
Logical Relations

Amal Ahmed

Northeastern University

OPLSS Lecture 5, June 26, 2015

Unary Logical Relations
or: Logical Predicates --- can be used to prove:

• strong normalization

• type safety (high-level and low-level languages)

• soundness of logics

• ...

Essential idea:

• A program satisfies a property if, given an input that
satisfies the property, it returns an output that satisfies
the property

Binary Logical Relations
Proof method that can be used to prove:
• equivalence of modules / representation independence

• noninterference in security-typed languages

• compiler correctness

Essential idea:

• Two programs (same language or different languages) are
related if, given related inputs, they return related outputs

Earliest Logical Relations...
• Tait ’67: prove strong normalization for Gödel’s T

• Girard ’72: prove strong normalization for System F
(reducibility candidates method)

• Plotkin ’73: Lambda definability and logical relations

• Statman ’85: Logical relations and the typed lambda calculus

• Reynolds ’83: Types, Abstraction & Parametric Polymorphism

• Mitchell ’86: Representation Independence & Data Abstraction

Lots of uses through 80’s and 90’s, but ...

L.R. Shortcomings (circa 2000)
Mostly used for “toy” languages

• Lacking support for features found in real languages:

- recursive types (e.g., lists, objects)

- mutable references (that can store functions, ∃, ∀)

Complicated, hard to extend

• Denotational vs. operational

Logical Relations (highlights,1967-2009)
∀ ∃ μ ref Simple Model

Tait’67, Girard’72

Plotkin’73, Statman’85 ✗

Reynolds’83, Mitchell’86 ✓ ✗

Pitts-Stark’93,’98 (ref int) ✓- ✓

Pitts’98,’00 (recursive functions) ✓ ✓-
Birkedal-Harper’99, Crary-Harper’07 ✓ ✓ ✗

Appel-McAllester’01 ✓- ✓

Benton-Leperchey’05 (ref...ref int) ✓ ✓- ✗ ✗

Ahmed’06 ✓ ✓ ✓

Bohr-Birkedal’06 ✓ ✓ ✗ ✗

Ahmed-Dreyer-Rossberg’09 ✓ ✓ ✓ ✓

Logical Relations (highlights,1967-2009)
∀ ∃ μ ref Simple Model

Plotkin’73, Statman’85 ✗

Reynolds’83, Mitchell’86 ✓ ✗

Pitts-Stark’93,’98 (ref int) ✓- ✓

Pitts’98,’00 (recursive functions) ✓ ✓-

Birkedal-Harper’99, Crary-Harper’07 ✓ ✓ ✗

Appel-McAllester’01 ✓- ✓

Benton-Leperchey’05 (ref...ref int) ✓ ✓- ✗ ✗

Ahmed’06 ✓ ✓ ✓

Bohr-Birkedal’06 ✓ ✓ ✗ ✗

Ahmed-Dreyer-Rossberg’09 ✓ ✓ ✓ ✓

Logical Relations (highlights,1967-2009)
∀ ∃ μ ref Simple Model

Plotkin’73, Statman’85 ✗

Reynolds’83, Mitchell’86 ✓ ✗

Pitts-Stark’93,’98 (ref int) ✓- ✓

Pitts’98,’00 (recursive functions) ✓ ✓-

Birkedal-Harper’99, Crary-Harper’07 ✓ ✓ ✗

Appel-McAllester’01 ✓- ✓

Benton-Leperchey’05 (ref...ref int) ✓ ✓- ✗ ✗

Ahmed’06 ✓ ✓ ✓

Bohr-Birkedal’06 ✓ ✓ ✗ ✗

Ahmed-Dreyer-Rossberg’09 ✓ ✓ ✓ ✓

Logical Relations (highlights,1967-2009)
∀ ∃ μ ref Simple Model

Plotkin’73, Statman’85 ✗

Reynolds’83, Mitchell’86 ✓ ✗

Pitts-Stark’93,’98 (ref int) ✓- ✓

Pitts’98,’00 (recursive functions) ✓ ✓-

Birkedal-Harper’99, Crary-Harper’07 ✓ ✓ ✗

Appel-McAllester’01 ✓- ✓

Benton-Leperchey’05 (ref...ref int) ✓ ✓- ✗ ✗

Ahmed’06 ✓ ✓ ✓

Bohr-Birkedal’06 ✓ ✓ ✗ ✗

Ahmed-Dreyer-Rossberg’09 ✓ ✓ ✓ ✓

Mutable References
Reference Types

Syntax

ref �

l | new e | e1 := e2 | !e

s, new v ⌅�⇥ s[l ⌅⇥ v], l where l fresh
s, !l ⌅�⇥ s, v where s(l) = v

s, l:= v ⌅�⇥ s[l ⌅⇥ v], () where l ⇤ dom(s)

Problems in Presence of References
1.Data abstraction via local state

2. Storing functions in references

3. Interaction of and references

 [Ahmed-Dreyer-Rossberg, POPL’09] and [Ahmed, PhD’04]

∃

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
�z : unit. x2 := !x2 � 1;�(!x2)

1. Data Abstraction via Local State

⇥ �z : unit. lx1 := !lx1 + 1; !lx1

⇥ �z : unit. lx2 := !lx2 � 1; �(!lx2)

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
�z : unit. x2 := !x2 � 1;�(!x2)

1. Data Abstraction via Local State

⇥ �z : unit. lx1 := !lx1 + 1; !lx1

⇥ �z : unit. lx2 := !lx2 � 1; �(!lx2)

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
�z : unit. x2 := !x2 � 1;�(!x2)

1. Data Abstraction via Local State

⇥ �z : unit. lx1 := !lx1 + 1; !lx1

⇥ �z : unit. lx2 := !lx2 � 1; �(!lx2)

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
�z : unit. x2 := !x2 � 1;�(!x2)

1. Data Abstraction via Local State

S = { (s1, s2) | s1(lx1) = � s2(lx2) }

store relation

2. Storing Functions in References
e1 = letx1 = new 0 in

let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

2. Storing Functions in References
e1 = letx1 = new 0 in

let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

2. Storing Functions in References
e1 = letx1 = new 0 in

let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

S = { (s1, s2) | s1(lf1) = s2(lf2) }

store relation

2. Storing Functions in References

wrong!

e1 = letx1 = new 0 in
let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

S = { (s1, s2) | s1(lf1) = s2(lf2) }

store relation

e1 = letx1 = new 0 in
let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

2. Storing Functions in References

S = { (s1, s2) | s1(lf1) �k,W s2(lf2) : unit⇥ int }

2. Storing Functions in References

S = { (k, W, s1, s2) | s1(lf1) �k,W s2(lf2) : unit⇥ int }

e1 = letx1 = new 0 in
let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

2. Storing Functions in References

S = { (k, W, s1, s2) | s1(lf1) �k,W s2(lf2) : unit⇥ int }

- Worlds contain store relations
- Store relations contain worlds

e1 = letx1 = new 0 in
let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

2. Storing Functions in References

S = { (k, W, s1, s2) | s1(lf1) �k,W s2(lf2) : unit⇥ int }

- Worlds contain store relations
- Store relations contain worlds Circular!

e1 = letx1 = new 0 in
let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

⇥ lf1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

⇥ lf2

S = { (k, W, s1, s2) | s1(lf1) ⇠k�1,bWck�1 s2(lf2) : unit! int }

2. Storing Functions in References
e1 = letx1 = new 0 in

let f1 =�z : unit. x1 := !x1 + 1; !x1 in
new f1

e2 = letx2 = new 0 in
let f2 =�z : unit. x2 := !x2 � 1;�(!x2) in
new f2

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
let y2 = new 0 in
�z : unit. x2 := !x2 + 1; y2 := !y2 + 1; (!x2 + !y2)/2

1’. Data Abstraction via Local State

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
let y2 = new 0 in
�z : unit. x2 := !x2 + 1; y2 := !y2 + 1; (!x2 + !y2)/2

1’. Data Abstraction via Local State

+ �z : unit. l
x1 := !lx1 + 1; !l

x1

+ �z : unit. l
x2 := !lx2 + 1; l

y2 := !ly2 + 1; (!l
x2 + !l

y2)/2

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
let y2 = new 0 in
�z : unit. x2 := !x2 + 1; y2 := !y2 + 1; (!x2 + !y2)/2

1’. Data Abstraction via Local State

+ �z : unit. l
x1 := !lx1 + 1; !l

x1

+ �z : unit. l
x2 := !lx2 + 1; l

y2 := !ly2 + 1; (!l
x2 + !l

y2)/2

e1 = letx1 = new 0 in
�z : unit. x1 := !x1 + 1; !x1

e2 = letx2 = new 0 in
let y2 = new 0 in
�z : unit. x2 := !x2 + 1; y2 := !y2 + 1; (!x2 + !y2)/2

1’. Data Abstraction via Local State

+ �z : unit. l
x1 := !lx1 + 1; !l

x1

+ �z : unit. l
x2 := !lx2 + 1; l

y2 := !ly2 + 1; (!l
x2 + !l

y2)/2

store relation

S = { (s1, s2) | s1(lx1) = (s2(lx2) + s2(ly2))/2 }

Name = 9↵. hgen : unit ! ↵, chk : ↵ ! booli

e1 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. (z !x)i as Name

e2 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. truei as Name

3. Data Abstraction via Local State + ∃

Name = 9↵. hgen : unit ! ↵, chk : ↵ ! booli

e1 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. (z !x)i as Name

e2 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. truei as Name

3. Data Abstraction via Local State + ∃

Name = 9↵. hgen : unit ! ↵, chk : ↵ ! booli

e1 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. (z !x)i as Name

e2 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. truei as Name

3. Data Abstraction via Local State +

Intuitively, we want where
is the current value of

Problem: How do we express such a dynamic, state-
dependent representation of ?

∃

n

�

R� = {(1, 1), . . . , (n, n)}
!x

Name = 9↵. hgen : unit ! ↵, chk : ↵ ! booli

e1 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. (z !x)i as Name

e2 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. truei as Name

3. Data Abstraction via Local State +

Intuitively, we want where
is the current value of

Problem: How do we express such a dynamic, state-
dependent representation of ?

∃

n

�

R� = {(1, 1), . . . , (n, n)}
!x

Name = 9↵. hgen : unit ! ↵, chk : ↵ ! booli

e1 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. (z !x)i as Name

e2 = letx= new 0 in
pack int, hgen = �z : unit. (x := !x + 1; !x),

chk = �z : int. truei as Name

3. Data Abstraction via Local State +

Intuitively, we want where
is the current value of

Solution: Permit the property about a piece of local state
to evolve over time

∃

nR� = {(1, 1), . . . , (n, n)}
!x

Logical Relations Survey (1967-2009)
∀ ∃ μ ref Simple Model

Plotkin’73, Statman’85 ✗

Reynolds’83, Mitchell’86 ✓ ✗

Pitts-Stark’93,’98 (ref int) ✓- ✓

Pitts’98,’00 (recursive functions) ✓ ✓-

Birkedal-Harper’99, Crary-Harper’07 ✓ ✓ ✗

Appel-McAllester’01 ✓- ✓

Benton-Leperchey’05 (ref...ref int) ✓ ✓- ✗ ✗

Ahmed’06 ✓ ✓ ✓

Bohr-Birkedal’06 ✓ ✓ ✗ ✗

Ahmed-Dreyer-Rossberg’09 ✓ ✓ ✓ ✓

Next...

• Applications

• Step-indexing: hiding the steps

• Open problems, future directions

Applications: Unary Step-Indexed LR
Type Safety

• Foundational Proof-Carrying Code (FPCC) [Appel et al.]

- recursive types [Appel-McAllester, TOPLAS’01]

- ... + mutable refs + impredicative ∃ ∀ [Ahmed, PhD.’04, Chp 2,3;
region-based lang. Chp 7]

- model of LTAL, target lang of ML compiler: Semantic models of
Typed Assembly Languages [Ahmed et al., TOPLAS’10]

- Recommended reading: Section 7 of the TOPLAS’10 paper
contains a detailed history of the FPCC project and step-
indexed logical relations

Applications: Unary Step-Indexed LR
Type Safety

• L3: Linear Lang. with Locations [Ahmed-Fluet-Morrisett, TLCA’05]

- alias types revisited, first-class capabilities (linear/unrestricted)

• Substructural State [Ahmed-Fluet-Morrisett, ICFP’05]

- interaction of linear, affine, relevant, unrestricted references

• Imperative Object Calculus [Hritcu-Schwinghammer, FOOL’08, LMCS]

Applications: Unary Step-Indexed LR
Soundness of Concurrent Separation Logic w.r.t Concurrent
C minor operational semantics

• modular semantics to adapt Leroy’s compiler correctness
proofs to concurrent setting [Hobor-Appel-Zappa Nardelli, ESOP’08]

• Oracle Semantics for Concurrent Separation Logic

Applications: Binary Step-Indexed LR
• Observational Equivalence

- System F + recursive types [Ahmed, ESOP’06]; also see
Extended Version with detailed proofs.

- ... + mutable references [Ahmed-Dreyer-Rossberg, POPL’09]

- + first-order store + control [Dreyer-Neis-Birkedal, ICFP’10]

Applications: Binary Step-Indexed LR
• Imperative Self-Adjusting Computation

- [Acar-Ahmed-Blume, POPL’08]

• Untyped language with dynamically allocated modifiable refs
- untyped step-indexed LR

[Acar-Ahmed-Blume, POPL’08]

Imperative Self-Adjusting Computation

[P(vchanged)]L

v1

[P(vorig)

v0

Idea:
update results by reusing
those parts of previous
computation that are
unaffected by the changes

[Acar-Ahmed-Blume, POPL’08]

Imperative Self-Adjusting Computation

[P(vchanged)]L

v1

[P(vorig)

v0

Idea:
update results by reusing
those parts of previous
computation that are
unaffected by the changes

Imperative Self-Adjusting Computation
Overview:

• Store all data that may change in modifiable references

• Record a history of all operations on modifiables in a
trace

• When inputs change, we can selectively re-execute only
those parts that depend on the changed data
- change propagation

• “Imperative” : modifiable refs can be updated

Equivalence of Evaluation Strategies

[P(vchanged)]eivalent P(vchanged)]L

v1 equivalent v1’

[P(vorig)

v0

Equivalence of Evaluation Strategies

[P(vchanged)]eivalent P(vchanged)]L

v1 equivalent v1’

[P(vorig)

v0

Applications: Binary Step-Indexed LR
• Secure Multi-Language Interoperability (ML / Scheme)

- Parametricity through run-time sealing [Matthews-Ahmed,
ESOP’08] and [Ahmed-Kuper-Matthews]

Secure Multi-Language Interoperability
[Matthews-Ahmed, ESOP’08] and [Ahmed-Kuper-Matthews]

Information hiding:

• typed languages (e.g., ML) : via

• untyped languages (e.g., Scheme) : via dynamic sealing

A multi-language system in which typed and untyped
languages can interoperate (SM e, MS e)

• Parametricity through run-time sealing:
concrete representations hidden behind an abstract type in ML
are hidden using dynamic sealing to avoid discovery by Scheme
part of program

��. ⇥

⌧ ⌧

Applications: Binary Step-Indexed LR
• Secure Multi-Language Interoperability (ML / Scheme)

- Parametricity through run-time sealing [Matthews-Ahmed,
ESOP’08] and [Ahmed-Kuper-Matthews, 2010]

• Non-Parametric Parametricity
- parametricity in a non-parametric language via static sealing

[Neis-Dreyer-Rossberg, ICFP’09]

Applications: Binary Step-Indexed LR
• Compiler correctness for components:

- logical relation between source and target terms s ~ t : S

- System F + recursive functions to SECD [Benton-Hur, ICFP’09]

- ... + mutable refs [Hur-Dreyer, POPL’11]

- Theorem : If s : S compiles to t, then s ~ t : S

- Cross-language LRs: do not scale to multi-pass compilers

- Does not permit linking with code that cannot be written
in source

• Recent work: Pilsner compiler [Neis et al., ICFP’15]

Applications: Binary Step-Indexed LR
• Correct component compilation that supports

multi-language software:
- To specify compiler correctness, define multi-language that

supports interoperability between source and target
[Perconti-Ahmed, ESOP 2014]

- Theorem : If s : S compiles to t, then s ~ ST(t) : S

- Scales to multi-pass compilers

- Allows linking with code that cannot be written in source

• Recommended paper on research program:
Verified Compilers for a Multi-Language World [Ahmed,
SNAPL’15]

~
ctx

Applications: Binary Step-Indexed LR
• Differential Privacy Calculus

- Distance Makes the Types Grow Stronger

- well-typedness guarantees privacy safety [Reed-Pierce, ICFP’10]

- step-indexed logical relation used to prove “metric
preservation” theorem

Applications: Binary Step-Indexed LR
• L.R. for Fine-grained Concurrent Data Structures

- [Turon, Thamsborg, Ahmed, Birkedal, Dreyer, POPL 2013]

- step-indexed logical relation for proving correctness
(contextual refinement) of many subtle FCDs

eI ≼ eS
concurrent

implementation
sequential

specification

contextual refinement
every behavior of impl. is a possible behavior of its spec.

Next...
• Applications

• Step-indexing: hiding the steps

• Open problems, future directions

Ugly Side of Step-Indexing: the Steps!

Ugly Side of Step-Indexing: the Steps!
Step-index arithmetic pervades proofs:

• Tedious, error-prone, feels ad-hoc

• Want to develop clean, abstract, step-free proof principles

Ugly Side of Step-Indexing: the Steps!
Step-index arithmetic pervades proofs:

• Tedious, error-prone, feels ad-hoc

• Want to develop clean, abstract, step-free proof principles

We might like to prove:

• f1 and f2 are infinitely related (i.e., related for any # of steps)
iff for all v1 and v2 that are infinitely related, f1 v1 and f2 v2
are, too.

Ugly Side of Step-Indexing: the Steps!
Step-index arithmetic pervades proofs:

• Tedious, error-prone, feels ad-hoc

• Want to develop clean, abstract, step-free proof principles

We might like to prove:

• f1 and f2 are infinitely related (i.e., related for any # of steps)
iff for all v1 and v2 that are infinitely related, f1 v1 and f2 v2
are, too.

Unfortunately, that is false.

• In fact, f1 and f2 are infinitely related iff, for any step level n,
for all v1 and v2 that are related for n steps, f1 v1 and f2 v2
are, too.

Hiding the Steps: Relational Logics
Develop relational modal logic for expressing step-indexed
LR without mentioning steps

• System F + recursive types: [Dreyer-Ahmed-Birkedal, LICS’09]

• Start with Plotkin-Abadi logic for relational parametricity [TLCA’93];
extend it with recursively defined relations

• To make sense of circularity, introduce “later” operator from
[Appel et al., POPL’07], in turn adapted from Gödel-Löb logic

- Löb rule:

• Using logic, define a step-free logical relation for reasoning about
program equivalence

• Show step-free LR is sound w.r.t. contextual equivalence, by defining
suitable “step-indexed” model of the logic

• ... + mutable references: [Dreyer-Neis-Rossberg-Birkedal, POPL’10]

BA

(BA � A) � A

Hiding the Steps: Relational Logics
Develop relational modal logic for expressing step-indexed
LR without mentioning steps
• Using logic, define a step-free logical relation for reasoning about

program equivalence

• Makes proof method easier to use

Hiding the Steps: Indirection Theory
• Step-indexing machinery gets quite tricky in languages with

state (e.g., circularity between worlds & store relations)

• Indirection theory is a framework that makes it easier to
build such models
- makes world-stratification conceptually simpler, and

makes such models easier to mechanize
- [Hobor-Dockins-Appel, POPL’10]

Next...

• Applications

• Step-indexing: hiding the steps

• Open problems, future directions

1. Other Language Features...
Dependent types

• depends on the dependent type theory!

• Coq / ECC / Hoare Type Theory (HTT): higher-order logic

- would like an operational model of propositional equality;
how to deal with impredicativity of h.o.l. (no notion of
consuming steps at logical level)

• parametricity for HTT: (extends Coq with type {P}x:A{Q})

- invariants about state are part of types; will be able to
prove “free theorems” in presence of state!

2. Other Applications...
• Secure Compilation

- Fully-Abstract Compilation:
equivalence-preserving and reflecting

Equivalence-Preserving Compilation
• Semantics-preserving compilation

PS PTcompile

vS vT
➀

“equivalent”
➁

Equivalence-Preserving Compilation
• Semantics-preserving compilation

• Equivalence-preserving compilation

eS eTcompile

vS vT
➀

“equivalent”
➁

eS1 compile eT1 eS2 compile eT2

eS1 eS2 eT1 eT2�ctx
S �ctx

T=�

and

then

If

Why Should We Care?
Security issue : If compilation is not equivalence-preserving
then there exist contexts (i.e., attackers!) at target that can
distinguish program fragments that cannot be distinguished
by source contexts

• C# to Microsoft .NET IL [Kennedy’06]: compiler’s failure to
preserve equivalence can lead to security exploits

• Programmers think about behavior of their programs by
considering only source-level contexts (i.e., other
components written in source language)

• ADTs : replacing one implementation with another that’s
“functionally” equivalent should not lead to problems

Secure Compilation

Secure Compilation
Typed Closure Conversion is Equivalence-Preserving

• Closure conversion: collect free variables of a function in a
closure environment & pass environment as an additional
argument to the function; (typed c.c. [Minamide+’96], [Morrisett+’98]

• System F + ∃ + recursive types [Ahmed-Blume, ICFP’08]

• Step-indexed logical relations, sound+complete w.r.t. ctx-equiv

Secure Compilation
Typed Closure Conversion is Equivalence-Preserving

• Closure conversion: collect free variables of a function in a
closure environment & pass environment as an additional
argument to the function; (typed c.c. [Minamide+’96], [Morrisett+’98]

• System F + ∃ + recursive types [Ahmed-Blume, ICFP’08]

• Step-indexed logical relations, sound+complete w.r.t. ctx-equiv

Secure Compilation
Typed Closure Conversion is Equivalence-Preserving

• Closure conversion: collect free variables of a function in a
closure environment & pass environment as an additional
argument to the function; (typed c.c. [Minamide+’96], [Morrisett+’98]

• System F + ∃ + recursive types [Ahmed-Blume, ICFP’08]

• Step-indexed logical relations, sound+complete w.r.t. ctx-equiv

An Equivalence-Preserving CPS Translation via Multi-Language
Semantics [Ahmed-Blume, ICFP’11]

• CPS: names all intermediate computations and makes control
flow explicit

• Works for target lang. more expressive than source

Secure Compilation

Secure Compilation
Noninterference for Free

• Dependency Core Calculus (DCC) [Abadi+’99] can encode
secure information flow

• Noninterference-preserving translation from DCC to System Fω
[Bowman-Ahmed, ICFP’15]

• Includes:
- “open” logical relation for Fω (based on [Zhao+, APLAS’10])

- cross-language logical relation between DCC and Fω

- unary logical relation to show that back-translation from Fω to
DCC is well-founded

Conclusions...
• Logical relations

- formalize intuitions about abstraction, modularity,
information hiding

- beautiful, elegant, and powerful technique

• Many cool, challenging problems demand reasoning about
relational properties

• We are in an exciting golden age of logical relations:
recent developments enable reasoning about complex
languages (mutable memory, concurrency, etc.), compiler
correctness, secure compilation, ...

Conclusions
Step-indexed logical relations

• Scale well to linguistic features found in real languages
- mutable references, recursive types, interfaces, generics

• Elementary (no domain/category theory, just sets &
relations)

• Many important applications
- same intuition works well in a wide variety of contexts;

allows us to focus on interesting aspects of problem at hand

• Critical tool for proving reliability of programming
languages and compilers

Questions?

