = 0
| T, z:0 provided z is not declared in T"

o, T = Ix:ior | Xz:ior | Id,(M,N) | N

M,N,H,P = z|Xx:o.M" | App(,., (M, N) |
Pair[m:”}T(M,ij) \ R[X;:(szg_,rﬂp([ﬂ?l()',yiT]H, M) |
Reﬂrr(M) | R[w:a,y:a,p:ldg(m,y)ﬂ’r([Z: U]H ’ M’ N’ P) ‘

0| Suc(M) | RE:N}U(HZ, [n:N,z:0|H, M)

Capture-free substitution and identification of terms with different bound
variables can then be dealt with on the level of the pre-syntax. We will use
the predicates well-formed or valid for those pre-terms/-types/-contexts which
actually occur in derivable judgements. Note that the variables declared in a
pre-context are pairwise distinct.

Exercises
E2.1 Construct an inhabitant of the type

m: N, n: N F Idx(m 4+ n,n + m) type

E2.2  Show that for arbitrary types ' - o type, I' - 7 type, and [', x: 0, y: 7 I
p type the following type corresponding to the axiom of choice is inhabited:

I'E (Mz:0.Xy:7.p) = (Xf:0 = r.1lz:o.p[(f x)/y]) type



E2.3 By analogy to the type of natural numbers define the rules for a list
type former which to any type o associates a type List(o) consisting of finite
sequences of elements of o. Hint: think of lists as inductively generated from
the empty list by successive additions of elements of o (“cons”). Define a
length function of type List(c) — N and define a type Vec,(M) of lists of
length M for each M : N using lists, the identity type, and the Y-type.

E2.4 Define a type of binary natural numbers with three constructors: Zero,
Sucg, and Suc; and define a conversion function from these binary represen-
tations to N.

E2.5 Give the rules for a universe U containing a code 0 for the empty type
0 and a code 1 for the unit type 1. Show that in a type theory which supports
natural numbers, this universe, and the empty type itself the following type
in the empty context is inhabited

o F Idn (0, Suc(0)) — 0 type

corresponding to Peano’s fourth axiom 0 # 1. Hint: define using RN a
function f:N — U such that o = f0 = 1: U and o - f(Suc(0)) =0 : U.
Later on we will show by a semantic argument that the above type is not
inhabited in the absence of a universe (Smith 1988).

E2.6* (Troelstra and van Dalen 1988) Show that in type theory without the
empty type 0 such an empty type can be defined as Idn(0, Suc(0)). The
elimination operator R? must then be defined by induction on the structure
of . Notice that in view of the semantic result anticipated in the previous
exercise this definition hinges on the fact that there is no empty type in the
first place.

E2.7*  Show that for any type theory containing some or all of the type
formers described above the rules Weak and Subst are admissible.

E2.8* (Weak X-types in the Calculus of Constructions) For - o type and
x:0 =T : Prop define

Az:0.P ¥ Ve: Prop.(Va:o.P = ¢) = ¢

where X = Y abbreviates Vp: Prf(X).Y. Define a pairing operation which
to M:o and N: Prf(P[M]) associates an element 3-1(M, N) : Prf(3z:0.P)
and define in the case that o = Prf(S) for some S: Prop a first projection
witnessg : Prf(3z: Prf(S).T) — Prf(S). Show that for M and N as above
one has F witnessg 3-1(M, N) = M.



E2.9 Give the rules for a universe closed under impredicative quantification
using the “economic syntax” exemplified in rule U-II-Ty

E2.10* Prove that whenever ' = M : o and I' = M : 7 then I' - 0 = 7 type
by induction on derivations. Find some type annotations in term formers
which can safely be omitted without violating this property. Discuss the
properties a type theory must have so that the type annotation in application
can be omitted. In other words when can we replace Appy,.,). (M, N) by
App(M, N) in the official syntax without violating uniqueness of types. See
(Streicher 1991) for a thorough discussion of this point.

2.4 Context morphisms

Definition 2.11 Let T and A & T1:01,...,Ty: 0, be valid contexts. If f def
(M, ..., M,) is a sequence of n pre-terms we write
r'-f=A

and say that f is a context morphism from I' to A if the following n judge-
ments hold:

'+ M] .01
r l_ MQ : O'Q[Ml/.’El]

b M, : o[ My 22| [Ms /o] .. [My 1 /2 1]

Examples. For any context I" we have the empty context morphism () from T’
to ¢ and this is the only context morphism from ' too. IfI' = z1:0q,...,2,:0,
is a context and I' - o type and x is a fresh variable, then (z,...z,) forms
a context morphism from T',z:0 to I" which we denote by p(I",o). A more
concrete example is (0, Refiy(0)) which forms a context morphism from ¢ to
n:N,p: Idn(0,n) as ©0: N and oRefin(0) : (Idn(0,7n))[0/n]. The same se-
quence of terms also forms a context morphism from ¢ to n: N, p: Idn(0, 0)
which shows that the “target context” A is not uniquely determined by f.
For any term I' - M : o we can form a context morphism I' - M = I',z:0
where M = (xy,...,2,, M) if [ = z,:01,...,7,:0,. Finally, we have the
identity context morphism I' - idr = T given by idr = (z1, ..., x,).

2.4.1 Generalised substitution

We denote syntactic identity up to renaming of variables by =. If ' - f = A
and 7 is a pre-type we write 7[f/A] for the simultaneous replacement of the
A-variables in 7 by the corresponding terms in f, more precisely, if A =
x1:01, ..., xp:0n and f = (My, ..., M,) then

T[f/A] = T[My/21][Ms/xs] . .. [My, ] 4]



The attribute “simultaneous” means that the variables in A should be made
disjoint from those in I before performing the substitution. We define —[f/A|
analogously for pre-terms, pre-contexts, and judgements J of the form M : o,
o type, M = N : 0, 0 = 7 type.

By induction on the length of A and using rules Weak and Subst we can
then establish the following property:

Proposition 2.12 If T'+ f = A and A,© + J then I, O[f /Al = J[f/A].

One is only interested in the case where © = ¢ as this subsumes the general
case with f replaced by the context morphism q(f, ©) from I, O f/A] to A, ©
given by q(f,0) = (f,21,...,2x) for © = z1:0,,. .., z,: 0. However, in order
to get the inductive argument through one needs the case of non-empty ©.
When © = ¢ and when no confusion can arise we write 7[f] for 7[f/A] and
similarly for terms, contexts, and judgements.

Notice the special case of the context morphism p(T', o) defined above.
IfT F J then T 2z:0 B J[p(T,0)], but J = J[p(T,0)] so the generalised
substitution subsumes weakening. Similarly, for I'z:o0 - J and ' - M : o
we have J[M] = J[M/x] so ordinary substitution is subsumed, too.

The defined substitution operation allows us to establish the following
derived typing rule for non-empty context morphisms:

'-f=A A xo ctat L'EM:ol[f]

Mor-Cons
I'E(f,M)=Az:0 T ons

This rule together with

FT ctxt

————  Mor-Empt
TF()=o Py

generates all valid judgements of the form I' - f = A.

IfTFf=Aand AF g= 0O where g = (Ny,...,Ny) we can form
the list of terms g o f = (Ni[f], ..., Nk[f]). In other words g o f is obtained
by simultaneously replaceming the A-variables in ¢ by the corresponding
terms in f. This list g o f forms a context morphism from I" to © and o
as indicated is an associative operation. Although this can be seen directly
with some intuition about substitutions we prefer to state it as a proposition
together with some other properties which the reader is invited to prove by
simultaneous induction on the length of g.

Proposition 2.13 Assume BFe=T1,I'F f = A, and A+ g = ©O. Further-
more let © - o type and © = M : . Then the following equations hold up
to syntactic identity.

'Fgof=06

olgo f]=olgllf]

Mg~ f] = Mlg][f]

(gofloe=geo(foe)



Hint for the proof: define go f inductively by ()o f & () and (¢, M) o f &

(g o f, M[f]) where (g, M) denotes the list g extended by M. Use the fact
that 7[f] = 7 if none of the A-variables occurs in 7 and that 7[N/x][f]

#[f/AINIf)/2]. 0

2.4.2 Context morphisms and definitional equality

Let f = (M,...,M,) and g = (Ny,...,N,). ' f=AandT'Fg= A
then we write I' - f = ¢ = A as an abbreviation for the n judgements
' M =Ny : 01, ' My = Ny @ o9[My/ay], ..., T - M, = N, :
on[Mi/x1] .. [Mp_1/xn 1] if A = zy:01,...,2,:0,. Notice that we could
equivalently replace the second judgement by I' = My, = Ny : 03[ N /2]
in view of the first one and the congruence rules for definitional equality.
IfT'F f =9 = A we say that f and ¢ are definitionally equal context
morphisms from I' to A. By straightforward induction it is now possible
to derive congruence rules for the defined operators on context morphisms,
w.r.t. this definitional equality and we also have that if = ' = I" ctxt, F A =
A ctet,and T f=¢g= AthenI"F f=g= A"

Exercises

E2.14 Show that the above-defined context morphisms p(I', o), M, and
q(f, ©) have the following properties:

o IfTF f= A then idao f = f = foidr.

o If '~ M : o then p(I',o) o M = idr.

HTF(f,M)= A, z:0 then p(T',0) o (f, M) = f and z[(f, M)] = M.
o IfI'F f= Aand+ A, x:0 ctrt then p(A,0)oq(f,z:0) = fop(L, o[f])-

frFf=Aand AFM:othen Mo f=q(f,2:0)0 M[f].

If ' - o type and x fresh then idy .., = (p(T',0),x).

E2.15 Show that if A F [Iz: 0.7 type and I' = f = A then (Ilz:0.7)[f] =
[z:o[f].7[q(f, z: 0)]. Hint: you may assume that = does not occur in A as
types are identified up to renaming of bound variables.

3 Category-theoretic semantics of type theory

Now we develop an abstract notion of semantics for theories of dependent
types of which most known interpretations of type theory form an instance.



The main purpose in defining such an abstract semantics is that it is easier
to show that a mathematical structure forms an instance of the abstract
framework rather than defining an interpretation function for it directly. This
is achieved by essentially three properties of the abstract semantics:

e Substitution is a primitive operation rather than inductively defined.
e Variables are replaced by combinators for substitutions.

e Definitional equality is modelled by true (set-theoretic) equality.

Category-theoretic semantics is based on an abstraction from the combinators
(like o, p, (—, —), q(—, —)) and equations for context morphisms identified in
the previous section. The key concept is the one of a category: a collection of
objects (the contexts), and for any two objects a collection of morphisms (the
context morphisms) together with an associative composition and identities.
For lack of space we cannot give an introduction to categories here and need
to presuppose some very basic notions, in particular categories, functors,
natural transformations, isomorphisms, terminal objects, and the category of
sets and functions. Reading the relevant parts of the first chapter of (Lambek
and Scott 1985), for instance, should suffice to attain the required state of
knowledge. If C is a category we write |C| or C for its collection of objects
and C(A, B) for the collection of morphisms from A to B. We also write
[+ A — Binstead of f € C(A, B). A final prerequisite: if ¢ is an informal
proposition then we define the set [¢] by [¢] = {x} if ¢ is true and [¢] = 0 if
¢ is false.

3.1 Categories with families

We choose the semantic framework of categories with families (CwFs) (Dybjer
1996) a variant of Cartmell’s categories with attributes which have the advan-
tage of being equationally defined, rather than using conditional equations.
Furthermore, CwF's are closer to the syntax than categories with attributes
and therefore—this is the hope of the author—should be easier to understand.

The definition of a CwF follows the structure of the judgements in type
theory except that context morphisms and substitution are part of the struc-
ture rather than defined afterwards. Along with the explanation of CwF's
we define two important instances: the term model 7 of the calculus of de-
pendent types described in § 2. and the set-theoretic model Set as running
examples.

If we include context morphisms the syntax contains four kinds of objects:
contexts, context morphisms, types, and terms. Accordingly, for each of these
we have a domain of interpretation in the model. More precisely, a CwF C
contains



e a category C of semantic contexts and context morphisms
e for I' € C a collection Ty.(I") of semantic types

e for ' € C and 0 € Ty,(I') a collection Tmc(I',0) of semantic terms

Where appropriate we leave out the attribute “semantic” and write Tme(o)
instead of Tm¢ (T, o). We also omit the subscripts if they are clear from the
context.

In the term model 7 the collection of contexts is the quotient by defi-
nitional equality of well-formed contexts, that is pre-contexts I" such that
F T ctxt. Two such contexts I and A are identified if = ' = A ctxt. We tend
to denote equivalence classes by their representatives. A morphism from T’
to A is an equivalence class with respect to definitional equality of syntactic
context morphisms I' = f = A. This is well-defined in view of the obser-
vations in §2.4.2. Composition and identities are given by the corresponding
operations on syntactic context morphisms. Ty,(I') is the set of pre-types o
such that [' - o type again factored by definitional equality, that is o and 7
are identified if I' - 0 = 7 type. Finally, Tm(T', o) is the set of pre-terms M
with I' = M : o factored by definitional equality.

The set-theoretic model Set has as category of contexts the category of
sets and functions. An element of Tyg,(I') is a family of sets (0,),er indexed
over . An element of Tmg,(I',0) is an assignment of an element M(v) of
o, for each y € T,

Next, we need constants and operations on these domains in order to in-
terpret the rules of type theory. Moreover, substitution must be axiomatised
in such a way that it corresponds to the defined syntactic substitution. The
definition of CwFs only accounts for the structural rules common to all sys-
tems of dependent types as set out in § 2. The interpretation of the various
type and term formers will be given afterwards as additional structure.

Semantic substitution is described by two operations for each context mor-
phism, one for types and one for terms: if f : ' — A then there is a function
—{f}: Ty(A) — Ty(T') and for o € Ty(A) a function —{f} : Tm(A,0) —
Tm(T,0{f}). These operations must be compatible with composition and
identities in the following sense. If A, © € C, f : ' = A, g : A — O,
o€ Ty(®), and M € Tm(O,0) then the following equations are required to
hold:

ofide} = o € Ty(O) (Ty-1d)
olgo f} = ol{gH{f} € Ty() (Ty-Comp)
M{ide} = M € Tm(0,0) (Tm-Id)
M{gof}y = M{gH{f} € Tm(T,0{go[}) (Tm-Comp)

Notice that the former two equations are required for the two latter to “type-
check”. Notice also, that substitution together with equations (Ty-Id) and



(Ty-Comp) makes Ty a contravariant functor from C to Set. The sets Tm
can also be organised into a functor, see §3.1.1 below.

In the term model substitution is the “generalised substitution” defined in
§2.4.1. This means that we have o{f} oof o[f] and M{f} dof M]|f]. In the
set-theoretic model substitution is given by pre-composition. If f: A — I'is
a function and (0, ),er is a family of sets then o{f} is the family of sets given
by o{f}s & ops). Similarly, if M € Tm(T, o) then M{f}(8) & M(f(6)). Tt
is easy to see that the required equations hold.

Next we want to interpret the context formation rules. To model the
empty context we require a terminal object T in the category C. We usually
write ()r for the unique morphism from I' to T. In the term model and in
the set-theoretic model these terminal objects are the empty context and an
arbitrary singleton set, respectively.

To interpret context extension we require for each I' € C and o € Ty(T')
a context I.o € C and a morphism p(c) : .o — T'. The context I'.o is
called the comprehension of ¢ and p(o) is called the projection associated
to 0. In the term model I'.o is the extended context I',x:0 and p(o) is
the context morphism given by I';z:0 F p(I',;0) = [ as defined in §2.4.
In the set-theoretic model I'.o is the disjoint union of the o, i.e. the set
{(v,2) |y €' Az € o,}. The function p(o) then sends (v, z) to 7.

The morphism p(o) can be seen as the first projection out of the gen-
eralised product I'.o. The second projection takes the form of an element
v, € Tm(T.0,0{p(0)}) corresponding to the judgement I',z:0 F 2 : 0.

In the term model this is the term z in I',2: 0 + x : o, whereas in the
set-theoretic model we define it by the assignment (v, x) — x. Note that, in
this model, o{p(0)}(y.2) = 05

According to the definition of syntactic context morphisms we need an
operation which extends a semantic context morphism by a terms. If f :
I' 5 A o€ Ty(A), and M € Tm(T',0{f}) then there is a context mor-
phism (f, M), : I' = A.o—the extension of f by M—satisfying the following
equations for f: ' > A, g:B—=T,0¢€ Ty(A), M € Tm(T,0{f}).

plo) o (f, M), = f = A (Cons-L)

Vo l(f, M)s} = M e Tm(T,o{f}) (Cons-R)
(f[M)sgog = (fog.M{g})s : B—Ao (Cons-Nat)

<p(0)v VG’>0’ - idA.O’ . Ao — Ao (COHS—Id)

In the term model the extension of f by M isT' = (f, M) = A, z: 0, whereas in

the set-theoretic model we have (f, M),(v€T) % (f(v), M(v)). We include
the “type” information o in (f, M), as it cannot be inferred from the “types”
of f and M.

This completes the definition of categories with families. Let us summarise
that a CwF is a structure (C, Ty, Tm,—{-}, T,()_,——,p,v_,(—,—)_) of



sorts and operations subject to the requirements set out above. (The substi-
tution —{—} is understood to work for both types and terms.)

3.1.1 A more abstract definition

We give in this section an equivalent, but more abstract and more compact
definition of CwF based on family-valued functors and a universal property.
The idea of using family-valued functors is due to Peter Dybjer.

Definition 3.1 The category Fam of families of sets has as objects pairs B =
(B, B") where B is a set and (B} )pcpo is a family of sets indexed over BP.
A morphism from B to C = (C° C") is a pair (f°, f') where f°: B® — CY is
a function and f! = (f})yepo is a family of functions f; : B1(b) — C*(f°(b)).

The carrier sets Ty and T'm of a CwF over category C can now be given more
compactly as a single functor F : C? — Fam. Indeed, given Ty and Tm we
obtain a functor functor F with object part

F() = (Ty(T), (Tm(T, 0))oe ry(r))

The morphism part of F is induced by semantic substitution. Conversely,
given a functor F : C°? — Fam we define Ty(T') := F* and Tm(T",0) = F'(0)
where F(T') = (F°, F'). If f: A — T then writing F(f) = (f°, f') we have
fO: Ty(T) — Ty(A) and f!: Tm(T,0) — Tm(A, f°(0)) giving us semantic
substitution. The required equations follow from functoriality of F.

Definition 3.2 Let C be a category and F = (Ty, Tm) : C°? — Fam be a
functor. Furthermore, let T' be an object of C and 0 € Ty(T'). A compre-
hension of ¢ is given by an object [.0 of C together with two projections
p(o0): .o - T and v, € Tm(l.0,0{p(0)}) such that for each f: A — I' and
M € Tm(c{f}) there exists a unique morphism (f, M), : A — I'.o satisfying

p(a)°<faM>U = f and VG’{(f’M>0'}:M'

Definition 3.3 (Dybjer) A category with families is given by the following
data.

e a category C with terminal object,
e a functor F = (Ty, Tm) : C°? — Fam,
e a comprehension for each I' € C and o € Ty(I').

This definition is equivalent to the one in §3.1. The proof is left to the reader.

The fact that comprehensions enjoy a universal property and thus are
unique up to isomorphism (see E3.12) means that up to a choice of represen-
tatives a CwF is fully determined by its underlying family-valued functor.



3.1.2 Terms and sections

Assume a CwF. If M € Tm(T',0) then also M € Tm(T,o{idr}) and thus
de

MY (idp, M), T - T.0

By (Cons-L) we have p(c) o M = idp thus M is a right inverse or a so-called
section of p(o). Conversely, if f : I' — T.o is a section of p(o), that is,
p(o) o f = idr then

vo{f} € Tm(T,0{p(0)}{f}) = Tm(',0{p(0) > f}) = Tm(T,0)

by (Ty-Comp), (Ty-Id), and assumption. These two operations establish a
bijective correspondence between the collection Sect(p(o)) of sections of p(o)
and Tm(T,0), as v,{M} = M by (Cons-L) and v,{f} = (idr,v,{f})s =
(p(a) o five{f})e = (P(0),Vs)s o f = f by (Cons-Nat) and (Cons-Id).

3.1.3 Weakening

Suppose that f : B — I' and 0 € Ty(I'). A context morphism q(f,o) :
B.o{f} — T'.o called the weakening of f by o is defined by

q(fa U) = <f o p(o—{f})vvo—{f}>0

In the term model q(f, o) is the eponymous syntactic context morphism de-
fined in §2.4; in the set-theoretic model we have q(f,o)(B€B,2z€055)) =
(F(5). 7).

A weakening map is a morphism of the form p(c) : .o — I' or (induc-
tively) a morphism of the form q(w,7) where w is a weakening map. In the

term model a weakening map takes the form of a projection from I',z:0, A
to [, A.

We introduce the abbreviations ™ and M* for o{w} and M{w} if w is a
weakening map which is clear from the context. Furthermore, if f : ' — Ais

any context morphism we may write f* for q(f, o). For example, as demon-
strated in E2.15 we have in the term model Tz o.7{f} = Mz:o{f}.7{fT}.

Exercises

E3.4 Show that in a CwF the defined morphisms q(f, o) from §3.1.3 do
satisfy the coherence requirements q(idy, o) = idr, and q(fog,0) = q(f,0)0

a(g,o{f})

E3.5 Transform the following equations into the explicit notation; prove
them, and explain their intuitive meaning. (1) p(0)" oV, = p(0) oV, = idr.,;
(2) froM{f}=Mof; (3) f = {p(o)of,ve{f})s. Also expand the expression
[o.r when o,7 € Tyl'.



E3.6 Check that equations (Cons-L) ... (Cons-Id) hold in the set-theoretic
model.

E3.7 This exercise will be taken up in later sections and will lead us up to
Jan Smith’s proof of the independence of Peano’s fourth axiom from Martin-
Lof’s type theory without universes (Smith 1988). Let P be the poset of truth
values {ff, t} where ff < tt viewed as a category. Show that P has a terminal
object, viz. . Extend P to a CwF by putting Typ(tt) = Ty, (ff) = {ff, tt}
and Tmp(T,0) = [ < 6]. Hint: define comprehension by I'.oc &€ T'A¢. An
intuition for this model (or rather for the interpretation of the syntax in it)
is to view tt as “potentially inhabited” and ff as “always empty”.

3.2 Other notions of semantics

In the literature other notions of model have been offered which mostly are
equivalent to CwFs. A key property of these models is that substitution on
terms is a defined concept rather than a primitive. To understand how this
works we need the notion of pullback in a category.

Definition 3.8 Let C be a category, f : X — Y and g : 7 — Y morphisms
with common codomain. A pullback of ¢ along f is a pair of morphisms
p: P—Y and q: P — Z such that fop = goq and whenever p’' : P’ — X
and ¢’ : P' — Z are two morphisms with f o p’ = ¢go ¢ then there exists a
unique morphism h : P’ — P such that poh =p' and goh =¢'. ?

Y

A quadruple (p, g, f, g) of morphisms with fop = goq (a commuting square)
is called a pullback if p and ¢ form a pullback of ¢ along f.

In the category Set the pullback of g : Z7 — Y along g : X — Y always

exists and is (e.g.) given by P dof {(z,2) |r e XNze ZAf(z)=g(2)}. The
two projections p, ¢ send a pair (x,2) € P to = and z, respectively.

2This and the following diagrams were typeset using Paul Taylor’s Latex diagram pack-
age the use of which is herewith gratefully acknowledged.



In Set we can view a morphism ¢g : Z — Y as a family of sets indexed over
Y, namely the family of sets (¢ '(y)),ey where g () © e Z]g(z) =y}
Conversely, if we are given a family of sets (G,),ey we can construct a function
g into Y as the projection from the disjoint union

ZE{(y.7) lyeY Ay eG,}

to Y which sends (y,7) to y. (This is precisely p((Gy)yey) in the notation of
§3.1.) Now a pullback of the thus defined g : 7 — Y along f : X — Y is
given by applying this construction to the composite family (G ¢(y))zex, more
precisely, we can put

PE{(z,7) |2 € XAy €EGa}

with projections p(z,v) = z and ¢(x,v) = (f(x),v). Note that this is not
equal to the canonical pullback of ¢ along f which is {(z,(z',7)) | = =
z"and v € Gy }-

A more general correspondence between pullbacks and substitution arises
in the framework of CwFs:

Proposition 3.9 Let C be a CwF, f: B — T', and 0 € Ty(T"). The following
square is a pullback

q(f, o)

B.o{f} [.o

p(a{f}) p()

B r

S

Proof. The diagram commutes by equation (Cons-L). To see that it is indeed
a pullback assume p' : © — B and ¢’ : © — I'.o such that fop’ = p(0).q’. We
can decompose ¢’ as ¢' = (p(0),Vs)o o ¢ = (p(0) o ¢',ve{q' })o = (f o P/, N)o,
where N & v {¢'}. We have N € Tm(o{p(c)}{¢'}) = o{p(0) s ¢'} = o{f o
p'} =o{f}{p'}. Therefore,

h D Ny - © = Bo{f}

We have p(o{f})oh =¢ by (Cons-L) and
a)oh

q(fv °
= (fo P(U{f}); Vo{f})o ol by definition
= (fop(a{f}) o h,vorp1{})o by (Cons-Nat)
= (fop Vo {h})o by (Cons-L)
= (foD, Va{Q'}) by (Cons-R)
= (p(o)oq',vo{q'})o by assumption
= q by (Cons-Nat) and (Cons-1d)



For uniqueness assume a morphism »' : © — B.o{f} such that p(o{f})oh' =

p' and q(f,0) o B = ¢". We must show h' = h. To see this, we expand
h' as (p(a{f}) o W' ,Voin{P'})oisy using (Cons-Id), (Id-L), (Cons-Nat). By
assumption we can rewrite this to (p’, M), (s} where

M % v,y {1} € Tm(o{fop(o{f})oh'}) = Tm(o{fep'}) = Tm(o{p(o)eq'})
Now we have

vold'}

= v,{aq(f,0)-h'} by assumption
= vyni{h'} by definition of q and (Cons-R)
= M

so we are done. OJ

The pullback property of substitution may be taken as primitive thereby
making substitution on terms superfluous.

Definition 3.10 A category with attributes (Cartmell 1978; Moggi 1991; Pitts
1997) consists of

e A category C with terminal object T.

A functor Ty : C? — Set, i.e., a set Ty(I') for each I' € C and a
function —{f} : Ty(I') — Ty(B) for each f : B — T such that (Ty-Id)
and (Ty-Comp) from §3.1 hold.

For each o0 € Ty(T") an object .o and a morphism p(c) : .o — T.

For each f: B — T and o € Ty(T") a pullback diagram

B.o{f} M. .o

p(a{f}) p(o)

B r

f
such that q(idr,o) = idr, and q(f o g,0) = q(f,0) o q(g,c{f}).

It follows from Prop. 3.9 and E3.4 that every CwF is a category with at-
tributes if we forget about the terms.

Conversely, given a category with attributes we can construct a CwF by
putting Tm(T', o) & Sect(p(c)) and for M € Tm(T, o) defining M{f} as the
unique morphism with p(o{f}) M{f} = idg and q(f,0) s M{f} = M- f.



For f: B — I, M € Tm(B,o{f}) we put (f, M), = q(f,0) o M and

finally define v,, as the unique morphism v, : I'.oc — I".0.0" with p(67)ov, =
p(0)Tov, = idr,. We leave it as an exercise to verify that this defines indeed
a CwF.

If one starts out with a category with attributes, constructs a CwF, and
from this CwF again a category with attributes one ends up with the one to
start off with. The other way round one gets back the original CwF with the
set of terms Tm(I", o) replaced by the set of right inverses to p(o) (cf. §3.1.2).

Notice that context extensions in categories with attributes are not unique
up to isomorphism. For instance, if o € Ty(I') nothing prevents us from
defining I'.o simply as I' and the corresponding morphisms p and g as iden-
tities.

There are various other notions of model all of which are essentially equiv-
alent as far as interpretation of type theory in them is concerned. Locally-
cartesian closed categories (Seely 1984) and categories with display maps
(Taylor 1986; Lamarche 1987; Hyland and Pitts 1989) are less general than
CwF's because semantic types are identified with their associated projections.
Usually, in these models the conditions corresponding to (Ty-Comp) and
(Ty-Id) only hold up to isomorphism, which makes the definition of the in-
terpretation function more complicated. See (Hofmann 1995b; Curien 1993).
Models based on fibrations (Jacobs 1991; Jacobs 1993; Ehrhard 1988) and in-
dexed categories (Curien 1989; Obtutowicz 1989) are more general since they
allow for morphisms between semantic types. These morphisms make it pos-
sible to describe certain type formers more elegantly, but do not have a direct
counterpart in the syntax. Mention must also be made of contextual cate-
gories where semantic contexts carry an explicit tree structure corresponding
to context extensions (see (Streicher 1991; Cartmell 1978) and E3.13).

For a good taxonomy of the different notions and various back-and-forth
constructions see (Jacobs 1993).

Exercises

E3.11 (Agnes Diller) Show that the requirement q(idy, o) = idy , in Def. 3.10
is actually redundant.

E3.12* Prove that comprehensions are indeed unique up to isomorphism in
the following sense: If 0 € Ty(I') and p : ¥ — ' and v € Tm(o{f}) is a
comprehension of o then there exists an isomorphism f : .o — ¥ satisfying
pof=p(o) and v{o} = v,.

Now give another proof of Prop. 3.9 by showing that (©,p',v,{¢'}) is a
comprehension of o{f}.



E3.13* A contextual category (Cartmell 1978; Streicher 1991) is a category
C with terminal object T and a tree structure on the objects given by a
function f on the objects of C such that f(T) = T and f (“father”) is
injective on C \ {T} and for each I' € C there is a minimal n  the level of
I' such that f*(I') = T. Moreover, the assignment Ty(I") = {A | f(A) =T}
extends to a category with attributes over C. Spell this out without using the
notion of a category with attributes and define a canonical construction of a
contextual category out of a CwF. The objects of the contextual category are
lists (o1, ,0k) where o1 € Ty(T) and 0,1 € Ty(T.0y. -+ .0;).

The advantage of contextual categories is that they rule out semantic con-
texts which do not arise from the empty context by successive applications of
comprehension. This can be used to establish properties of semantic contexts
by induction on the level. Examples of this can be found in (Streicher 1991).

E3.14*  Assume a CwF C. For each ' € C we define a category D(I") with
objects the types over I and in which a morphism from o to 7 is a C-morphism
f :T.o — .7 such that p(7) o f = p(0). Equivalently a morphism from o
to 7 can be defined as an element of Tm(I.o,7") (WhyI). Explain why this
defines indeed a category and find an extension of the assignment D to a
contravariant functor from C to the category of categories.

Such a functor is called an indexed category and forms the heart of Curien
and Ehrhard’s notion of D-categories (Curien 1989; Ritter 1992).

3.3 Semantic type formers

In order to interpret a type theory in a CwF we must specify how the var-
ious type and term formers are to be interpreted. This results in certain
requirements on a CwF which follow very closely the syntactic rules. We
give a precise definition for closure under II, Y, Id,V to convey the general
pattern. The reader may then by herself define the conditions for the other
type formers. Some are treated in the exercises.

Definition 3.15 A CwF supports II-types if for any two types o € Ty(I") and
7 € Ty(T.o) there is a type (o, 7) € Ty(T') and for each M € Tm(T".o, 1)
there is a term A, (M) € Tm([,II(o, 7)) and for each M € Tm(T,I1(o, 7))
and N € Tm(T,0) there is a term App, (M, N) € Tm(T,7{M}) such that
(the appropriately typed universal closures of) the following equations hold:

App, (Ao (M),N) = M{N} I1-C
(o, 7){f} = H(o{f},{a(f,0)}) € Ty(B) I1-5
Ao (M){f} = Aoiihr{attey (M{a(f,0)}) A-5

Appa,’r(Ma N){f} = Appa{f},T{q(f,a)} (M{f}a N{f}) App_S



The third equation typechecks by virtue of the second. The last equation
makes implicit use of (Ty-Comp) and the fact that

a(f.o) e M{f} =M. f

which follows by rewriting both sides to (f, M{f}),.

We see that we stipulate exactly the same type and term formers as in the
syntax together with an equation corresponding to II-C. Congruence rules
are not needed on the semantic level as everything preserves equality, but we
need extra equations to specify that substitution commutes with the semantic
type and term formers.

Since substitution is a primitive notion in the semantics we can obtain
a more economic definition of dependent function spaces by restricting the
App-combinator to variables and replacing it by an appropriate morphism.

Proposition 3.16 A CwF supports dependent function spaces iff there are
operations Il and A as in Def. 3.15 and for any two types o € Ty(I') and
7 € Ty(I'.0) a morphism

App,,:T.oll(o,7)" = T.o7

such that

p(r) o App,, = p(Il(o,7)") App-T
and for every term M € Tm(T)

App,. o M{p(0)} = M .

and, finally, for every morphism f: B — I’

App, . oala(f,o), (o, 7){a(f,0)}) = ala(f,0),T) o APPoifyrfatson

Proof. The first equation states that App, , leaves its first two arguments
unchanged, and thus corresponds to a term of 7. The second equation cor-
responds to II-C, and the third one to App-S; stability under substitution.
From the App-morphism we can define an application combinator as follows.
Given M € Tm(I(o,7)) and N € Tm(o) then v {App, ;o (N, M )y(sr+} €
Tm(r{p(1) o Appy,o (N, M )i(5r)+} = Tm(T{N}) by Equ. App-T and it fol-
lows from the other two equations that this term has the required properties.
Conversely, suppose that a model supports dependent function spaces in the
sense of Def. 3.15. Let A be I'.o.Il(c,7)*. We have N & v € Tm(A, o)
and M & Viie,r)+ € Tm(A (o, 7)"") = Tm(A, (0", 77F)). Accordingly,
we have
App, (M, N) € Tm(A, 77H{N}) = Tm(A,77)

We define the application morphism as
<p(H(UJ T)+7 AppU',T(M7 N)>T

The verifications are left to the reader. ]



This second definition of dependent function spaces allows for the follow-
ing restriction by which A, (M) is required to be the unique element of
Tm(I1(o, 7)) for which I1-C’ holds.

Definition 3.17 A CwF supports I[1-types in the strict sense if it supports them
and whenever M € Tm([.0,7) and U € Tm(I(0, 7)) and App,, o UT =M
then U = A\, .(M).

The syntactic counterpart to these strict II-types is an n-rule which allows
one to conclude I' - Ax:o.(M z)" = M : Hz: 0.7 from ' - M : [lz: 0.7.

If [1-types are supported in the strict sense then Eqn. A-S can be derived.
Moreover, the operation [1(o, —) then becomes part of an adjunction, see, e.g.
(Pitts 1997).

The term model of a type theory with II-types supports II-types with the
obvious settings:

(o, 7) ¥ Mz: 0.7

Aor (M) et N o MT

AppU,T(M’ N) d:ef App[a::a}T(M’ N)

The corresponding application morphism is the context morphism defined by
U,yio, 2zl om = (7, App .1, (2,y)) = T, 210, w: T where & are the variables
in I". Notice that these [I-types are not strict unless we enrich our type theory
with the abovementioned n-equation.

The set-theoretic model supports II-types in the strict sense. If (0,),er €

Ty(I') and (7(y,0))(7,2) € I'.0 then we define II(o, 7), dof yeo, T(y,0) and ab-

straction and application as their set-theoretic companions.
Definition 3.18 A CwF supports X-types if the following data are given:

e for any two types 0 € Ty(T') and 7 € Ty(I'.0) there is a type X(o,7) €
Ty(T') such that

S(o,m){f =2 {f},{f"}) -S
whenever f: B — I

e A morphism Pair,, : I'.o.r — I'.X(0o, 7) such that p(X(o, 7))o Pair,, =
p(co) o p(7) and such that

[T o Pair,, = Pairggpy rip+y o ft Pair-S

whenever f: B — I



e For every type p € Ty(I'.X(o,7) and term H € Tm(p{Pair,,}) a term
R>_(H) € Tm(p) such that

0,70
3 .
RU,T,p(H){PaZrU,T} =H »-C
and
R?,T,p(lg){fﬂ = .
++
Rt o (HUFTT)) R¥-S

The term model supports Y-types as follows: if I', z: 0 = 7 type then (o, 7) def

Yx:o0.7 and Pair, . is the context morphism
L aio,y: 7 (7, Pairg.e(M,N)) =T, 22 X2 0.7

Finally, if ', z: 0, y: 7 = H : p[Pair..}-(x,y)] then T, z: Sz 0.7 = R¥(H, 2) : p.
Also the set-theoretic model supports Y-types as follows.

def
(0, T)yer = {(zy)[reo, Ny € T(%:L‘)}

and
. def
Pairy (7, 2, y) = (7, (2, y))
This morphism Pair is surjective and thus we can take ¥-C as the defining
equation for R?}Tp which also ensures that R?T,p(H) is the unique term with

property »-C. A’gain, we say that Y-types are supported in the strict sense
if this is the case.

Definition 3.19 A CwF supports (intensional) identity types if for each type
o € Ty(T') the following data are given:

e atype Id, € Ty(T.o.0"),

e a morphism Refl, : .o — I(0) where I(0) = I'.o.0".1d, such that
p(ld,) o Refl, equals v, : .o — I'.0.0"; the diagonal morphism,

e for each 7 € Ty(I(0)) a function R € Tm(r{Refl,}) — Tm(r)

in such a way that these data are stable under substitution w.r.t. morphisms
f : B = T and such that whenever 7 € Ty(I(0)) and H € Tm(r{Refl,})
then R(’T‘fT(H){Reﬂ(T} =H.

The term model of intensional type theory supports identity types with
the following settings: if I' F o type then Id, is the type I'yz:0,y:0
Id,(z,y) type and Refl, is the context morphism

Iyziob (y,z,2, Refl (x)) = T, z:0,y:0,p: 1d,(x,y)



T, z:0y:0,p: ld,(z,y) - T[x,y,p] type and ', z:0 = H : 7]z, x, Refl ,(x)]
then
U, x:0,y:0,p: 1dy(2,y) = R™([z:0]H, 2, y,p) : T[2,y, ]

which defines the required function.

The set-theoretic model supports identity types with (Id,) (0. dof [ = v]

and Refl, (v, 2) & (v, 2,2,%). For H € Tmg,(t{Refl,}) we put

R (H) (v, 2, y,p) & H(x)

which is type correct because in the presence of p € Id,(z,y) we have z =y
and furthermore p itself equals *.

The semantic interpretation of natural numbers, unit types, empty types
follows the pattern of the X-types and is left to the reader. We conclude the
definition of semantic analogues to type formers by specifying the interpreta-
tion of a universe closed under impredicative quantification.

Definition 3.20 A CwF supports the Calculus of Constructions if it supports
[I-types and the following data are given:

e a type Prop € Ty(T). We write Prop also for T.Prop,

e A type Prf € Ty(Prop),
e foro € Ty(T") and p: .o — Prop a morphism Y, (p) : ' — Prop,
e a term former A, ,(—) and a morphism App,, like in Prop 3.16 estab-

lishing that Prf{V,(p)} is a dependent function space of Prf{p} over
o

such that all these data are stable under substitution.

The term model is a model for the Calculus of Constructions with Prop equal
to the type of propositions Prop in ¢ = Prop type and the type of proofs equal
to Prf(z) in x: Prop b Prf(x) type. A morphism from I'.o to Prop takes the
form of a term I';z:0 = P : Prop. Then I' - Vx:0.P : Prop is a morphism
from I' to Prop with the required properties.

The set-theoretic model is a model for the Calculus of Constructions with

the settings Prop % {ff,t} and Prf, © [z = tt]. If p : T.0 — Prop then we

define YV, (p)(7) & [“p(y, z) = tt for all z € a,"].

Notice that in this model all elements of a type Prf(A) are equal. By
“Reynolds’ paradox” (Reynolds and Plotkin 1988) this has to be so in any
set-theoretic interpretation of the Calculus of Constructions. In §3.4 below
we describe a model where this is not the case.

Notice that Prf{¥,(p)} is not equal to II(o, Prf{p}) but in bijective cor-
respondence because if p(vy,z) = tt for each x € o, then Prf{V,(p)} = {x},
whereas II(o, Prf{p}), is the set of functions from o, to {x} which is a sin-
gleton set, but not {x}. However, this bijective correspondence enables us to
define the required operations A, , and App, .



Exercises

E3.21 Show that the truth value model from E3.7 supports IT and ¥-types

each in the strict sense, as well as identity types with the settings I1(o, 7) def

oo 7and $(0,7) o Arand Id, & t, where D and A denote implication
and conjunction of truth values.

E3.22*  Show that a CwF supports -types in the strict sense iff it supports
them and each morphism Pair, ; is an isomorphism.

E3.23 Spell out what it means that /d and Refl are stable under substitu-
tion.

E3.24 Explain how a CwF C supports unit types if (but not only if) there
exists 1 € Ty(T) such that T.1 is a terminal object in C or equivalently T.1
is isomorphic to T.

E3.25 Define what it means for a model to support natural numbers. Show

that the set-theoretic model supports natural numbers by N 4f  and that

the truth value model supports natural numbers by N def g

E3.26* Define what it means to support an empty type in the sense of §2.1.7

and show that the set-theoretic model supports it by 0 def () and that the

truth value model supports it by 0 ' f and that this interpretation is the

only possibility. Conclude that if M, N € Tm(T',0) in this model then the
set Tm(T.1d,{(M,NT),+},0) is empty.

E3.27 Show that the truth value model forms a model of the Calculus of

Constructions with Prop % t, Prf(x) & t, ¥, (x) &

E3.28* Define the semantics of a universe containing a code for the empty
type and a code for the unit type. Show that the set-theoretic model supports
such a universe, but that the truth value model does not.

E3.29* Let Poset be the category of posets and monotone functions. Extend
Poset to a CwF by defining Ty(T") for poset I" as the set of down-closed subsets
(ideals) of I'. If o € Ty(T') then define .o as o considered as a poset and
let p(o) be the inclusion from o to I'. Finally, define Tm(I',0) as [[' = o].
For 7 € Ty(T.o) let IT'(0,7) € Ty(T') be {yel |Vz € 0.x <y = x € 7}.
Show that Tm([,Il'(0, 7)) = Tm(I".0,7), but that nevertheless II" does not
determine dependent function spaces on Poset because it is not stable under



substitution. In fact, the CwF Poset does not support dependent function
spaces.

E3.30* (Extensional type theory) Say that a CwF with identity types sup-

ports them in the strict sense if whenever o € Ty(I') and 7 € Ty(I(0))
(recall that (o) dof I.o.0".1d,) and H € Tm(7) then H = R (H{Refl,}).
Note that this is the case for the CwFs Set and P (WhyI). (1) Show that a
CwF with identity types supports them in the strict sense iff the morphism
Refl, : .o — I(0) is an isomorphism (with inverse Refi," & (p(c*))*). (2)

Extensional type theory is usually formulated as a type theory with identity
types where rules Id-E and 1d-C are replaced by the rules

'tP:Id,(M,N) ) I'tP:Id,(M,N)
Reflection
'EM=N:o 't P = Refl (M)

Id-Can

Show that the term model of extensional type theory supports identity types
in the strict sense. (3) Show that rule Id-Can is independent of Reflection
by considering the set-theoretic model with the setting (Idy)(y,0,) = {*, %'}
if + = y and () otherwise. “Independence” is understood informally here;
to establish that Id-Can cannot be derived from Reflection one needs the
soundness theorem 3.35 below. (4) Show that if a model supports identity
types in the strict sense then it supports X-types iff it supports them in the
strict sense.

3.4 The w-set model

In this section we present another important CwF which provides a non-trivial
interpretation of the Calculus of Constructions in which there is a proposition
N € Tm(Prop-) such that Tm(Prf(N)) has more than one element.

An w-set X consists of a set (denoted | X | or X) and a relation |FxyC w x| X|
between natural numbers and elements of X with the property that for each
x € |X]| there is an n € w such that n IFx x. If n lFx = one says that n
realises x or codes x or is a code/realiser for z so the condition on IFx means
that every z € X has a realiser.

A morphism from w-set X to Y is a function f from X to Y with the
property that there exists a partial recursive function e (thought of as a
natural number) such that whenever n IFx x then {e}(n)—the application of
e to n—is defined and realises f(z). The w-sets together with their morphisms
form a category.

An example of an w-set is N where |N| = w and n by m iff n = m.
The morphisms in the category of w-sets from N to N are exactly the total
recursive functions. Another example is T with |T| = {x} and n Ik % for all
n € w. This w-set is readily seen to be a terminal object. If X is a set then
we form an w-set AX by | A X|=X andnlkaox z foralln € w and z € X.



The category of w-sets can be extended to a CwF as follows. For w-set I’
the set Ty(I') consists of families of w-sets indexed over I'. Thus, o € Ty(I')
means that o = (0,),er and each o, is an w-set. A term M € Tm(T,0) is
a function assigning to each v € I' an element M (y) € o, such that there
exists a partial recursive function e with the property that for each v € I" and
n IFp oy the computation {e}(n) is defined and {e}(n) I, M(v).

The w-set I'.o has as underlying set the disjoint union ¥, cro(y) and n lFp,

(7,2) if L(n) Ik v and R(n) IF4(,) = where L and R are the inverses to

a bijection like P(m,n) & 2m(2n + 1) from w x w to w. The remaining

components are left to the reader as an exercise.

The w-set model supports II-types with the setting II(o,7), = {M €
Hz€ 0,.7(y4) | Je such that T'(e, M)} where T'(e, M) means that n I-, =z
implies {e}(n) IF M(z) for all x € 0, and n € w. If M € IlI(0,7), and e € [’
then e Iy, M if T(e, M). Application and abstraction are defined as in
the set-theoretic model. The required realisers are obtained from untyped
application and abstraction (“smn-theorem”).

All the other type formers we have considered and many more are also
supported by the w-set model.

3.4.1 Modest sets

In an w-set X two different elements can have the same realiser. An w-set
where this is not so is called a modest set. In other words a modest set consists
of a set X and a partial surjective function IFyx from w to X. More generally,
o € Ty(T') is modest if each o, is a modest set. It is easy to see that if 7 €
Ty(T.0) is modest then so is II(o, 7) for arbitrary o. A modest set X induces
a symmetric, transitive relation ~y (a partial equivalence relation, per) on
the set w of natural numbers by putting m ~x n if there exists a (necessarily
unique) z € X such that m IFx z and n I-x z. Conversely, if R C w X w is any
per we can define a modest set Prf(R) having as underlying set the quotient
of {n | nRn} by R (which restricted to this set is an equivalence relation). We
have m Ik p,p(gr) [n]g if mRn. 1f X is modest then X is isomorphic to Prf(~x)
in the category of w-sets and a per R is equal to ~p,s ). This suggests to
interpret the Calculus of Constructions by putting Prop = A(PER) where
PER is the set of symmetric and transitive relations on w. Notice that Prop
is not modest. The above-defined operation Prf then yields a type Prf €
Ty(Prop). If p : T' — Prop then p(v) is a per for each v € T" and we have

Prf{p}, = Prf(p(7))-

If p: T.o — Prop then we define V,(p) : ' — Prop by (V,(p))(7) def
~(o,Prf{p}),- Lhe verifications are tedious but essentially straightforward.

For mRn iff m = n we have that Prf(R) is isomorphic to the w-set N
which means that we can interpret a type theory in which the impredicative
universe Prop contains a code for the natural numbers. Prop also contains



codes for other reasonable data types and indeed the w-sets furnish a model
for the CID mentioned in §2.2.3. Beeson (1985) and Allen (1987) show how
to model type theory with non-impredicative universes (no V) entirely within
the pers.

Exercises

E3.31 Let X be any set. Show that every morphism in w-set from AX to N
is constant and that for arbitrary w-set Y every set-theoretic function from
Y to X is a morphism in w-set from Y to AX.

E3.32 Explain how the set-theoretic model supports lists, cf. E2.3.

E3.33 Explain how the w-set model supports identity types in the strict
sense.

E3.34* For any w-set X a per Z(X) is defined as the transitive closure of
the relation which relates two numbers if they realise a common element
of X. Define a morphism nx : X — Prf(Z(X)) which sends x € X to
the equivalence class of a realiser of . Show that if YV is a modest set and
f: X — Y then there exists a unique morphism f : Prf(Z(X)) — Y such that
f= fonx. This means that the modest sets form a reflective sub-category of

the w-sets. One can define impredicative quantification in the w-set model by
Vo (M) qer & 7(Ma: o.Prf(M),). In (Ehrhard 1989) such a reflection is made

part of the definition of a model for the Calculus of Constructions.

3.5 Interpretation of the syntax

We have already implicitly spoken about interpretation of type theory in
CwFs by appealing to the informal analogy between components of Cwks
and type-theoretic entities. In this section we make this precise by defining
an interpretation function and establishing a soundness property.

Assume for the rest of this section a fixed type theory and a CwF C sup-
porting the type and term formers present in this theory. For simplicity we
restrict our attention to Il-types.

We define a partial interpretation function [—] which maps:
e pre-contexts to objects of C

e pairs ['; 0, where I is a pre-context and o is a pre-type, to families in
Ty([rD)

e pairs ['; M, where I' is a pre-context and M is a pre-term to elements
of Tm(o) for some o € Ty([T'])-



The definition is by induction on the lengths of the involved pre-terms, -types,
and -contexts. We show below in Thm. 3.35 that the semantic function is
defined on all contexts, types, and terms.

The semantic clauses are the following, where we adopt the convention
that an expression containing an undefined subexpression is itself undefined.
We also adopt the convention that expressions which do not “typecheck”, like
Ioifo ¢ Ty(T'), are undefined.

o [o] =T

[T,z:0] = [I'].[T; o] if 2 not in ', undefined otherwise.

[T Hz:or] =1([T;0], [T,2:0 ;7))

[T,a:052] = vir o

[T,2:0,A y:7 ;2] = [T 20, Asa]{p([T, z:0, A 7])}
[[F App[a:a}T(Ma N)]] = App[[]“ to],[Tao ;7] ° <[[F ; M]], [[F ; N]]+>[[F,H'r(rﬂ]+

o [[';Az:0.M7] = Air: o]0 003 71 ([T, 220 5 M)

Notice that the semantics of variables is defined by induction on the depth of
their declaration as an appropriate weakening of a v_-expression.

Theorem 3.35 The interpretation function enjoys the following soundness
properties

e If I' - then [I'] is an object of C.

e If I' - o then [I'; 0] is an element of Ty([I']).

If '+ M : o then [I'; M] is an element of Tm([[[";o]).

If =T = A ctat then [I'] = [A].
e If ' - 0 = 7 type then [I'; 0] = [I'; 7]
e If ' M = N:o then [I'; M] = [T"; NJ.

The proof of this theorem, although essentially straightforward, presents sur-
prising technical difficulties. The idea is to first establish a substitution lemma
which relates syntactic substitution (and weakening) and semantic substitu-
tion (—{—}). This is necessary because the equations governing semantic
type formers such as T1-C are formulated w.r.t. —{—}, whereas their syntac-
tic counterparts (here II-C) refer to syntactic substitution which is defined
by structural induction. Due to type dependency one needs to account for
substitution and weakening in the middle and not merely at the end of a
context.



We need some notation first. For pre-contexts I', A and pre-type p we
define the expression P(I'; p; A) inductively by

P(T; p;0) = p([L'; p])
P(lip A zi0o) = q(P(I;p;A), [, Aj o)

Now let I', A, p be as before and M be a pre-term. We define the expression
inductively by the following clauses.

T(L; pyo; M) = [['; M]
T(L;p A xio; M) = q(T(T; p; A), [T 2: p, As 0]) z fresh

The idea is that P(T'; p; A) is a morphism from [I, 2: p, A] to [I', A] projecting
out the p-part. Similarly, T(T'; p; A; M) is intended to go from [T, A[M/z]]
to [T, z: p, A] yielding [T"; M] at the z:p position and variables otherwise.
But that this is really the case has to be proved simultaneously with the
weakening and substitution lemmas.

For possibly undefined expressions s,t we write s ~ ¢ to mean that if either
side is defined then so is the other and both agree (Kleene equality).

Lemma 3.36 (Weakening) Let I') A be pre-contexts, p, o be pre-types, N be
a pre-term and z be a fresh variable. Let X € {0, N}. The expression
P(T; p; A) is defined iff [T, z: p, A] and [I', A] are defined and in this case is
a morphism from the former to the latter. If [I', A; X] is defined then

[T, 200, A5 X] = [T, A XT{P(T; p; A}

Lemma 3.37 (Substitution) Let I', A be pre-contexts, p, o be pre-types, M, N
be pre-terms, and z a fresh variable. Let X € {0, N} and suppose that [["; M]
is defined.

The expression T(T'; p; A; M) is defined iff [I'; A[M/z]] and [T, z: p, A] are
both defined and in this case is a morphism from the former to the latter. If
[T, z: p, A; X] is defined then

[T, A[M/2]5 X] = [T\ 2t p, AJ{T(T ps A; M)}

The proofs of both lemmas proceed by induction on the lenghts of the involved
pre-terms,-types, and -contexts. The most difficult case arises when the term
N is a variable. One must then make a case distinction on whether it is
declared in I' or in A and perform some equational reasoning. The other cases
follow by applying stability under substitution of the participating semantic
type and term formers such as [I-S. If the type o or the term N is a binder
like I1z: ¢.1) the inductive hypothesis must be used with A extended by z: ¢.
In order to prove the correct typing of the P and T morphisms one uses the
second part of each lemma with shortened A.



After this introduction we leave the proofs themselves to the reader as
following the calculations seems to require as much effort as doing them by
oneself.

Given the above two lemmas the proof of the soundness theorem becomes
a straightforward induction on derivations. For the same reason as before this
proof will not be reproduced here; the reader is instead encouraged to carry
out at least a few cases of the inductive argument by himself and in case of
serious difficulty consult Streicher’s monograph (1991) where the verification
of the corresponding interpretation in contextual categories is spelt out in a
very detailed fashion.

The method of partially interpreting pre-syntax first and proving defined-
ness by induction on derivations was invented by Streicher (1991) and is used
in order to ensure that the interpretation does not depend on the particu-
lar derivation chosen. Notice that derivations of a given judgement are not
unique as instances of the conversion rules Ty-Conv and Tm-Conv are not
recorded in judgements. Alternatively, one could define the interpretation
by induction on derivations and then use the device of pre-syntax to estab-
lish coherence of the semantics with respect to the conversion rules, but this
would result in a more complicated proof. For a particular model this has
been carried out in (Palmgren and Stoltenberg-Hansen 1990).

Exercises

E3.38 Extend the interpretation function to 3-types

E3.39* Formulate a completeness theorem for the semantics and use the
term model to prove it. Deduce from the term model that if ' = M : ¢ and
I'-M :7then I' - o = 7 type.

E3.40 Explain why the interpretation function cannot be defined in the same
way as we did in case application is not typed, i.e., with App,. .. (M, N)
replaced by (M N). Also explain why it would not matter to leave out the
type annotation 7 in Axz:0.M7 and similar situations.

E3.41 Try to define the interpretation function on triples I'; M ; o of typed
terms in context rather than on the pairs I'; M. What goes wrongl’

E3.42* Extend the interpretation function to syntactic context morphisms
and state a general substitution lemma for context morphisms (Pitts 1997).
It seems difficult to prove this general substitution lemma directly without
using Lemmas 3.36 & 3.37.



E3.43 Deduce from E3.26 and the soundness theorem that the following
type is not inhabited in a type theory without universes.

o F Idn(0, Suc(0)) — O type

E3.44 Use the w-set model to derive that in the Calculus of Constructions
with natural numbers there does not exist a term ¢ = M : Prop — N and
propositions ¢ = P : Prop and ¢ = @ : Prop such that o= App(M,P) =0: N
and o - App(M, Q) = Suc(0) : N

E3.45* Show that the interpretation of existential quantification dx: 0. P as
defined in E2.8 in the set-theoretic model is tt if P(x) is tt for some z € [o]
and ff otherwise. Conclude that the following extension of the Calculus of
Constructions by a choice function is consistent in the sense that neither the
empty type (if it exists) nor the type Prf(¥c: Prop.c) is inhabited in the empty
context:

't H: Prf(3z:0.P)

't Choice(H) : o

It is known that such choice function becomes inconsistent if in addition one
imposes the equation

F Choice(F-I(M,N)) =M : o

for all M:o and N: Prf(P[M]), see (Coquand 1990).

4 Extended example: presheaf models

In this section we encounter a family of interpretations of type theory which
generalises the set-theoretic model in that types are interpreted as variable
sets (presheaves) or families of such. There are various applications of such
interpretations, see for example (Asperti and Martini 1992) and (Altenkirch,
Hofmann, and Streicher 1996) where they are used to define models of the
polymorphic lambda calculus in which type quantification is interpreted as
cartesian product. We use a presheaf interpretation here to show that the
Logical Framework in the sense of §2.2.2 forms a conservative extension of
ordinary type theory. This result appears here for the first time; a more
detailed version will be published elsewhere.

Preliminaries. Let K be a (small) category. A presheaf over K is a con-
travariant functor from X to the category Set of sets and functions. We
denote by K the functor category SetX” of presheaves over K. We denote
presheaf application by subscripting. That is, if F € K and u € KC(I,.7) then



F,:F; — F;. Ifpe l@(F,G) then p; : F;y — G;. We may think of I as
a category of stages or worlds and of a presheaf as a set varying with these
stages. The Yoneda embedding y : K — K sending I to K(—, 1) is a full and
faithful embedding of the stages into K. See (Barr and Wells 1990) for more
information on presheaves.

4.1 Presheaves as a CwF

Our aim is to construct a CwF which has K as the category of contexts.
This category has a terminal object given by T, = {x}. We define types,
substitution, terms, and comprehension in order. From now on we will use the
generic letters I', f,0,... to range over presheaves, natural transformations,
families of presheaves, etc. if these arise in the context of a CwF.

If T is a presheaf then we form its category of elements [(I") with objects
(I,7v) where I € K and v € I';. A morphism from (J,v') to (I,7) is a K-
morphism u € K(J, I) such that ', () = . In other words, ifu € IC(J, I') and
v € I’y then u is an [(I")-morphism from (J,T',(v)) to (I,7). If appropriate
we may also write (u, ) for this morphism. Composition is inherited from K.

For presheaf I' € K we define the set Ty(T') to consist of the presheaves over
J(I). Ifo € Ty(T') and (I,v) € [(I') then we write o7(7y) rather than o, for
o at argument (7, ) and similarly for morphisms. That o is a presheaf means
that if uw € KC(J,1) and v € I'; and x € o/() then o,(7)(z) € 0,(T',(7)) and
this action is compatible with composition and identities in K.

Now suppose that f : A — I' is a natural transformation. We define a
functor [() : [(A) — [(T) by [())(1,6) = (I, :(5)) and for u € K(J, 1),
d € A; we define [(f)(u,d) = (u, fr(d)). Now if o € Ty(I') is a family of
presheaves then we define o{f} € Ty(A) as the composition oo [(f). So, we
have o{f};(6) = o7(f1(5)). It is clear that this has the required functoriality
properties.

Next we define terms. If 0 € Ty(I') then an element M of Tm(o) assigns
to each stage I and element v € I'; an element M; () € o7(7) in such a way
that if u € KC(J,I) then o,(v)(M;(v)) = M;(Ty(y)). If M € Tm(o) and
f:A =T then M{f} € Tm(o{f}) is given by composition as M{f},;(0) =
M;(f1(5)).

If o € Ty(T') then the presheaf T.o is defined by (I'.o); = {(v,2) |
veT,, z€o0;(y)}. Mfu e K(J,I) and (v,z) € (o), then (T.o),(y,z) =
(Tu(7),0u(7)(x)). The projection p(co) is defined by p(o);(7, z) = ~; the vari-
able v, € Tm(o{p(0)}) is defined by (v,)7(y,2) = =. Finally, if f : A - T
and M € Tm(o{f}) then ((f, M)y)r(0) = (f1(0), M;(6)). The verifications
are straightforward expansions of the definitions. We have thus established
that presheaves over K furnish a CwF.



4.2 Type formers in K

The presheaf model supports most of the type formers the set-theoretic model
supports, often by the very same constructions. The major difference is the
interpretation of II-types which is carried out in a way similar to the treatment
of implication in Kripke models, and of course similar to the definition of
exponentiation in functor categories.. Suppose that o € Ty(T') and 7 €
Ty(T.0). Following the convention from §2.2.2 we will write (o) rather than
[I(o, 7) for the dependent function space of o and 7. It is defined as follows.
If I € K and v € ['; then an element f of (0)7/(7) associates to J € K and
w:J — Tand z € 0;(T,(7)) an element f(w,x) € 7;(Ty(7), 0w(y)(2)).
Notice that w € [(T')((J,Tw (7)), (I,7)) and thus o,(y)(x) € o/(Tw(7)).
Moreover the assignment f must be natural in the sense that if in addition
w': J" — J then

f(w o w', O'“,I(Fw (’)/))(37)) = Tw! (FW(’V): 0711(7) ('Z‘))(f(wJ .’I?))

The generalisation to “later stages” .J is necessary to make (o) a presheaf
and not merely an assignment of sets to stages. Indeed, if v : I' — I and

f € (0)77(7) then we can define (0)7,(T,(7))(f) € (a)71(Ty(7)) by

()7 (T (V) () (w: T = ' 2€ 0, (Tu(Ty(7))) & f(vow, x)

which is valid because T',,(T', (7)) = Tyow(7)-
If M € Tm(T.o,7) then A\, (M) € Tm((o)7) is given by

AM);(veT;, JeK,w:J = Iz€o,;(Tw() ¥ M;(Tw(v), z)

The application morphism App,, : I'.o.(6)7" — I'.o.7 maps at stage [
elements v € 'y and = € o7(y) and f € (o)77(7) to f(idr,x) € (v, x).
It is routine to check that this defines dependent function spaces in the strict
sense.

The dependent sum (o, 7) of the presheaves above is given by stage-wise
set-theoretic dependent sum. This means that

(o.7)i(v) ={(z,y) | z€ o1(7y) AyeTi(7,7)}

We omit the associated term formers. We remark without proof that K sup-
ports natural numbers and other inductive types; it also supports universes if
the ambient set theory w.r.t. which the presheaves are formed supports them.

4.3 Conservativity of the logical framework

Let T be a theory of dependent types like one of those set out in §2. The
precise nature of 7 is unimportant.



Furthermore, we let 7;,» denote the Logical Framework presentation of T,
i.e., a dependent type theory with II-types and one universe Set together with
constants and equations corresponding to the type and term formers in 7.
We have a conversion map i translating terms, types, and judgements in 7
into ones in 7, in such a way that judgements are preserved. More precisely,
if ' 7 in T then i(T") F i(J) in T,p. For distinction, we write F7 and 7, ,
for the judgement relations in the two type theories. For example, in 7 we
might have

x:N b7 y: N.Id(z,y) — Id(y, z) type

Applying the translation yields the following judgement in 7, p:
z: BI(N) b7, El(Tly: EI(N).Id(z,y)>Td(y, z)) type

In other words, i(N) = EI(N), etc. If we omit the El-operator and the ~-
decorations then the translated judgement looks exactly like the one to start
with. We will do so in the sequel and omit the coercion i.

Due to the presence of type variables T;r is a proper extension of 7.
Judgements like = Set type or F:IN — Set = F(0) are not in the image of
i. A natural question to ask is whether 7 is conservative over 7. There
is more than one way to extend the notion of conservativity from logic to
theories of dependent types. We will here use the simplest one and prove the
following theorem:

Theorem 4.1 If I =7 o type and I' =7, ., M : o for some term M then there
exists a term M’ such that I'=+ M’ : 0.

Notice that M itself need not be a legal T-term, it could for instance contain a
subterm like ([X: Set]Suc(0))(N) which is equal, but not identical to Suc(0).

Our strategy for proving this theorem consists of exhibiting a model of T,
with the property that the interpretation of 7 in it (notice that such a model
also models 7)) is full. That is to say, if Tm([I";o]) # 0 for some I' -7 o type
then there exists M with I' =+ M : 0. Such a model is furnished by the
presheaf model 7~ where T is the (category of contexts of the) term model of
T. The fullness of the interpretation of 7 in T is essentially a consequence
of the Yoneda lemma and will be proved at the end of this section.

Let us first show how 7 models the Logical Framework. We have already
demonstrated that T (like every presheaf model) supports dependent function
spaces. We interpret Set € Tyf(—l—) >~ T as the presheaf Ty, which to a
context I' € T associates the T-types in context I' quotiented by definitional

——

equality. The interpretation of El € Ty+(T.Set) = [(Set) is defined as the
presheaf T'my which to I' € |T| and 0 € Ty(I') = Setr associates the set
Tm+(T, 0) of terms of type o in context I' factored by definitional equality.
This extends to a presheaf by term substitution.



For the demonstration that 7 models Trr it remains to show that Set
contains codes for all the type and term formers present in 7. We will deal
with this task by way of example and assume that 7 contains II-types and
the (ad hoc) operator L from §2.2.2.

We deal with the L-operator first. In order to simplify the notation
and in view of the soundness and completeness of the semantics we will
use the syntax of type theory with named variables to denote entities in
7. Thus we require an element L € Tm(T, (Set)Set) and an element 1 €
Tm(T, (o: Set,m: El(c))El(L(0))). Since the dependent function spaces in
T are strict the first task is equivalent to exhibiting an element, for simplicity
also denoted L, of Tm(o: Set, Set) which we describe explicitly by

Lr(0 € Ty,(I") < L(o)

Recall that Setr = Ty,(I'). The naturality of this assignment amounts to
checking that for f : B — I' and 0 € Ty,(I') we have L(o)[f] = L(o[f])
which is immediate from the properties of syntactic substitution.

Similarly, the second task is equivalent to finding a term
1€ Tms(o: Set, M: El(0) , El(L(0)))
Again, we define it explicitly by
Ir(0€ Ty (), M€ Tmy(T,0)) = (M) € Tmy(T,0)

Recall here that Elr(o) = Tm (T, o). Naturality is again a consequence of
stability under substitution. Notice that up to the necessary abstraction e.g.
from Tm(o: Set, Set) to Tm((Set)Set) the required constants in K are given
exactly by their counterparts in 7.

In essence, this is also the case for the II-type, but due to the binding be-
haviour we encounter a slight complication. We wish to construct an element
of

Tm4+(T, (0: Set, 7: (El(0))Set) Set)

By “uncurrying” this amounts to constructing a term 11 of
T'm4(0: Set, 7: (El(0))Set, Set)

At stage I' the arguments to Il are a type 0 € Ty,(I') and an element of
(El(0))Setr. Call the latter set X temporarily. An element 7 of X associates
by definition of dependent function spaces in K to f : B — I and M €
Tmy(B,0{f}) a type 7(B, f, M) € Ty(B). This assignment is natural in the
sense that for f' : B' — B we have 7(B', f o f', M{[f'}) = 7(B, f, M){[f'} €
Ty(B'). But this means that the whole of 7 can be reconstructed from its

particular instance 7, % 7(I.o,p(0),vs) € Ty(T'.0). Indeed, for arbitrary



f:B =T and M € Ty(o{f} we have that 7(B, f, M) = 7o{(f, M),} by
naturality and equations (Cons-L) and (Cons-R). By (Cons-Id) we also get
the converse and have thus established a bijective correspondence between the
sets (El(0))Setr and Ty (.0 = Setr ,. Therefore, the arguments at stage I'
to the term IT which we aim to construct amount to a type o € Ty(T') and a
type 79 € Ty(I".0). We define the result as the syntactic dependent function
space (o, 79) in 7. Summing up, we have defined

[Ir (o€ Setr, 7€ (El(0))Set) =y (o, 7(.0,p(0),vs))

So up to the bijection between the function space (El(0))Setr and the set
of types in I'.o the II-constant in 7y has again been obtained directly from
its syntactic companion. The same goes for the other constants A and App
whose definition we omit. In the case of A we face again an argument of
the dependent function space type (z: El(c))El(T) which at stage T" is iso-
morphic to Tmy([.o, 7) by an analysis similar to the one which led to the
characterisation of (El(0))Set before.

One can more generally characterise the dependent function spaces of the
form (EI(—))F for arbitrary presheaf F' as certain “shifts” of F. This al-
lows for a systematic translation of arbitrary type and term formers possibly
binding variables from 7 to 7,r. The general strategy should have become
clear from the example of II. The important point is that in K the function
space (FEl(o))Set is so strongly confined by the naturality condition that it
only contains functions induced by a syntactic type with free variable of type
0.

Proof of Thm. 4.1 Suppose that I' -7 o type and that I' =1, M : 0. By
induction on derivations we find that the interpretations of I' and ¢ in T have
the following properties:

[T]a = T(A,T)

and

[T;o]A(f € T(AT)) =0[f] € Seta

Thus, in particular, we have [I'; o].(idr) = o. Therefore, the interpretation
of M in T vyields [['; M](idr) € Tmy(I',0); thus I' 7 M' : o for any
representative M’ in the class [I"; M]. The theorem is proved. O

One may consider a Logical Framework which does not only support II-
types, but several other type formers like Y-types, e.g. for modularisation
and natural numbers, e.g. to define syntax. As long as these type formers are
supported by T (¥ and N are) the conservativity theorem continues to hold
by the same proof. Using a dependent version of the glueing construction
(Crole 1993) it is possible to obtain the stronger property that the term M’
in Thm. 4.1 is Ty r-equal to M.



We also remark that we have not used any particular properties of the term
model in the construction of the presheaf model so that it can be formed out
of any CwF and thus gives a canonical way to lift a model of some type theory
to a model for the presentation of this type theory in the Logical Framework.

5 Other applications of semantic methods

We give some directions for further reading on the subject of semantical meth-
ods in the study of theories of dependent types. Independence results are the
subject of (Streicher 1992) and (Hofmann and Streicher 1994). Semantical
methods in order to derive syntactic properties of type theories like strong
normalisation and thus decidability of type checking have been used in (Hy-
land and Ong 1993; Altenkirch 1994; Goguen 1995). In (Moggi 1991) and
(Harper, Mitchell, and Moggi 1990) categories with attributes are used to
give an account of higher-order modules in functional programming. There
is an intriguing connection with Paulin’s work on program extraction in type
theory (Paulin-Mohring 1989) and the “deliverables” approach to program
development (Burstall and McKinna 1993). In each of these works a type is
modelled as a type or a set together with a predicate or a dependent type
and terms are modelled as terms which preserve these predicates. A similar
interpretation has been used in (Hofmann 1995a) where a translation of a
type theory with a quotient type former into ordinary type theory and other
applications of syntactic models are described.

Connections between category-theoretic semantics and abstract machines
have been noticed in (Curien 1986) and (Ehrhard 1988) and were subsequently
exploited and applied in (Ritter 1992) where an evaluator for the Calculus of
Constructions is derived from its category-theoretic semantics.

Last, but not least we mention the use of domain-theoretic interpreta-
tions of type theory in order to establish the consistency of general recursion
and fixpoint combinators with dependent types (Palmgren and Stoltenberg-
Hansen 1990). In a similar direction goes (Reus 1995) where an interpretation
of type theory using synthetic domain theory has been employed to estab-
lish the consistency of a very powerful dependent type theory incorporating
higher-order logic, general recursion, and impredicativity.
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