
An Introduction to Logical Relations
Proving Program Properties Using Logical Relations

Lau Skorstengaard
lask@cs.au.dk

Contents

1 Introduction 2
1.1 Simply Typed Lambda Calculus (STLC) 2
1.2 Logical Relations . 3
1.3 Categories of Logical Relations . 5

2 Normalization of the Simply Typed Lambda Calculus 5
2.1 Strong Normalization of STLC . 5
2.2 Exercises . 10

3 Type Safety for STLC 11
3.1 Type safety - the classical treatment 11
3.2 Type safety - using logical predicate 12
3.3 Exercises . 15

4 Universal Types and Relational Substitutions 15
4.1 System F (STLC with universal types) 16
4.2 Contextual Equivalence . 19
4.3 A Logical Relation for System F . 20
4.4 Exercises . 28

5 Existential types 29

6 Recursive Types and Step Indexing 34
6.1 A motivating introduction to recursive types 34
6.2 Simply typed lambda calculus extended with µ 36
6.3 Step-indexing, logical relations for recursive types 37
6.4 Exercises . 41

1

1 Introduction

The term logical relations stems from Gordon Plotkin’s memorandum Lambda-
definability and logical relations written in 1973. However, the spirit of the proof
method can be traced back to Wiliam W. Tait who used it to show strong nor-
malization of System T in 1967.

Names are a curious thing. When I say “chair”, you immediately get a picture
of a chair in your head. If I say “table”, then you picture a table. The reason
you do this is because we denote a chair by “chair” and a table by “table”, but we
might as well have said “giraffe” for chair and “Buddha” for table. If we encounter
a new word composed of known words, it is natural to try to find its meaning by
composing the meaning of the components of the name. Say we encounter the word
“tablecloth” for the first time, then if we know what “table” and “cloth” denotes we
can guess that it is a piece of cloth for a table. However, this approach does not
always work. For instance, a “skyscraper” is not a scraper you use to scrape the
sky. Likewise for logical relations, it may be a fool’s quest to try to find meaning
in the name. Logical relations are relations, so that part of the name makes sense.
They are also defined in a way that has a small resemblance to a logic, but trying
to give meaning to logical relations only from the parts of the name will not help
you understand them. A more telling name might be Type Indexed Inductive
Relations. However, Logical Relations is a well-established name and easier to say,
so we will stick with it (no one would accept “giraffe” to be a chair).

The remainder of this note is based on the lectures of Amal Ahmed at the
Oregon Programming Languages Summer School, 2015. The videos of the lec-
tures can be found at https://www.cs.uoregon.edu/research/summerschool/
summer15/curriculum.html.

1.1 Simply Typed Lambda Calculus (STLC)

The language we use to present logical predicates and relations is the simply typed
lambda calculus. In the first section, it will be used in its basic form. In the later,
sections the simply typed lambda calculus will be used as a base language. If the
text says that we extend with some construct, then it is the simply typed lambda
calculus that we extend with this construct. The simply typed lambda calculus is
defined as follows:

2

https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html

Types: τ ::= bool | τ → τ

Terms: e ::= x | true | false | if e then e else e | λx : τ. e | e e
Values: v ::= true | false | λx : τ. e

Evaluation
E ::= [] | if E then e else e | E e | v E

contexts:

Evaluations:

if true then e1 else e2 7→ e1

if false then e1 else e2 7→ e2

(λx : τ. e) v 7→ e[v/x]

e 7→ e′

E[e] 7→ E[e′]

Typing
Γ ::= • | Γ, x : τ

Contexts:

Typing rules:

Γ ` false : bool
T-False

Γ ` true : bool
T-True

Γ(x) = τ

Γ ` x : τ
T-Var

Γ, x : τ1 ` e : τ2

Γ ` λx : τ1. e : τ1 → τ2

T-Abs

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
T-App

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ
T-If

For the typing contexts, it is assumed that the binders are distinct. So if x ∈
dom(Γ), then Γ, x : τ is not a legal context.

1.2 Logical Relations

Logical relations are used to prove properties about programs in a language. Log-
ical relations are proof methods and can be used as an alternative to proving
properties directly. Examples of properties one can show using logical relations
are:

• Termination (Strong normalization)

• Type safety

• Equivalence of programs

3

– Correctness of programs
– Representation independence
– Parametricity and free theorems, e.g.,

f : ∀α. α→ α

The program cannot inspect α as it has no idea which type it will be,
therefore f must be identity function.

∀α. int→ α

A function with this type cannot exist (the function would need to
return something of type α, but it only has something of type int to
work with so it cannot possibly return a value of the proper type).

– Security-Typed Languages (for Information Flow Control (IFC))
Example: All types in the code snippet below are labeled with their
security level. A type can be labeled with either L for low or H for
high. We do not want any flow from variables with a high labeled type
to a variable with a low labeled type. The following is an example of
an insecure explicit flow of information:

x : i n tL

y : i n tH

x = y //This ass ignment i s i n s e cu r e .

Further, information may leak through a side channel. That is the value
denoted by a variable with a low labeled type depends on the value of
a variable with a high labeled type. If this is the case, we may not have
learned the secret value, but we may have learned some information
about it. An example of a side channel:

x : i n tL

y : i n tH

i f y > 0 then x = 0 e l s e x = 1

The above examples show undesired programs or parts of programs,
but if we want to generally state behavior we do not want a program
to exhibit, then we state it as non-interference:

` P : intL × intH → intL

P (vL, v1H) ≈L P (vL, v2H)

If we run P with the same low value and with two different high values,
then the low result of the two runs of the program should be equal.
That is the low result does not depend on high values.

4

1.3 Categories of Logical Relations

We can split logical relations into two: logical predicates and logical relations.
Logical predicates are unary and are usually used to show properties of a program.
Logical relations are binary and are usually used to show equivalences:

Logical Predicates Logical Relations
(Unary) (Binary)
Pτ (e) Rτ (e1, e2)

- One property - Program Equivalence
- Strong normalization
- Type safety

The following describes some properties we want a logical predicate to have in
general. These properties can be generalized to logical relations. In general, for a
logical predicate Pτ and an expression e, we want e to be accepted by the predicate
if it satisfies the following properties1:

1. • ` e : τ

2. The property we wish e to have.

3. The condition is preserved by eliminating forms.

2 Normalization of the Simply Typed Lambda Cal-
culus

2.1 Strong Normalization of STLC

In this section, we wish to show that the simply typed lambda calculus has strong
normalization which means that every term is strongly normalizing. Normalization
of a term is the process of reducing a term into its normal form. If a term is strongly
normalizing, then it reduces to its normal form. In our case, we define the normal
forms of the language to be the values of the language.

1Note: when we later want to prove type safety, the well-typedness property is weakened to
only require e to be closed.

5

A first try on normalization of STLC

We start with a couple of abbreviations:

e ⇓ v def
= e 7→∗ v

e ⇓ def
= ∃v. e ⇓ v

Where v is a value. What we want to prove is:

Theorem (Strong Normalization).
If • ` e : τ then e ⇓

We first try to prove the above property directly to see it fail.

Proof. ¡ This proof gets stuck and is not complete. !
Induction on the structure of the typing derivation.
Case • ` true : bool, this term has already terminated.
Case • ` false : bool, same as for true.
Case • ` if e then e1 else e2 : τ , simple, but requires the use of canonical forms of
bool2.
Case • ` λx : τ1. e : τ1 → τ2, it is a value already and it has terminated.

Case
Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
T-App

,
by the induction hypothesis, we get e1 ⇓ v1 and e2 ⇓ v2. By the type of e1, we
conclude e1 ⇓ λx : τ2. e

′. What we need to show is e1 e2 ⇓. We know e1 e2 takes
the following steps:

e1 e2 7→∗ (λx : τ2. e
′) e2

7→∗ (λx : τ2. e
′) v2

7→ e′[v2/x]

Here we run into an issue as we do not know anything about e′. Our induction
hypothesis is not strong enough.3 �

A logical predicate for strongly normalizing expressions

We want to define a logical predicate, SNτ (e). We want SNτ to accept the expres-
sions of type τ that are strongly normalizing. In the introduction, we considered

2See Pierce’s Types and Programming Languages for more about canonical forms.
3:(

6

some properties a logical predicate in general should have. Keep these properties
in mind when we define the logical predicate for strong normalization:

SNbool(e)⇔ • ` e : bool ∧ e ⇓
SNτ1→τ2(e)⇔ • ` e : τ1 → τ2 ∧ e ⇓ ∧ (∀e′. SNτ1(e

′) =⇒ SNτ2(e e
′))

It is here important to consider whether the logical predicate is well-founded.
SNτ (e) is defined over the structure of τ , so it is indeed well-founded.

Strongly normalizing using a logical predicate

We are now ready to show strong normalization using SNτ (e). The proof is done
in two steps:

a • ` e : τ =⇒ SNτ (e)

b SNτ (e) =⇒ e ⇓

The structure of this proof is common to proofs that use logical relations. We
first prove that well-typed terms are in the relation. Then we prove that terms
in the relation actually have the property we want to show (in this case strong
normalization).

The proof of b is by induction on τ . This should not be difficult, as we baked
the property we want into the relation. That was the second property we in general
wanted a logical relation to satisfy.

We could try to prove a by induction over • ` e : τ , but the case

Γ, x : τ1 ` e : τ2

Γ ` λx : τ1. e : τ1 → τ2

T-Abs

gives issues. Instead we prove a generalization of a

Theorem (a Generalized). If Γ ` e : τ and γ |= Γ then SNτ (γ(e))

Here γ is a substitution, γ = {x1 7→ v1, . . . , xn 7→ vn}. We define the substitu-
tion to work as follows:

∅(e) = e

γ[x 7→ v](e) = γ(e[x/v])

7

In English, the theorem reads: If e is well-typed with respect to some type τ
and we have some closing substitution that satisfy the typing environment, then
if we close of e with γ, then this closed expression is in SNτ .

γ |= Γ is read “the substitution γ satisfies the type environment, Γ.” It is
defined as follows:

γ |= Γ
def
= dom(γ) = dom(Γ) ∧ ∀x ∈ dom(Γ). SNΓ(x)(γ(x))

To prove the generalized theorem we need further two lemmas

Lemma (Substitution Lemma). If Γ ` e : τ and γ |= Γ, then • ` γ(e) : τ

Lemma (SN preserved by forward/backward reduction). Suppose • ` e : τ and
e 7→ e′

1. if SNτ (e
′), then SNτ (e)

2. if SNτ (e), then SNτ (e
′)

Proof. Probably also left as an exercise (not proved during the lecture).

Proof. (Substitution Lemma). Left as an exercise.

Proof. (a Generalized). Proof by induction on Γ ` e : τ .
Case Γ ` true : bool,
We have:

γ |= Γ

We need to show:

SNbool(γ(true))

If we do the substitution, we just need to show SNbool(true) which is true as
true ⇓ true.
Case Γ ` false : bool, similar to the true case.

Case
Γ(x) = τ

Γ ` x : τ
T-Var

,
We have:

γ |= Γ

We need to show:

SNτ (γ(x))

8

This case follows from the definition of Γ |= γ. We know that x is well-typed, so
it is in the domain of Γ. From the definition of Γ |= γ, we then get SNΓ(x)(γ(x)).
From well-typedness of x, we have Γ(x) = τ which then gives us what we needed
to show.
Case Γ ` if e then e1 else e2 : τ , left as an exercise.

Case
Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
T-App

,
We have:

γ |= Γ

We need to show:

SNτ (γ(e1 e2)) ≡ SNτ (γ(e1) γ(e2))

By the induction hypothesis we have

SNτ2→τ (γ(e1)) (1)
SNτ2(γ(e2)) (2)

By the 3rd property of (1), ∀e′. SNτ2(e
′) =⇒ SNτ (γ(e1) e′), instantiated with

(2), we get SNτ (γ(e1) γ(e2)) which is the result we need.

Case
Γ, x : τ1 ` e : τ2

Γ ` λx : τ1. e : τ1 → τ2

T-Abs
,

We have:

γ |= Γ

We need to show:

SNτ1→τ2(γ(λx : τ1. e)) ≡ SNτ1→τ2(λx : τ1. γ(e))

Our induction hypothesis in this case reads:

Γ, x : τ1 ` e : τ2 ∧ γ′ |= Γ, x : τ1 =⇒ SNτ2(γ
′(e))

It suffices to show the following three things:

1. • ` λx : τ1. γ(e) : τ1 → τ2

2. λx : τ1. γ(e) ⇓

3. ∀e′. SNτ1(e
′) =⇒ SNτ2((λx : τ1. γ(e)) e′)

9

If we use the substitution lemma4 and push the γ in under the λ-abstraction, then
we get 1. 2 is okay as the lambda-abstraction is a value.

It only remains to show 3. To do this, we want to somehow apply the induction
hypothesis for which we need a γ′ such that γ′ |= Γ, x : τ1. We already have γ and
γ |= Γ, so our γ′ should probably have have the form γ′ = γ[x 7→ v?] for some v? of
type τ1. Let us move on and see if any good candidates for v? present themselves.

Let e′ be given and assume SNτ1(e
′). We then need to show SNτ2((λx :

τ1. γ(e)) e′). From SNτ1(e
′), it follows that e′ ⇓ v′ for some v′. v′ is a good

candidate for v? so let v? = v′. From the forward part of the preservation lemma,
we can further conclude SNτ1(v

′). We use this to conclude γ[x 7→ v′] |= Γ, x : τ1

which we use with the assumption Γ, x : τ1 ` e : τ2 to instantiate the induction
hypothesis and get SNτ2(γ[x 7→ v′](e)).

Now consider the following evaluation:

(λx : τ1. γ(e)) e′ 7→∗ (λx : τ1. γ(e)) v′

7→ γ(e)[v′/x] ≡ γ[x 7→ v′](e)

We already concluded that e′ 7→∗ v′, which corresponds to the first series of steps.
We can then do a β-reduction to take the next step and finally we get something
that is equivalent to γ[x 7→ v′](e). That is we have the evaluation

(λx : τ1. γ(e)) e′ 7→∗ γ[x 7→ v′](e)

From SNτ1(e
′), we have • ` e′ : τ1 and we already argued that • ` λx : τ1. γ(e) :

τ1 → τ2 so from the application typing rule we get • ` (λx : τ1. γ(e)) e′ : τ2. We can
use this with the above evaluation and the forward part of the preservation lemma
to argue that every intermediate expressions in the steps down to γ[x 7→ v′](e) are
closed and well typed.

If we use SNτ2(γ[x 7→ v′](e)) with (λx : τ1. γ(e)) e′ 7→∗ γ[x 7→ v′](e) and
the fact that every intermediate step in the evaluation is closed and well typed,
then we can use the backward reduction part of the SN preservation lemma to get
SNτ2((λx : τ1. γ(e)) e′) which is the result we wanted.

2.2 Exercises

1. Prove SN preserved by forward/backward reduction.

2. Prove the substitution lemma.
4Substitution has not been formally defined here, but one can find a sound definition in

Pierce’s Types and Programming Languages.

10

3. Go through the cases of “ a Generalized” shown here by yourself.

4. Prove the if-case of “ a Generalized”.

5. Extend the language with pairs and adjust the proofs.

(a) See how the clauses, we generally wanted our logical predicate to have,
play out when we extend the logical predicate. Do we need to add any-
thing for the third clause or does it work out without putting anything
there, like we did with the bool case?

3 Type Safety for STLC

In the following section, we want to prove type safety for the simply typed lambda
calculus. We do not want to prove it directly as one normally does. We want to
prove it using a logical predicate.

First we need to consider what type safety is. The classical mantra for type
safety is “Well-typed programs do not go wrong.” It depends on the language and
type system what go wrong means, but in our case a program has gone wrong if
it is stuck5 (an expression is stuck if it is irreducible but not a value).

3.1 Type safety - the classical treatment

Type safety for simply typed lambda calculus is stated as follows:

Theorem (Type Safety for STLC). If • ` e : τ and e 7→∗ e′, then Val(e′) or
∃e′′. e′ 7→ e′′.

Traditionally type safety is proven with two lemmas: progress and preservation.

Lemma (Progress). If • ` e : τ , then Val(e) or ∃e′. e 7→ e′.

Progress is normally proved by induction on the typing derivation.

Lemma (Preservation). If • ` e : τ and e 7→ e′, then • ` e′ : τ .
Preservation is normally proved by induction on the evaluation. Preservation

is also known as subject reduction. Progress and preservation talk about one step,
so to prove type safety we have to do induction on the evaluation. Here we do not
want to prove type safety the traditional way. We want to prove it using a logical
predicate. We use a logical predicate rather than a logical relation because type
safety is a unary property.

5If we consider language-based security for information flow control the notion of go wrong
would be that there is an undesired flow of information

11

3.2 Type safety - using logical predicate

The notation will here be changed compared to the one from lecture 1. We define
the logical predicate in two parts: a value interpretation and an expression inter-
pretation. The value interpretation is a function from types to the power set of
closed values:

VJ−K : type→ P(ClosedV al)

The value interpretation is defined as:

VJboolK = {true, false}
VJτ1 → τ2K = {λx : τ1. e | ∀v ∈ VJτ1K. e[v/x] ∈ EJτ2K}

We define the expression interpretation as:

EJτK = {e | ∀e′. e 7→∗ e′ ∧ irred(e′) =⇒ e′ ∈ VJτK}

Notice that neither VJτK nor EJτK requires well-typedness. Normally this would be
a part of the predicate, but as the goal is to prove type safety we do not want it as a
part of the predicate. In fact, if we did include a well-typedness requirement, then
we would end up having to prove preservation for some of the proofs to go through.
We do, however, require the value interpretation to only contain closed values. An
expression is irreducible if it is unable to take any reduction steps according to the
evaluation rules. The predicate irred captures whether an expression is irreducible:

irred(e)
def
= 6 ∃e′. e 7→ e′

The sets are defined on the structure of the types. VJτ1 → τ2K contains EJτ2K, but
EJτ2K uses τ2 directly in VJτ2K, so the definition is structurally well-founded. To
prove type safety, we first define a new predicate, safe:

safe(e)
def
= ∀e′. e 7→∗ e′ =⇒ Val(e′) ∨ ∃e′′. e′ 7→ e′′

An expression e is safe if it can take a number of steps and end up either as a
value or as an expression that can take another step.

We are now ready to prove type safety. Just like we did for strong normaliza-
tion, we prove type safety in two steps:

a • ` e : τ =⇒ e ∈ EJτK

b e ∈ EJτK =⇒ safe(e)

12

Rather than proving a directly we prove a more general theorem and get a as a
corollary. But we are not yet in a position to state the theorem. First we need to
define define the interpretation of environments:

GJ•K = {∅}
GJΓ, x : τK = {γ[x 7→ v] | γ ∈ GJΓK ∧ v ∈ VJτK}

Further we need to define semantic type safety:

Γ |= e : τ
def
= ∀γ ∈ GJΓK. γ(e) ∈ EJτK

We can now define our generalized version of a .

Theorem (Fundamental Property). If Γ ` e : τ , then Γ |= e : τ

A theorem like this would typically be the first you prove after defining a logical
relation. The theorem says that every syntactic type safety implies semantic type
safety.

We also alter the b part of the proof, so we prove

• |= e : τ =⇒ safe(e)

Proof. (Altered b). Suppose e 7→∗ e′ for some e′, then we need to show Val(e′) or
∃e′′. e′ 7→ e′′. We proceed by casing on whether or not irred(e′):
Case ¬ irred(e′), this case follows directly from the definition of irred. irred(e′) is
defined as 6 ∃e′′. e′ 7→ e′′ and as the assumption is ¬ irred(e′), we get ∃e′′. e′ 7→ e′′.
Case irred(e′), by assumption we have • |= e : τ . As the typing context is empty,
we choose the empty substitution and get e ∈ EJτK. We now use the definition
of e ∈ EJτK with what we supposed, e 7→∗ e′, and the case assumption, irred(e′),
to conclude e′ ∈ VJτK. As e′ is in the value interpretation of τ , we can conclude
Val(e′).

To prove the Fundamental Property, we need a substitution lemma:

Lemma (Substitution). Let e be syntactically well-formed term, let v be a closed
value and let γ be a substitution that map term variables to closed values, and let
x be a variable not in the domain of γ, then

γ[x 7→ v](e) = γ(e)[x/v]

Proof. By induction on the size of γ.
Case γ = ∅, this case is immediate by how substitution is defined. That is by

13

definition we have [x 7→ v]e = e[v/x].
Case γ = γ′[y 7→ v′], x 6= y, in this case our induction hypothesis is:

γ′[x 7→ v]e = γ′(e)[v/x]

We wish to show

γ′[y 7→ v′][x 7→ v]e = γ′[y 7→ v′](e)[v/x]

γ′[y 7→ v′][x 7→ v]e = γ′[x 7→ v][y 7→ v′]e (3)

= γ′[x 7→ v](e[v
′
/y]) (4)

= γ′(e[v
′
/y])[x/v] (5)

= γ′[y 7→ v′](e)[x/v] (6)

In the first step (3), we swap the two mappings. It is safe to do so as both v and
v′ are closed so we know that no variable capturing will occur. In the second step
(4), we just use the definition of substitution (as specified in the first lecture note).
In the third step (5), we use the induction hypothesis6. Finally in the last step
(6), we use the definition of substitution to get the y binding out as an extension
of γ′.

Proof. (Fundamental Property). Proof by induction on the typing judgment.

Case
Γ, x : τ1 ` e : τ2

Γ ` λx : τ1. e : τ1 → τ2

T-Abs
,

We need to show Γ |= λx : τ1. e : τ1 → τ2. First suppose γ ∈ GJΓK. Then we need
to to show

γ(λx : τ1. e) ∈ EJτ1 → τ2K ≡ (λx : τ1. γ(e)) ∈ EJτ1 → τ2K

Now suppose that λx : τ1. γ(e) 7→∗ e′ and irred(e′). We then need to show
e′ ∈ VJτ1 → τ2K. Since λx : τ1. γ(e) is a value, it is irreducible, and we can
conclude it took no steps. In other words e′ = λx : τ1. γ(e). So we need to
show λx : τ1. γ(e) ∈ VJτ1 → τ2K. Now suppose v ∈ VJτ1K then we need to show
γ(e)[v/x] ∈ EJτ2K.

Keep the above proof goal in mind and consider the induction hypothesis:

Γ, x : τ1 |= e : τ2

6The induction hypothesis actually has a number of premises, as an exercise convince yourself
that they are satisfied.

14

Instantiate this with γ[x 7→ v]. We have γ[x 7→ v] ∈ GJΓ, x : τ1K because we
started by supposing γ ∈ GJΓK and we also had v ∈ VJτ2K. The instantiation gives
us γ[x 7→ v](e) ∈ EJτ2K ≡ γ(e)[v/x] ∈ EJτ2K. The equivalence is justified by the
substitution lemma we proved. This is exactly the proof goal we kept in mind.

Case
Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
T-App

, show this case as an exercise.
The remaining cases were not proved during the lecture.

Now consider what happens if we add pairs to the language (exercise 5 in
exercise section 2.2). We need to add a clause to the value interpretation:

VJτ1 × τ2K = {〈v1, v2〉 | v1 ∈ VJτ1K ∧ v2 ∈ VJτ2K}

There is nothing surprising in this addition to the value relation, and it should not
be a challenge to show the pair case of the proofs.

If we extend our language with sum types.

e ::= . . . | inl v | inr v | case e of inl x => e1 inr x => e2

Then we need to add the following clause to the value interpretation:

VJτ1 + τ2K = {inl v | v ∈ VJτ1K} ∪ {inr v | v ∈ VJτ2K}

It turns out this clause is sufficient. One might think that is is necessary to require
the body of the match to be in the expression interpretation, which looks something
like ∀e1 ∈ EJτK. This requirement will, however, give well-foundedness problems,
as τ is not a structurally smaller type than τ1 + τ2. It may come as a surprise
that we do not need to relate the expressions as the slogan for logical relations is
“Related inputs to related outputs.”

3.3 Exercises

1. Prove the T-App case of the Fundamental Property.

4 Universal Types and Relational Substitutions

In the previous sections, we considered safety and termination, but now we shift
our focus to program equivalences. To prove program equivalences, we will use
logical relations as our proof method. To motivate the need for arguing about
program equivalence, we first introduce universal types.

15

Say we have a function that sorts integer lists:

sortint : list int→ list int

sortint takes a list of integers and returns a sorted version of that list. Say we now
want a function that sorts lists of strings, then instead of implementing a separate
function we could factor out the code responsible for sorting and have just one
function. The type signature of such a generic sort function is:

sort : ∀α. (list α)× (α× α→ bool)→ list α

sort takes a type, a list of elements of this type, and a comparison function that
compares to elements of the type argument and returns a list sorted according to
the comparison function. An example of an application of this function could be

sort [int] (3, 7, 5) <

Whereas sort instantiated with the string type, but given an integer list would not
be a well typed instantiation.

sort [string] ���
��:(”a”, ”c”, ”b”)

(3, 7, 5) string<

Here the application with the list (3, 7, 5) is not well typed, but if we instead use
a list of strings, then it type checks.

We want to extend the simply typed lambda calculus with functions that ab-
stract over types in the same way lambda abstractions, λx : τ. e, abstract over
terms. We do that by introducing a type abstraction:

Λα. e

This function abstracts over the type α which allows e to depend on α.

4.1 System F (STLC with universal types)

τ ::= . . . | ∀α. τ
e ::= . . . | Λα. e | e[τ]

v ::= . . . | Λα. e
E ::= . . . | E[τ]

(Λα. e)[τ] 7→ e[τ/α]

16

Type environment:

∆ ::= • | ∆, α

(The type environment is assumed to consist of distinct type variables. For in-
stance, the environment ∆, α is only well-formed if α 6∈ dom(∆))7. With the
addition of type environments of type variables our typing judgments now have
the following form:

∆,Γ ` e : τ

We now need a notion of well-formed types. If τ is well formed with respect to ∆,
then we write:

∆ ` τ

We do not include the formal rules here, but they amount to FTV(τ) ⊆ ∆, where
FTV(τ) is the set of free type variables in τ .

We further introduce a notion of well formed environments. An environment
is well formed if all the types that appear in the range of Γ are well formed.

∆ ` Γ
def
= ∀x ∈ dom(Γ). ∆ ` Γ(x)

For any type judgment ∆,Γ ` e : τ , we have as an invariant that τ is well formed
in ∆ and Γ is well formed in ∆. The old typing system modified to use the new
form of the typing judgment looks like this:

∆; Γ ` false : bool
T-False

∆; Γ ` true : bool
T-True

Γ(x) = τ

∆; Γ ` x : τ
T-Var

∆; Γ ` e : bool ∆; Γ ` e1 : τ ∆; Γ ` e2 : τ

∆; Γ ` if e then e1 else e2 : τ
T-If

∆; Γ, x : τ1 ` e : τ2

∆; Γ ` λx : τ1. e : τ1 → τ2

T-Abs
∆; Γ ` e1 : τ2 → τ ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ
T-App

Notice that the only thing that has changed is that ∆ has been added to the envi-
ronment in the judgments. We further extend the typing rules with the following
two rules to account for our new language constructs:

∆; Γ ` e : ∀α.τ ∆ ` τ ′

∆; Γ ` e[τ ′] : τ [τ
′
/α]

T-TApp ∆, α; Γ ` e : τ

∆; Γ ` Λα. e : ∀α.τ
T-TAbs

7We do not annotate α with a kind as we only have one kind in this language.

17

Properties of System-F

In System-F, certain types reveal the behavior of the functions with that type.
Let us consider terms with the type ∀α. α→ α. Recall from the Logical Relations
section that this had to be the identity function. We can now phrase this as a
theorem:

Theorem. If •; • ` e : ∀α. α→ α,
• ` τ , and
•; • ` v : τ ,
then e[τ] v 7→∗ v

This is a free theorem in this language. Another free theorem that was men-
tioned in the motivation of lecture 1 was about expressions with type ∀α.α→ bool.
Here all expressions with this type had to be constant functions. We can also
phrase this as a theorem

Theorem. If • ` τ , • ` v1 : τ ,
and • ` v1 : τ ,
then e[τ] v1 ≈ctx e[τ] v2.

Or in a slightly more general fashion where we allow different types:

Theorem. If • ` τ ,
• ` τ ′,
• ` v1 : τ ,
and • ` v1 : τ ′,
then e[τ] v1 ≈ctx e[τ ′] v2.8

We get these free theorems because the functions have no way of inspecting
the argument as they do not know what type it is. As the function has to treat
its argument as an unknown “blob”, it has no choice but to return the same value
every time.

The question now is: “how do we prove these free theorems?” The two last
theorems both talk about program equivalence which we prove using logical rela-
tions. The first theorem did not mention equivalence, but the proof technique of
choice is still a logical relation.

8We have not yet defined ≈ctx so for now just treat it as the two programs are equivalent
without thinking too much about what equivalence means.

18

4.2 Contextual Equivalence

To define a contextual equivalence, we first define the notion of a program context.
A program context is a complete program with exactly one hole in it. It is defined
as follows:

C ::= [·]
| if C then e else e
| if e then C else e
| if e then e else C
| λx : τ. C

| C e

| e C
| Λα. C
| C[τ]

We need a notion of context typing. For simplicity, we just introduce it for simply
typed lambda calculus. The context typing is written as:

Γ ` e : τ Γ′ ` C[e] : τ ′

C : (Γ ` τ) =⇒ (Γ′ ` τ ′)

This means that for any expression e of type τ under Γ if we embed it into C, then
the type of the embedding is τ ′ under Γ′.

Informally we want contextual equivalence to say that no matter what program
context we embed either of the two expressions in, it gives the same result. This is
also called as observational equivalence as the program context is unable to observe
any difference no matter what expression we embed in it. We can of course not
plug an arbitrary term into the hole, so we annotate the equivalence with the type
of the hole which means that the two contextual equivalent expressions have to
have that type.

∆; Γ ` e1 ≈ctx e2 : τ

def
=

∀C : (∆; Γ ` τ) =⇒ (•; • ` τ ′). (C[e1] ⇓ v ⇐⇒ C[e2] ⇓ v)

This definition assumes that e1 and e2 has type τ under the specified contexts.

19

Contextual equivalence is handy because we want to be able to reason about
the equivalence of two implementations. Say we have two implementations of a
stack, one is implemented using an array and the other using a list. If we can show
that the two implementations are contextual equivalent, then we can use the more
efficient one over the less efficient one and know that the complete program will
behave the same. A way this could be used would be to take the simpler stack
implementation as a “specification” of what a stack is supposed to do. If the other
implementation is a highly optimized stack, then the equivalence proof could be
taken as a correctness proof with respect to the specification.

In the next lecture, we will introduce a logical relation such that

∆; Γ ` e1 ≈LR e2 : τ =⇒ contextual equivalence ≈ctx

That is we want to show that the logical relation is sound with respect to contextual
equivalence.

If we can prove the above soundness, then we can state our free theorems
with ≈LR rather than ≈ctx and get the same result if we can prove the logical
equivalence. We would like to do this as it is difficult to directly prove two things
are contextual equivalent. A direct proof has to talk about all possible program
contexts which we could do using induction, but the lambda-abstraction case turns
out to be difficult. This motivates the use of other proof methods where using a
logical relation is one of them.

4.3 A Logical Relation for System F

Now we need to build a logical relation for System F. With this logical relation,
we would like to be able to prove the free theorems from lecture 3. Our value
interpretation will now consist of pairs as we are defining a relation. The value
relation will have the following form:

VJτK = {(v1, v2) | •; • ` v1 : τ ∧ •; • ` v2 : τ ∧ . . . }

In our value interpretation, we require v1 and v2 to be closed and well typed, but
for succinctness we do not write this in the definitions below. Let us try to naively
build the logical relation the same way we build the logical predicates:

VJboolK = {(true, true), (false, false)}
VJτ → τ ′K = {(λx : τ. e1, λx : τ. e2) |

∀(v1, v2) ∈ VJτK. (e1[v1/x], e2[v2/x]) ∈ EJτ ′K}

20

The value interpretation of the function type is defined based on the slogan for
logical relations: “Related inputs to related outputs.” If we had chosen to use
equal inputs rather than related, then our definition would be more restrictive
than necessary.

We did not define a value interpretation for type variables in lecture 3, so let
us try to push on without defining that part.

The next type is ∀α. τ . When we define the value interpretation, we consider
the elimination forms which in this case is type application. Before we proceed,
let us consider one of the free theorems from lecture 3 that we wanted to be able
to prove:

Theorem. If • ` τ , • ` τ ′, • ` v1 : τ , and • ` v1 : τ ′, then e[τ] v1 ≈ctx e[τ ′] v2 :

bool.

There are some important points to notice in this free theorem. First of all,
we want to be able to apply Λ-terms to different types, so in our value interpre-
tation we will have to pick two different types. Further, normally we pick related
expressions, so it would probably be a good idea to pick related types. We do
not, however, have a notion of related types, and in the theorem there is no rela-
tion between the two types used, so relating them might not be a good idea after
all. With these points in mind, we can make a first attempt at defining the value
interpretation of ∀α. τ :

VJ∀α. τK = {(Λα. e1,Λα. e2) | ∀τ1, τ2. (e1[τ1/α], e2[τ2/α]) ∈ EJτ [?/α]K}

Now the question is what type to relate the two expressions under. We need to
substitute ? for some type, but if we use either τ1 or τ2, then the well-typedness
requirement will be broken. We choose to leave τ as it is and not do the substitu-
tion. We do, however, need to keep track of what types we picked in the left and
right part of the pair. To do so, we use a relational substitution:

ρ = {α1 7→ (τ11, τ12), . . . }

Which we parameterize the interpretations with.

VJ∀α. τKρ = {(Λα. e1,Λα. e2) | ∀τ1, τ2. (e1[τ1/α], e2[τ2/α]) ∈ EJτKρ[α 7→(τ1,τ2)]}

We need to parameterize the entire logical relation with the relational substitution,
otherwise we will not know what type to pick when we interpret the polymorphic
type variable and we will not know how to close off the values. Which leads us to

21

the next issue. We are now interpreting types with free type variables, so we need
to have a value interpretation of type variable α. It will look something like

VJαKρ = {(v1, v2) | ρ(α) = (τ1, τ2) . . . }

We need to say that the values are related, but the question is how to relate them.
To figure this out, we again look to the free theorem. In the free theorem, the two
values are related at the argument type we choose. We therefore pick a relation
on these types when we pick the types. We remember the relation we pick in the
relational substitution. We finally reach our definition of the value interpretation
of ∀α. τ :

VJ∀α. τKρ = {(Λα. e1,Λα. e2) | ∀τ1, τ2, R ∈ Rel[τ1, τ2].

(e1[τ1/α], e2[τ2/α]) ∈ EJτKρ[α 7→(τ1,τ2,R)]}

We do not require much of the relation, R. It has to be a set of pairs of values,
and the values in every pair of the relation have to be closed and well typed under
the corresponding type. So we define Rel[τ1, τ2] as:

Rel[τ1, τ2] = {R ∈ P(V al × V al) | ∀(v1, v2) ∈ R. • ` v1 : τ1 ∧ • ` v2 : τ2}

In the interpretation of α, we require the values to be related under the relation
we choose in the value interpretation of ∀α. τ :

VJαKρ = {(v1, v2) | ρ(α) = (τ1, τ2, R) ∧ (v1, v2) ∈ R}

For convenience, we introduce the following notation for projection in ρ. Given

ρ = {α1 7→ (τ11, τ12, R1), α2 7→ (τ21, τ22, R2), . . . }

Define the following projections:

ρ1 = {α1 7→ τ11, α2 7→ τ21, . . . }
ρ2 = {α1 7→ τ12, α2 7→ τ22, . . . }
ρR = {α1 7→ R1, α2 7→ R2, . . . }

Notice that ρ1 and ρ2 now are type substitutions, so we write ρ1(τ) to mean τ

where all the type variables mentioned in the substitution has been substituted
with the appropriate types. We can now write the value interpretation for type
variables in a more succinct way:

VJαKρ = ρR(α)

22

We need to add ρ to the other parts of the value interpretation as well. Moreover,
as we now interpret open types, we require the pairs of values in the relation to be
well typed under the type closed off using the relational substitution. So all value
interpretations have the form

VJτKρ = {(v1, v2) | •; • ` v1 : ρ1(τ) ∧ •; • ` v2 : ρ2(τ) ∧ . . . }

We further need to close of the type annotation of the variable in functions, so our
value interpretations end up as:

VJboolKρ ={(true, true), (false, false)}
VJτ → τ ′Kρ ={(λx : ρ1(τ). e1, λx : ρ2(τ). e2) |

∀(v1, v2) ∈ VJτKρ. (e1[v1/x], e2[v2/x]) ∈ EJτ ′Kρ}

We define our interpretation of expressions as follows:

EJτKρ = {(e1, e2) | •; • ` e1 : ρ1(τ) ∧
•; • ` e2 : ρ2(τ) ∧
∃v1, v2. e1 7→∗ v1 ∧ e2 7→∗ v2 ∧ (v1, v2) ∈ VJτKρ}

We now need to give an interpretation of the contexts ∆ and Γ:

DJ•K = {∅}
DJ∆, αK = {ρ[α 7→ (τ1, τ2, R)] | ρ ∈ DJ∆K ∧ R ∈ Rel[τ1, τ2]}
GJ•Kρ = {∅}

GJΓ, x : τKρ = {γ[x 7→ (v1, v2)] | γ ∈ GJΓKρ ∧ (v1, v2) ∈ VJτKρ}

We need the relational substitution in the interpretation of Γ, because τ might
contain free type variables now. We introduce a convenient notation for the pro-
jections of γ similar to the one we did for ρ:

γ = {α1 7→ (v11, v12), α2 7→ (v21, v22), . . . }

Define the projections as follows:

γ1 = {α1 7→ v11, α2 7→ v21, . . . }
γ2 = {α1 7→ v12, α2 7→ v22, . . . }

We are now ready to define when two terms are logically related. We define it in a
similar way to the logical predicate we already have defined. First we pick ρ and

23

γ to close off the terms, then we require the closed off expressions to be related
under the expression interpretation of the type in question:

∆; Γ ` e1 ≈ e2 : τ
def
= ∆; Γ ` e1 : τ ∧

∆; Γ ` e2 : τ ∧
∀ρ ∈ DJ∆K.
∀γ ∈ GJΓKρ.

(ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ

Now we have defined our logical relation, the first thing we want to do is to prove
the fundamental property:

Theorem (Fundamental Property). If ∆; Γ ` e : τ then ∆; Γ ` e ≈ e : τ

This theorem may seem a bit mundane, but it is actually quite strong. In the
definition of the logical relation, ∆ and Γ can be seen as maps of place holders
that needs to be replaced in the expression. So when we choose a ρ and γ, we may
pick different types and terms to put in the expression. Closing the expression off
can then give us two very different programs.

In some presentations, this is also known as the parametricity lemma. It may
even be stated with out the short-hand notation for equivalence we use here.

We could prove the theorem directly by induction over the typing derivation,
but we will instead prove it by means of compatibility lemmas.

Compatibility Lemmas

We state a compatibility for each of the typing rules we have. Each of the lemmas
will correspond to a case in the induction proof of the Fundamental Property so
the theorem will follow directly from the compatibility lemmas. We state the
compatibility lemmas as rules to highlight the connection to the typing rules. The
premises of the lemma are over the horizontal line, and the conclusion is below:

1. Γ; ∆ ` true ≈ true : bool

2. Γ; ∆ ` false ≈ false : bool

3. Γ; ∆ ` x ≈ x : Γ(x)

4.
∆; Γ ` e1 ≈ e2 : τ ′ → τ ∆; Γ ` e′1 ≈ e′2 : τ ′

∆; Γ ` e1 e
′
1 ≈ e2 e

′
2 : τ

24

5.
∆; Γ, x : τ ` e1 ≈ e2 : τ ′

∆; Γ ` λx : τ. e1 ≈ λx : τ. e2 : τ → τ ′

6.

∆; Γ ` e1 ≈ e2 : ∀α.τ ∆ ` τ ′

∆; Γ ` e1[τ ′] ≈ e2[τ ′] : τ [τ
′
/α]

The rule for if has been omitted here. Notice some of the lemmas are more general
than what we actually need. Take for instance the compatibility lemma for ex-
pression application. To prove the fundamental property, we really just needed to
have the same expressions on both sides of the equivalence. It turns out that the
slightly more general version helps when we want to prove that the logical relation
is sound with respect to contextual equivalence.

We will only prove the compatibility lemma for type application. To do so, we
are going to need the following lemma:

Lemma (Compositionality). Let ∆ ` τ ′, ∆, α ` τ , ρ ∈ DJ∆K, and R = VJτ ′Kρ,
then

VJτ [τ
′
/α]Kρ = VJτKρ[α 7→(ρ1(τ ′),ρ2(τ ′),R)]

The lemma says syntactically substituting some type for α in τ and then in-
terpreting it is the same as semantically substituting the type for α. To prove this
lemma, we would need to show VJτKρ ∈ Rel[ρ1(τ), ρ2(τ)] which is fairly easy given
how we have defined our value interpretation.

Proof. (Compatibility, Lemma 6). What we want to show is

∆; Γ ` e1 ≈ e2 : ∀α.τ ∆ ` τ ′

∆; Γ ` e1[τ ′] ≈ e2[τ ′] : τ [τ
′
/α]

So we assume (1) ∆; Γ ` e1 ≈ e2 : ∀α.τ and (2) ∆ ` τ ′. According to our definition
of the logical relation, we need to show three things:

∆; Γ ` e1[τ ′] : τ [τ
′
/α]

∆; Γ ` e2[τ ′] : τ [τ
′
/α]

∀ρ ∈ DJ∆K. ∀γ ∈ GJΓKρ. (ρ1(γ1(e1[τ ′])), ρ2(γ2(e2[τ ′]))) ∈ EJτ [τ
′
/α]Kρ

The two first follows from the well-typedness part of (1) together with (2) and the
appropriate typing rule. So it only remains to show the last one.

25

Suppose we have a ρ in DJ∆K and a γ in GJΓKρ. We then need to show:

(ρ1(γ1(e1[τ ′])), ρ2(γ2(e2[τ ′]))) ∈ EJτ [τ
′
/α]Kρ

From the E-relation, we find that to show this we need to show that the two terms
run down to two values and those values are related.

We keep this goal in mind and turn our attention to our premise, (1). This
gives us by definition:

∀ρ ∈ DJ∆K. ∀γ ∈ GJΓKρ. (ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ

If we instantiate this with the ρ and γ we supposed previously, then we get

(ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ EJτKρ

which means that e1 and e2 runs down to some value v1 and v2 where (v1, v2) ∈
VJ∀α. τKρ. As (v1, v2) is in the value interpretation of ∀α. τ , we know that the
values are of type ∀α. τ . From this, we know that v1 and v2 are type abstractions,
so there must exist e′1 and e′2 such that v1 = Λα. e′1 and v2 = Λα. e′2. We can now
instantiate (v1, v2) ∈ VJ∀α. τKρ with two types and a relation. We choose ρ1(τ ′)

and ρ2(τ ′) as the two type for the instantiation and VJτ ′Kρ as the relation9. This
gives us

(e′1[ρ1(τ ′)/α], e′2[ρ2(τ ′)/α]) ∈ EJτKρ[α 7→(ρ1(τ ′),ρ2(τ ′),VJτ ′Kρ)]

For convenience, we write ρ′ = ρ[α 7→ (ρ1(τ ′), ρ2(τ ′),VJτ ′Kρ)]. From the two ex-
pressions membership of the expression interpretation, we know that e′1[ρ1(τ)/α]

and e′2[ρ2(τ)/α] run down to some values say v1f and v2f respectively where
(v1f , v2f) ∈ VJτKρ′ .

Let us take a step back and see what we have done. We have argued that the
following evaluation takes place

ρi(γi(ei))[ρi(τ
′)] 7→∗ (Λα. e′i)[ρ1(τ ′)]

7→ e′i[
ρi(τ

′)/α]

7→∗ vif

where i = 1, 2. The single step in the middle is justified by the type application
reduction. The remaining steps are justified in our proof above. If we further note
that ρi(γi(ei[τ ′])) ≡ ρi(γi(ei))[ρ1(τ ′)], then we have shown that the two expressions

9Here we use VJτKρ ∈ Rel[ρ1(τ), ρ2(τ)] to justify using the value interpretation as our relation.

26

from our goal in fact do run down to two values, and they are related. More
precisely we have:

(v1f , v2f) ∈ VJτKρ′

but that is not exactly what we wanted them to be related under. We are, however,
in luck and can apply the compositionality lemma to obtain

(v1f , v2f) ∈ VJτ [τ
′
/α]Kρ

which means that they are related under the relation we needed.

We call theorems that follows as a consequence of parametricity for free theo-
rems. Next we will show a free theorem that says that an expression of the type
∀α. α→ α must be the identity function.

Theorem (Free Theorem (I)). If •; • ` e : ∀α. α→ α, • ` τ , and •; • ` v : τ , then

e[τ] v 7→∗ v

System-F is a terminating language10, so in the free theorem it suffices to say
that when it terminates, then it is with the value passed as argument. If we had
been in a non-terminating language such as System F with recursive types, then
we would have had to state a weaker theorem namely: the expression terminates
with the value given as argument as result, or the computation diverges.

Proof. From the fundamental property and the well-typedness of e, we know • `
e ≈ e : ∀α. α→ α. By definition this gives us

∀ρ ∈ DJ∆K. ∀γ ∈ GJΓKρ. (ρ1(γ1(e)), ρ2(γ2(e))) ∈ EJ∀α. α→ αKρ

We instantiate this with an empty ρ and an empty γ to get (e, e) ∈ EJ∀α. α →
αK∅. From the definition of this, we know that e evaluates to some value F and
(F, F) ∈ VJ∀α. α→ αK∅. As F is a value of type ∀α. α→ α, we know F = Λα. e1

for some e1. Now use the fact that (F, F) ∈ VJ∀α. α → αK∅ by instantiating it
with the type τ twice and the relation R = {(v, v)} to get (e1[τ /α], e1[τ /α]) ∈
EJα→ αK∅[α 7→(τ,τ,R)]. We notice that this instantiation is all right as R ∈ Rel[τ, τ].

This step is an important part of a proof of any free theorem namely choosing
the relation. Before we chose the relation, we picked two types. We did this based
on the theorem we want to show. In the theorem, we instantiate e with τ , so we
pick τ . Likewise with the relation, in the theorem we give v to the function with

10For more on this see Types and Programming Languages by Benjamin Pierce.

27

the domain α, so we pick the singleton relation consisting of (v, v). Picking the
correct relation is what requires some work in the proof of a free theorem. The
remaining work done in the proof is simply unfolding of definitions.

Now let us return to the proof. From (e1[τ /α], e1[τ /α]) ∈ EJα→ αK∅[α 7→(τ,τ,R)],
we know that e1[τ /α] evaluates to some value g and (g, g) ∈ VJα→ αK∅[α 7→(τ,τ,R)].
From the type of g, we know that it must be a λ-abstraction, so g = λx : τ. e2

for some expression e2. Now instantiate (g, g) ∈ VJα→ αK∅[α 7→(τ,τ,R)] with (v, v) ∈
VJαK∅[α 7→(τ,τ,R)] to get (e2[v/x], e2[v/x]) ∈ EJαK∅[α 7→(τ,τ,R)]. From this we know
that e2[v/x] steps to some value vf and (vf , vf) ∈ VJαK∅[α 7→(τ,τ,R)]. We have that
VJαK∅[α 7→(τ,τ,R)] ≡ R so (vf , vf) ∈ R which mean that vf = v as (v, v) is the only
pair in R.

Now let us take a step back and consider what we have shown above.

e[τ] v 7→∗ F [τ] v

≡ (Λα. e1)[τ] v

7→ (e1[τ /α]) v

7→∗ g v
≡ (λx : τ. e2) v

7→ e2[v/x]

7→∗ vf
≡ v

First we argued that e[τ] steps to some F and that F was a type abstraction,
Λα. e1. Then we performed the type application to get e1[τ /α]. We then argued
that this steps to some g of the form λx : τ. e2 which further allowed us to do a
β-reduction to obtain 7→ e2[v/x]. We then argued that this reduced to vf which
was the same as v. In summation we argued e[τ] v 7→∗ v which is the result we
wanted.

4.4 Exercises

1. Prove the following free theorem:

Theorem (Free Theorem (II)). If •; • ` e : ∀α. ((τ → α)→ α) and •; • ` k :

τ → τk, then

•; • ` e[τk] k ≈ k(e[τ] λx : τ. x) : τk

This theorem is a simplified version of the one found in Theorems For Free
by Philip Wadler[1].

28

5 Existential types

An existential type is reminiscent of a Java interface. It describes some function-
ality that someone can go off and implement. You can use the existential type
without knowing what the actual implementation is going to be.

Take for example a stack. We would expect a stack to have the following
functions:

mk creates a new stack.

push puts an element on the top of the stack. It takes a stack and an element
and returns the resulting stack.

pop removes the top element of the stack. It takes a stack and returns the new
stack along with the element that was popped from it.

An interface would define the above signature which you then would go off and im-
plement11. If we wanted to write an interface for a stack, we would write something
like (this is meant to be suggestive, so it is in an non-formal notation):

stack = ∃α. 〈mk : 1→ α,

push : α× int→ α,

pop : α→ α× int〉

where α stands for the type that is used in the actual implementation. The above
is an interface, it hides all the α’s which means that a client cannot see the actual
type of the stack which means that they do not know how the stack is actually
implemented.

We formally write existentials in a similar fashion to how we wrote universal
types:

∃α. τ

Here τ is the same as the record in the stack example. The interface is just a type,
so now we need to define how one implements something of an existential type. If
we were to implement the stack interface, then we would implement a package of
functions that are supposed to be used together. This could look something like

11There is a famous paper called Abstract Data Types Have Existential Type from ’86 by
Mitchell and Plotkin. The title says it all.

29

(again this is meant to be suggestive):

pack array[int],

〈λx : _. . . . ,
λx : _. . . . ,
λx : _. . . . 〉

Here array[int] is the type we want to use for the concrete implementation and
the record of functions is the concrete implementation that uses array[int] to
implement a stack. Let us introduce an example that we can use in the in the rest
of this note. Suppose we have the following type:

τ = ∃α. α× (α→ bool)

And two terms that we for now claim is of this type:

e1 = pack 〈int, 〈1, λx : int. x = 0〉〉 as τ

e2 = pack 〈bool, 〈true, λx : bool. not x〉〉 as τ

Here int and bool are called the witness types. We claim that these two implemen-
tations are equivalent and our goal in this note is to show this.

Before we can do that, we need to introduce a bit more. pack is how we
create something of existential type, it is our introduction form. We also need an
elimination form which is unpack. unpack takes apart a package so that we can
use its components. A package consists of a witness type and an expression that
implements an existential type. We also need typing rules for these two constructs:

∆; Γ ` e : τ [τ
′
/α] ∆ ` τ ′

∆; Γ ` pack 〈τ ′, e〉 as ∃α.τ : ∃α.τ

∆; Γ ` e1 : ∃α.τ ∆, α; Γ, x : τ ` e2 : τ2 ∆ ` τ2

∆; Γ ` unpack 〈α, x〉 = e1 in e2 : τ2

Intuitively, the typing rule of pack says that provided an implementation of the
existential type that implementation has to be well-typed when the witness type
is plugged in for α. In the typing rule for unpack, it is of importance that α is not
free in τ2 which is ensured by ∆ ` τ2. This is important because the point of a
package is to hide away the witness type. Within a certain scope, the witness type
can be pulled out of the package using unpack if α could be returned, then it would
be exposed to the outer world which would defeat the purpose of hiding it. unpack

30

takes out the components of e1 and calls them α and x. The two components can
then be used in the body, e2, of the unpack-expression.

With the typing rules we can type check e1 and e2 to verify that they in fact
have type τ . Typing of e1:

•; • ` 1 : int

•;x : int ` x : int •;x : int ` 0 : int

•;x : int ` x = 0 : bool

•; • ` λx : int. x = 0 : int→ bool

•; • ` 〈1, λx : int. x = 0〉 : int× (int→ bool) • ` int
•; • ` pack 〈int, 〈1, λx : int. x = 0〉〉 as τ : τ

Typing of e2:

•; • ` true : bool

•;x : bool ` x : bool

•;x : bool ` not x : bool

•; • ` λx : bool. not x : bool→ bool

•; • ` 〈true, λx : bool. not x〉 : bool × (bool→ bool) • ` bool
•; • ` pack 〈bool, 〈true, λx : bool. not x〉〉 as τ : τ

To use a package constructed with pack, we need to unpack it with an unpack. If
we for instance try to unpack e1, then we do it as follows:

unpack〈α, p〉 = e1 in

���
��(snd p) 5

(snd p)(fst p)

Here the type int is bound to α, and the pair (1, λx : int. x = 0) is bound to p.
When we take the second projection of p to get the function out, we cannot apply
it to 5 because that would not type check. The environment in which we type
check the body of the unpack is α, p : α× α→ bool. So for the expression to type
check, we need to apply the function to something of type α. We cannot use 5
as it has type int rather than α. The only thing available of type α and thus the
only thing we can give to the function is the first projection of p. We can further
not return (fst p) directly as we require α not to be free in the body of the unpack,
remember the requirement ∆ ` τ2 in the typing rule.

Likewise for e2 we can only pass the first projection to the function in the
second projection of the package. So the only way we can apply the function in e2

is:

31

unpack〈α, p〉 = e2 in

(snd p)(fst p)

We can now informally argue why the e1 and e2 are equivalent. In e1, the only
value of type α is 1 and in e2 it is only true. So the related values, R, must
be {(1, true)}. As already stated, these are the only values we can apply the
functions to, so we can quickly find the possible values that can be returned. In
e1 it is (λx : x = 0.) 1 7→ false and in e2 it is (λx : notx.) true 7→ false. The only
value that is ever exposed from the package is false. If this claim is true, then it
is impossible for a client to observe a difference and thus which package is in fact
in use.

To formally argue that e1 and e2 are equivalent we need to properly introduce
the syntax we have been talking about so far:

τ ::= . . . | ∃α. τ
e ::= . . . | pack 〈τ, e〉 as ∃α.τ | unpack 〈α, x〉 = e in e

v ::= . . . | pack 〈τ, v〉 as ∃α.τ
E ::= . . . | pack 〈τ, E〉 as ∃α.τ | unpack 〈α, x〉 = E in e

We also need to extend the operational semantics:

unpack 〈α, x〉 = pack 〈τ ′, v〉 as ∃α.τ in e 7→ e[τ
′
/α][v/x]

Now finally we need to extend our value interpretation to consider ∃α. τ . The
values we relate are of the form (pack 〈τ1, v1〉 as ∃α.τ, pack 〈τ2, v2〉 as ∃α.τ) and
as always our first instinct should be to look at the elimination form, so we want
to consider unpack 〈α, x〉 = pack 〈τi, vi〉 as ∃α.τ in ei for i = 1, 2. Now it would
be tempting to relate the two bodies, but we get a similar issue to what we had
for sum types. If we relate the two bodies, then what type should we relate them
under? The type we get might be larger than the one we are interpreting which
gives us a well-foundedness problem. So by analogy we do not require that the two
unpack expressions have related bodies. Instead we relate v1 and v2 under some
relation:

VJ∃α.τKρ = {(pack 〈ρ1(τ1), v1〉 as ρ1(∃α.τ),

pack 〈ρ2(τ2), v2〉 as ρ2(∃α.τ)) |
∃R ∈ Rel[ρ1(τ1), ρ2(τ2)].

(v1, v2) ∈ VJτKρ[α 7→(ρ1(τ1),ρ2(τ2),R)]}

32

The relation turns out to be somewhat dual to the one for universal types. Instead
of saying ∀τ1, τ2, R, we say ∃τ1, τ2, R, but as we get τ1 and τ2 directly from the
values, we omit them in the definition. We also relate the two values at τ and
extend the relational substitution with the types we have for α. Notice that we
use ρ to close of the type variables in the two values we related.

With this extension to the value interpretation, we are ready to show that
e1 and e2 are logically related. We reuse the definition of logical equivalence we
defined previously. What we wish to show is:

Theorem.

•; • ` e1 ≈ e2 : ∃α.α× (α→ bool)

Proof. With an empty environment, this amounts to show (e1, e2) ∈ EJ∃α.α×(α→
bool)K∅. To show this, we need to establish that e1 and e2 evaluates down to some
value and that these two values are related under the same type and relational
substitution. e1 and e2 are pack-expressions so they are already values, so we just
need to show (e1, e2) ∈ VJ∃α.α × (α → bool)K∅. We now need to pick a relation
and show that the implementations are related under α× (α→ bool) that is

(〈1, λx : int. x = 0〉, 〈true, λx : bool. not x〉) ∈ VJα× (α→ bool)K∅[α 7→(int,bool,R)]

We pick R = {(1, true)} as the relation. To show that two tuples are related we
show that their components are related12. So we need to show two things the first
is

(1, true) ∈ VJαK∅[∅7→α](int,bool,R)

Which amounts to showing (1, true) ∈ R which is true. The other thing we need
to show is:

(λx : int. x = 0, λx : bool. not x) ∈ VJα→ boolK∅[α 7→(int,bool,R)]

Suppose (v1, v2) ∈ VJαK∅[α 7→(int,bool,R)] which is the same as (v1, v2) ∈ R. Due
to our choice of R, we have v1 = 1 and v2 = false. Now we need to show
(v1 = 0, not v2) ∈ EJboolK∅[α 7→(int,bool,R)]. Which means that we need to show that
the two expressions evaluate to two values related under bool. v1 = 0 evaluates to
false as v1 is 1 and not v2 evaluates to false as well as v2 = true, so we need to
show (false, false) ∈ VJboolK∅[α 7→(int,bool,R)] which is true by definition of the value
interpretation of bool.

12We defined this for logical predicates, but not for logical relations.

33

6 Recursive Types and Step Indexing

6.1 A motivating introduction to recursive types

First consider the following program in the untyped lambda calculus:

Ω = (λx. x x) (λx. x x)

The interested reader can now try to evaluate the above expression. After a β-
reduction and a substitution, we end up with Ω again, so the evaluation of this
expression diverges. Moreover, it is not possible to assign a type to Ω (again the
interested reader may try to verify this by attempting to assign a type). It can
hardly come as a surprise that it cannot be assigned a type, as we previously
proved that the simply typed lambda calculus is strongly normalizing so if we
could assign Ω a type, then it would not diverge.

To type Ω, we need recursive types. If we are able to type Ω, then we do
not have strong normalization (as Ω is not strongly normalizing). With recursive
types, we can type structures that are inherently inductive such as lists, trees, and
streams. In an ML-like language, a declaration of a tree type would look like this:

type t r e e = Leaf
| Node o f i n t ∗ t r e e ∗ t r e e

In Java, we could define a tree class with an int field and fields for the sub trees:

c l a s s Tree {
i n t va lue ;
Tree l e f t , r i g h t ;

}

So we can define trees in our programming languages, but we cannot define them
in the lambda calculus. Let us try to find a reasonable definition for recursive
types by considering what properties are needed to define trees. We want a type
that can either be a node or a leaf. A leaf can be represented by unit (as it here
does not carry any information), and a node is the product of an int and two
nodes. We put the two constructs together with the sum type, as it is:

tree = 1 + (int ∗ tree ∗ tree)

This is what we want, but we cannot specify this. We try to define tree, but tree
appears on the right hand side, which is self-referential. Instead of writing tree,

34

we use a type variable α:

α = 1 + (int× α× α)

= 1 + (int× (int× α× α)× (int× α× α))

...

All the sides of the above equations are equal, and they are all trees. We could
keep going and get an infinite system of equations. If we keep substituting the
definition of α for α ,we keep getting bigger and bigger types. All of the types
are trees, and all of them are finite. If we take the limit of this process, then we
end up with an infinite tree, and that tree is the tree we conceptually have in our
minds. So what we need is the fixed point of the above equation.

Let us define a recursive function for which we want to find a fixed point:

F = λα :: type.1 + (int× α× α)

We want the fixed point which by definition is t such that

t = F (t)

So we want

tree = F (tree)

The fixed point of this function is written:

µα. F (α)

Here µ is a fixed-point type constructor. As the above is the fixed point, then by
definition it should be equal to F applied to it:

µα. F (α) = F (µα. F (α))

Now let us make this look a bit more like types by substituting F (α) for τ .

µα. τ = F (µα. τ)

The right hand side is really just τ with µα. τ substituted with τ :

µα. τ = τ [µα. τ/α]

We are going to introduce the recursive type µα. τ to our language. When we
have a recursive type, we can shift our view to an expanded version τ [µα. τ/α]

35

and contract back to the original type. Expanding the type is called unfold and
contracting is is called fold.

µα. τ τ [µα. τ/α]

unfold

fold

With recursive types in hand, we can now define our tree type:

tree
def
= µα. 1 + (int× α× α)

When we want to work with this, we would like to be able to get under the µ. Say
we have e : tree that is an expression e with type tree, then we want to be able
to say whether it is a leaf or a node. To do so, we unfold the type to get the type
where α has been substituted with the definition of tree and the outer µα. has
been removed. With the outer µα. gone, we can match on the sum type to find
out whether it is a leaf or a node. When we are done working with the type, we
can fold it back to the original tree type.

tree = µα. 1 + (int× α× α)

1 + (int× (µα. 1 + (int× α× α))× (µα. 1 + (int× α× α)))

unfoldfold

This kind of recursive types is called iso-recursive types, because there is an iso-
morphism between a µα. τ and its unfolding τ [µα. τ/α].

6.2 Simply typed lambda calculus extended with µ

STLC extended with recursive types is defined as follows:

τ ::= . . . | µα. τ
e ::= . . . | fold e | unfold e

v ::= . . . | fold v

E ::= . . . | fold E | unfold E

36

unfold (fold v) 7→ v

Γ ` e : τ [µα. τ/α]

Γ ` fold e : µα. τ
T-Fold

Γ ` e : µα. τ

Γ ` unfold e : τ [µα. τ/α]
T-Unfold

With this, we could define the type of an integer list as:

int list
def
= µα. 1 + (int× α)

6.3 Step-indexing, logical relations for recursive types

In a naive first attempt to make the value interpretation, we could write something
like

VJµα. τK = {fold v | unfold (fold v) ∈ EJτ [µα. τ /α]K}

We can simplify this slightly; first we use the fact that unfold (fold v) reduces
to v. Next we use the fact that v must be a value and the fact that we want v
to be in the expression interpretation of τ [µα. τ/α]. By unfolding the definition
of the expression interpretation, we conclude that it suffices to require v to be
in the value interpretation of the same type. We then end up with the following
definition:

VJµα. τK = {fold v | v ∈ VJτ [µα. τ /α]K}

This gives us a well-foundedness issue. The value interpretation is defined by
induction on the type, but τ [µα. τ /α] is not a structurally smaller type than
µα. τ .

To solve this issue, we index the interpretation by a natural number, k, which
we write as follows:

VkJτK = {v | . . . }

Hence v ∈ VkJτK is read as “v belongs to the interpretation of τ for k steps.” We
interpret this in the following way: given a value that we run for k or fewer steps
(as in the value is used in some program context for fewer than k steps), then
we will never notice that it does not have type τ . If we use the same value in a

37

program context that wants to run for more than k steps, then we might notice
that it does not have type τ which means that we might get stuck. This gives us
an approximate guarantee.

We use this as an inductive metric to make our definition well-founded, so
we define the interpretation on induction on the step-index followed by an inner
induction on the type structure. Let us start by adding the step-index to our
existing value interpretation:

VkJboolK = {true, false}
VkJτ1 → τ2K = {λx : τ1. e | ∀j ≤ k. ∀v ∈ VjJτ1K. e[v/x] ∈ EjJτ2K}

true and false are in the value interpretation of bool for any k, so true and false
will for any k look like it has type bool. To illustrate how to understand the value
interpretation of τ1 → τ2, please consider the following time line:

λ time-line

k

(λx : τ1. e) e2

j + 1

(λx : τ1. e) v 7→

j

e[v/x]

0

"future"

Here we start at index k and as we run the program, we use up steps until we at
some point reach 0 and run out of steps. At step k, we are looking at a lambda. A
lambda is used by applying it but it is not certain that the application will happen
right away. We only do a β-reduction when we try to apply a lambda to a value,
but we might be looking at a context where we want to apply the lambda to an
expressions, i.e. (λx : τ1. e) e2. We might use a bunch of steps to reduce e2 down
to a value, but we cannot say how many. So say that sometime in the future we
have fully evaluated e2 to v and say that we have j+ 1 steps left at this time, then
we can do the β reduction which gives us e[v/x] at step j.

We can now define the value interpretation of µα. τ :

VkJµα. τK = {fold v | ∀j < k. v ∈ VjJτ [µα. τ /α]K}

This definition is like the one we previously proposed, but with a step-index. This
definition is well-founded because j is required to be strictly less than k and as
we define the interpretation on induction over the step-index this is indeed well
founded. We do not define a value interpretation for type variables α, as we have
no polymorphism yet. The only place we have a type variable at the moment is in
µα. τ , but in the interpretation we immediately close off the τ under the µ, so we
will never encounter a free type variable.

38

Finally, we define the expression interpretation:

EkJτK = {e | ∀j < k. ∀e′. e 7→j e′ ∧ irred(e′) =⇒ e′ ∈ Vk−jJτK}

To illustrate what is going on here, consider the following time line:

k

e 7→7→7→7→

k − j

e′

0

j

We start with an expression e, then we take j steps and get to expression e′. At
this point, if e′ is irreducible, then we want it to belong to the value interpretation
of τ for k − j steps. We use a strict inequality because we do not want to hit 0
steps. If we hit 0 steps, then we do not have any computational steps to observe
a difference, so all bets are off.

We also need to lift the interpretation of type environments to step-indexing:

GkJ•K = {∅}
GkJΓ, x : τK = {γ[x 7→ v] | γ ∈ GkJΓK ∧ v ∈ VkJτK}

We are now in a position to lift the definition of semantic type safety to one with
step-indexing.

Γ |= e : τ
def
= ∀k ≥ 0. ∀γ ∈ GkJΓK. γ(e) ∈ EkJτK

To actually prove type safety, we do it in two steps. First we state and prove the
fundamental theorem:

Theorem (Fundamental property).
If Γ ` e : τ , then Γ |= e : τ .

When we have proven the fundamental theorem, we prove that it entails type
safety.

b • |= e : τ =⇒ safe(e)

Thanks to the way we defined the logical predicate, this second step should be
trivial to prove.

To actually prove the fundamental theorem, which is the challenging part, we
need to prove a monotonicity lemma:

39

Lemma (Monotonicity).
If v ∈ VkJτK and j ≤ k, then v ∈ VjJτK.

Proof. The proof is by case on τ .
Case τ = bool, assume v ∈ VkJboolK and j ≤ k, we then need to show v ∈ VjJboolK.
As v ∈ VkJboolK, we know that either v = true or v = false. If we assume v = true,
then we immediately get what we want to show, as true is in VjJboolK for any j.
Likewise for the case v = false.
Case τ = τ1 → τ2, assume v ∈ VkJτ1 → τ2K and j ≤ k, we then need to show
v ∈ VjJτ1 → τ2K. As v is a member of VkJτ1 → τ2K, we can conclude that
v = λx : τ1. e for some e. By definition of v ∈ VjJτ1 → τ2K we need to show
∀i ≤ j.∀v′ ∈ ViJτ1K. e[v

′
/x] ∈ EiJτ2K. Suppose i ≤ j and v′ ∈ ViJτ1K, we then need

to show e[v
′
/x] ∈ EiJτ2K.

By assumption, we have v ∈ VkJτ1 → τ2K which gives us ∀n ≤ k. ∀v′ ∈
VnJτ1K. e[v

′
/x] ∈ EnJτ2K. From j ≤ k and i ≤ j, we get i ≤ k by transitivity. We

use this with v′ ∈ ViJτ1K to get e[v
′
/x] ∈ EiJτ2K which is what we needed to show.

Case τ = µα. x, assume v ∈ VkJµα. τK and j ≤ k, we then need to show
v ∈ VjJµα. τK. From v’s assumed membership of the value interpretation of τ for
k steps, we conclude that there must exist a v′ such that v = fold v′. If we suppose
i < j, then we need to show v′ ∈ ViJτ [µα. τ /α]K. From i < j and j ≤ k, we can
conclude i < k which we use with ∀n < k. v′ ∈ VnJτ [µα. τ /α]K, which we get from
v ∈ VkJµα. τK, to get v′ ∈ ViJτ [µα. τ /α]K.

Proof (Fundamental Property). Proof by induction over the typing derivation.

Case
Γ ` e : τ [µα. τ/α]

Γ ` fold e : µα. τ
T-Fold

,
We need to show v

Γ |= fold e : µα.τ

So suppose we have k ≥ 0 and γ ∈ GkJµα.τK, then we need to show γ(fold e) ∈
EkJµα.τK which amounts to showing fold γ(e) ∈ EkJµα.τK.

So suppose that j < k and that fold γ(e) 7→j e′ and irred(e′), then we need
to show e′ ∈ Vk−jJµα.τK. As we have assumed that fold γ(e) reduces down to
something irreducible and the operational semantics of this language are deter-
ministic, we know that γ(e) must have evaluated down to something irreducible.
We therefore know that γ(e) 7→j1 e1 where j1 ≤ j and irred(e1). Now we use our
induction hypothesis:

Γ |= e : τ [µα.τ /α]

40

We instantiate this with k and γ ∈ GkJΓK to get γ(e) ∈ EkJτ [µα.τ /α]K. Which
we then can instantiate with j1 and e1 to get e1 ∈ Vk−j1Jτ [µα.τ /α]K. Now let us
take a step back and see what happened: We started with a fold γ(e) which took
j1 steps to fold e1. We have just shown that this e1 is actually a value as it is
in the value interpretation of Vk−j1Jτ [µα.τ /α]K. To remind us e1 is a value let us
henceforth refer to it as v1. We further know that fold γ(e) reduces to e′ in j

steps and that e′ was irreducible. fold v1 is also irreducible as it is a value and
as our language is deterministic, it must be the case that e′ = fold v1 and thus
j = j1. Our proof obligation was to show e′ = fold v1 ∈ Vk−jJµα.τK to show this
suppose we have l < k − j (this also gives us l < k − j1 as j = j1). We then need
to show v1 ∈ VlJτ [µα.τ /α]K, we obtain this result from the monotonicity lemma
using Vk−j1Jτ [µα.τ /α]K and l < k − j1.

The list example from the previous lecture used the sum type. Sums are a
straight forward extension of the language. The extension of the value interpreta-
tion would be:

VkJτ1 + τ2K = {inl v1 | v1 ∈ VkJτ1K} ∪ {inr v2 | v2 ∈ VkJτ2K}

We can use k directly or k decremented by one. It depends on whether we want
casing to take up a step. Either way the definition is well-founded.

6.4 Exercises

1. Do the lambda and application case of the Fundamental Property theorem.

2. Try to prove the monotonicity lemma where the definition of the value in-
terpretation has been adjusted with:

VkJτ1 → τ2K = {λx : τ1. e | ∀v ∈ VkJτ1K. e[v/x] ∈ EkJτ2K}

This will fail, but it is instructive to see how it fails.

Acknowledgments

It is established practice for authors to accept responsibility for any and all mis-
takes in documents like this. I, however, do not. If you find anything amiss, please
let me know so I can figure out who of the following are to blame: Amal Ahmed,
Morten Krogh-Jespersen, Kent Grigo, or Kristoffer Just Andersen.

41

References

[1] Philip Wadler. Theorems for free! In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture,
FPCA ’89, pages 347–359, New York, NY, USA, 1989. ACM.

42

	Introduction
	Simply Typed Lambda Calculus (STLC)
	Logical Relations
	Categories of Logical Relations

	Normalization of the Simply Typed Lambda Calculus
	Strong Normalization of STLC
	Exercises

	Type Safety for STLC
	Type safety - the classical treatment
	Type safety - using logical predicate
	Exercises

	Universal Types and Relational Substitutions
	System F (STLC with universal types)
	Contextual Equivalence
	A Logical Relation for System F
	Exercises

	Existential types
	Recursive Types and Step Indexing
	A motivating introduction to recursive types
	Simply typed lambda calculus extended with
	Step-indexing, logical relations for recursive types
	Exercises

