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Where Were We?'

Last time we recalled Reynolds’ standard relational parametricity

This is the main inspiration for the bifibrational model of parametricity

for System F we will develop

View Reynolds’ construction and results through the lens of the rela-
tions (bi)fibration on Set

Generalize Reynolds’ constructions to bifibrational models of System
F for which we can prove (bifibrational versions of) the IEL and Ab-

straction Theorem

Reynolds’ construction is (ignoring size issues) such a model
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Motivation: Indexed Families of Sets'

A fibration captures a family (€g)pcp of categories £g indexed over

objects of a(nother) category B

A fibration is a functor U : £€ — B
— B is the base category of U

— & is the total category of U
Intuitively, £ = (Jg.z€B

U must have some additional properties for describing indexing

We are interested in indexing because Reynolds’ interpretations are

type-indexed
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Display Maps'

Simple case: Indexing for sets

— B is a set I of indices,

— € is X = (J;c; X, where (X;);cs is a (wlog, disjoint) family of sets
— U : X — I maps each x € X to the index 7 € I such that x € X
U is called the display map for (X;);cr

It is customary to draw it vertically, like this:

X

d

I

The set
X, =U1'\@)={zx e X|Uz =1}

is called the fibre of X over 2
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Categories from Indexed Families - Example III

e The arrow category Set™

— An object of Set™ is a function U : X — I in Set for some index
set 1

— A morphism from U’ :' Y — J toU : X — I in Set™ is a pair
(g: Y — X, f:J — I) of functions in Set such that U og = f o U’

Y I X
U’l lU
J 7 I

e We can view g as a family of functions (g;);cs, where g; : Y; — Xy (;
(since g(y) € U7 (f(j)) for any y € Y; =U'7'(j) )

e Identities and composition are componentwise inherited from Set.

e Set™ induces a codomain functor cod : Set™ — Set mapping

U: X >ITtol and (g,f)tof
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Substitution I

e Consider U : X — I for X = (X;);cs for some index set I

e Substitution along f : J — I turns the family (X;);c; into a family
(Y;)jes such that Y; = X ;)

® (Y;)jcs is obtained by pullback of U along f
Yy - X
_
U’l lU

o Y ={(j,x) € JXxX |U(x) = f(j)} with projection functions g and U’

e U':Y — J gives a new family of sets (Y});jcs whose fibres are
Y; = UT'(§) = {z € X|U(z) = f(4)} = U (f(4) = Xsu)

e We usually write f*(U) for the display map U’
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Let f be an element f : {x} — I
Then f picks out an element ¢ of I (i.e., f(*) = 1)
Y, = U %) = {z € X|U(x) =1} = U (1) = X;

Thus Y = Y, =Y. =X,

ge{*}



Substitution - Example 1'

Let f be an element f : {x} — I

Then f picks out an element ¢ of I (i.e., f(*) = 1)

Y, = U %) = {z € X|U(x) =1} = U (1) = X;

So substituting along a particular element of I selects the fibre of X

over that element
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e Let f be a non-indexed set f : J — {x}

e Then, for every 3 € J,
Y; = U'(j) = {2 X|U@)=+} = U'(x) = X. =X

e SoY =J;c;Y; =J X X (since the Y; are disjoint)
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Substitution - Example 3'

Let f be a projection f: I X J — 1

Then, for every pair (z,j),

Yij = U7'(4,5) = {z€ X|U(x) =i} = U (i) = X,
SoY = U(i,j)EIxJ Y5 = U(z’,j)EIxJX’i = X; X J
There is a “dummy” index j in the family f*(U) that plays no role

Logically speaking, substitution along a projection is weakening
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Substitution - Example 4'

Let f be adiagonal map f: 1 — 1 X 1

Then, for every 2 € I,

Y, — U/—l(i) _ {:BEX|U(ZL‘) — (z,z)} — U_l(i,i) = X(i,z’)

SoY = UiEI Y, = U(z’,z’)EIxI X (i,6)
In other words, Y is restriction of U(i,i,)elxl X (i,i7y to the diagonal 1 = ¢’

Logically speaking, substitution along a diagonal is contraction
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e The pair (g, f) in the pullback diagram

y . X
_
ol o

N |

f
is a morphism from f*(U) to U in the arrow category Set™

e We call (g, f) a substitution morphism from f*(U) to U
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Best Substitution Morphisms - Part III

e (g, f) is such that if
— U"” : Z — K is any object in Set™
— (¢’ f') : U” — U is a morphism in Set™
— f': K — I factors through f : J — I viav : K — J (i.e., f' = fowv)
then there exists a unique h : Z — Y in Set™ such that
— cod(h,v) = v for cod : Set™ — Set
—goh=¢g

’

g

h N g

o) o

K—r —J—7' ]
fl

e That is, (g, f) is the best substitution morphism from f*(U) to U

U//

e The existence of such best substitution morphisms is what makes cod :
Set™ — Set a fibration
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o Let U : £ — B be a functor

® A morphism g: Q — P in £ is cartesian over f: X — Y in B if
—~Ug=f
— for every ¢’ : Q' — P in £ with Ug’ = fow for some v : UQ" — X,
there exists a unique h: Q' — Q with Uh = v and ¢ =goh

E Q'
h:
Y
Q p P
UuqQ’
T
B X Y
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Opcartesian Morphisms'

e Let U : £ — B be a functor
e A morphism g: P — (@ in £ is opcartesian over f: X — Y in B if
~Ug=f

— for every ¢’ : P — Q' in £ with Ug’ = vo f for somev:Y — UQ’,
there exists a unique h : Q — Q' with Uh =v and ¢ = hog

E Q’ Q/
h g’ g’ 4h
Y
Q 7 P P 7 Q
UQ’ UuQ’
vl Ug’ Ug’ T 0
B X Y X Y
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Observations and Notation'

Let Pinfand f: X - Y withUP =Y

(Op)cartesian morphisms over f wrt P are unique up to isomorphism
f1§_-, is the cartesian morphism over f with codomain P

f§P is the opcartesian morphism over f with domain P

f*P is the domain of f;*f:,

3 ¢P is the codomain of f§P
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Fibrations and Opﬁbrations'

U : £ — B is a fibration if for every object P of £ and every f: X —
UP in B, there is a cartesian morphism f1§;, :@QQ — P in € over f

U : £ — B is an opfibration if for every object P of £ and every
f:UP — Y in B, there is an opcartesian morphism f§P :P—Qin &£

over f
U : £ — B is a bifibration if it is both a fibration and an opfibration

If U : £ — B is a fibration, opfibration, or bifibration, then an object

P in £ is over its image U P and similarly for morphisms
A morphism is vertical if it is over d

The fibre £x over an object X in B is the subcategory of £ of objects

over X and morphisms over id x
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Indexing and Reindexing Functors'

e The function mapping each object P of £ to f*P extends to the rein-
dexing functor f*: & — Ex along f mapping each k : P — P’ in &y
to the (unique) morphism f*k such that ko f} = f3, o f*k

e The function mapping each object P of £ to ¥ ;P extends to the oprein-
dexing functor ¥f : Ex — €y along f mapping each k: P — P’ in £x
to the (unique) morphism Xk such that 3zk o f° = _f§P' ok
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New Fibrations from Old'

|C| is the discrete category of C

The discrete functor |U| : |E| — |B| is induced by the restriction of
U:&— Bto |&|

C™ is the n-fold product of C (in Cat)

The n-fold product of U : &€ — B, denoted U™ : £ — B", is given by
Un(Xl, Y Xn) = (UXl, YY) UXn) and U'n(f‘l, YY) fn) = (Ufl, coes Ufn)

Lemma

1. If U : &€ — B is a functor, then |U| : |€|] — |B| is a bifibration,
called the discrete fibration for U

2. If U is a (bi)fibration then so is U™ : £ — B" for any n € Nat
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Fibred Functors'

e Let U : £ - B and U’ : & — B’ be fibrations

e A fibred functor F : U’ — U comprises two functors

F,:B —-B and F,.:& — &

such that
— UoF,=F,oU’
g—r ¢
U’l lU
B—" -8B

— cartesian morphisms are preserved, i.e., if f in £’ is cartesian over

g in B’ then F. f in £ is cartesian over F,g in B
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Fibred Natural Transformations'

o Let F,F’:U’ — U be fibred functors

e A fibred natural transformation n : F/ — F comprises two natural

transformations
No: F, - F, and n,:F — F,
such that U o n,, = n, o U’
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tions (bi)fibration on Set

e Generalize Reynolds’ constructions to (bi)fibrational models of Sys-
tem F for which we can prove (fibrational versions of) the IEL and
Abstraction Theorem Reynolds’ construction is (ignoring size issues)

an instance

e Reynolds’ construction is (ignoring size issues) such a model
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