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Compiler Correctness

s! t =⇒ s ≈ t

compiles to same behavior



Semantics-preserving compilation

s! t =⇒ s ≈ t

compiles to same behavior



Range of Compiler Properties…
• Type-preserving compilation (90s)

• Semantics-preserving compilation (00s…)
= Correct compilation

• Fully abstract compilation 
= Equivalence-preserving and -reflecting
= Secure compilation

• Security-preserving compilation 
- preserving “security types” vs.            

preserving noninterference



One of the “big problems” of computer science

• since McCarthy and Painter 1967:                         
Correctness of a Compiler for Arithmetic Expressions

• see Dave 2003: Compiler Verification:  A Bibliography

Compiler Verification



Compiler Verification since 2006…

Leroy ’06 : Formal certification of a compiler back-end or:   
   programming a compiler with a proof assistant.

Lochbihler ’10 : Verifying a compiler for Java threads. 

Myreen ’10 : Verified just-in-time compiler on x86.

Sevcik et al.’11: Relaxed-memory concurrency and verified 
compilation. 

Zhao et al.’13 : Formal verification of SSA-based 
optimizations for LLVM

Kumar et al.’14 : CakeML:  A verified implementation of ML

…



Why CompCert had such impact…

The striking thing about our CompCert results is that the 
middle-end bugs we found in all other compilers are 
absent. As of early 2011, the under-development version of 
CompCert is the only compiler we have tested for which 
Csmith cannot find wrong-code errors. This is not for lack 
of trying: we have devoted about six CPU-years to the 
task. The apparent unbreakability of CompCert supports a 
strong argument that developing compiler optimizations 
within a proof framework, where safety checks are explicit 
and machine-checked, has tangible benefits for compiler 
users. (Yang et al. PLDI 2011)

• Demonstrated that realistic verified compilers are both 
feasible and bring tangible benefits

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf


• Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes
- proof using simulations

Why CompCert had such impact…



[CompCert manual 2015]



• Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes
- proof using simulations

Why CompCert had such impact…

But the simplicity of the proof architecture
comes at a price…



Problem: Whole-Program Assumption
Correct compilation guarantee only applies to 
whole programs!

Ps

Pt

!

CompCert’s … “formal guarantees of 
semantics preservation apply only to whole 
programs that have been compiled as a 
whole by [the] CompCert C 
[compiler]”  (Leroy 2014)



Problem: Whole-Program Assumption
Correct compilation guarantee only applies to 
whole programs!

Ps

Pt

!

et

es

!

low-level
libraries

from 
different 

compiler &  
source lang.

!



Why Whole Programs?

s! t =⇒ s ≈ t

expressed how?



CompCert 

Ps ! Pt =⇒ Ps ≈ Pt

Why Whole Programs?

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .



Proof composes per-pass simulations

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .Ps ! Pt =⇒ Ps ≈ Pt
R1 R1 R1

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .Ps ! Pt =⇒ Ps ≈ Pt
R2 R2 R2

t
t t t

u

u u u

Ps ! Pu =⇒ Ps ≈ Pu



CompCert 

Ps ! Pt =⇒ Ps ≈ Pt

Why Whole Programs?

“closed” simulations

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .



Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

?

Produced by 
- same compiler, 
- diff compiler for S, 
- compiler for diff lang R, 
- R that’s very diff from S?

Behavior expressible in S?



Correct Compilers, Multi-language SW

es

et e′t

!

eS ≈ eT

  Definition should: 

• permit linking with 
target code of arbitrary 
provenance

• support verification of 
multi-pass compilers



Plan
• Survey the literature:  how to express 

- “compositional” compiler correctness 

    =  correct compilation of components

eS ≈ eT



Compositional Compiler Correctness

es

et e′t

!

eS ≈ eT

   Dictates: 

• what we can link with 
(horizontal compositionality) 
and how to check it’s 
okay to link             

• effort involved in      
proving transitivity for           
multi-pass compilers                
(vertical compositionality)



Plan
• Survey the literature:  how to express 

• How does the choice affect:
- what we can link with     
- how we check if some       is okay to link with
- effort required to prove transitivity
- effort required to have confidence in theorem 

statement

• How to support linking with code from very different R

eS ≈ eT

e′t



Plan
• Survey the literature:  how to express 

• How does the choice affect:
- what we can link with     
- how we check if some       is okay to link with
- effort required to prove transitivity
- effort required to have confidence in theorem 

statement

• How to support linking with code from very different R

• Type-preserving compilation 

• Secure (fully abstract) compilation

eS ≈ eT

e′t



What we can link with

nothing

SepCompCert
Kang et al.’16

same
compiler

CompCert

diff compiler, 
same S

Pilsner
Neis et al.’15

compiled from  
diff lang R

Compositional CompCert
Stewart et al.’15

compiled from  
very diff R

Multi-language ST
Perconti-Ahmed’14

horizontal compositionality



What we can link with

nothing same
compiler

diff compiler, 
same S

compiled from  
diff lang R

compiled from  
very diff R

CompCert
SepCompCert
Kang et al.’16 Pilsner

Neis et al.’15
Compositional CompCert

Stewart et al.’15
Multi-language ST
Perconti-Ahmed’14



Approach: Separate Compilation (C)
SepCompCert           

! !

[Kang et al. ’16]                 

! !



Approach: Separate Compilation (C)
SepCompCert           

Level A correctness

End-to-end

Per-pass 

[Kang et al. ’16]                 



Approach: Separate Compilation (C)
SepCompCert     Level B correctness: omit some RTL 
                            optimizations[Kang et al. ’16]                 



Approach: Separate Compilation (C)
SepCompCert     Level B correctness: omit some RTL 
                            optimizations

End-to-end

Per-pass 

[Kang et al. ’16]                 



diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14



Approach: Cross-Language Relations 

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]   

- [Hur-Dreyer POPL’11]

Parametric inter-language 
simulations (PILS)
- [Neis et al. ICFP’15]

Cross-language relation



Case Study: Closure Conversion
- Typed Closure Conversion

- Correctness of closure conversion 

  using a cross-language logical relation...          

[on board]



x : τ ′ ⊢ es : τ ! et =⇒ x : τ ′ ⊢ es ≃ et : τ

cross-language logical relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τ

Cross-Language Relation: Problem 1



Cross-Language Relation: Problem 1

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! Does the compiler
correctness theorem 
permit linking with     ?e′t



Cross-Language Relation: Problem 1

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′

• Need to come up with  
   -- not feasible in practice!

• Cannot link with            
   whose behavior cannot 
   be expressed in source.  

e′s

e′t

cross-language logical relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τ



Cross-Language LR: Problem 2

!
!

eT

eS

eS ≃ eI

eI ≃ eT

eS ≃ eT}=⇒
?

eI



Benton-Hur: Problem 2

!
!

eI

eT

eS

eS ≃ eI

eI ≃ eT

eS ≃ eT}=⇒
?

Transitivity for single-lang. logical relation?

   - Prove: 
  
 -          is transitive,  ∴      is transitive

e2 ≈ e3

e1 ≈ e2} =⇒
?

e1 ≈ e3

≈ctx ≈

e ≈ e′ ⇐⇒ e ≈ctx e′



Cross-Language LR: Problem 2

!
!

eI

eT

eS

eS ≃ eI

eI ≃ eT

eS ≃ eT}=⇒
?

Transitivity for single-lang. 
  logical relation: 

e ≈ e′ ⇐⇒ e ≈ctx e′

cross-language relation;
no definition of ctx. equiv



Cross-Language LR: Problem 2

!
!

eT

eS

eS ≃ eI

eI ≃ eT

eS ≃ eT}=⇒
?

eI

For langs with refs: 
- step-indexed Kripke LR
- PILS       



For langs with refs: 
- step-indexed Kripke LR
- PILS      but lots of effort  

Cross-Language LR: Problem 2

!
!

eT

eS

eS ≃ eI

eI ≃ eT

eS ≃ eT}=⇒
?

eI



PILS: Problem 1 remains

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! e′s ⊢ e′s ≃ e′t : τ
′

• Need to come up with  
   -- not feasible in practice!

• Cannot link with            
   whose behavior cannot 
   be expressed in source.  

e′s

e′t

PILS



Need a New Approach...
• that works for multi-pass compilers

• that allows linking with target code of arbitrary 
provenance



Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14



Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

e′t

Need a semantics
of source-target
interoperability:
- interaction semantics
- source-target multi-language



diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14



Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking

[Stewart et al. ’15]



Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking

• Structured simulation:  support rely-guarantee 
relationship between the different languages while 
retaining vertical compositionality

Semantic representation of contexts code can link with.

[Stewart et al. ’15]



Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking
- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML), 
compilers with different source/target memory models

• Structured simulation:  support rely-guarantee 
relationship between the different languages while 
retaining vertical compositionality

- transitivity relies on compiler passes performing 
restricted set of memory transformations

[Stewart et al. ’15]



Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14



ST et

es

et e′t

! e′t
Specify semantics
of source-target 
interoperability:

T Ses

ST e′t

Approach: Source-Target Multi-lang.

Multi-language semantics:

a la Matthews-Findler ’07

[Perconti-Ahmed’14]



T S(es (ST e′t))
≈ctx et e′t

es

et e′t

! ST e′t

Approach: Source-Target Multi-lang.
[Perconti-Ahmed’14]



es

et

! eS ≈ eT
eS ≈ctx ST eT

def
=

Approach: Source-Target Multi-lang.
[Perconti-Ahmed’14]



SIT

Multi-Language Semantics Approach

S

I

T

SIeIISeS

IT eTT IeI

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness



Multi-Lang. Approach: Multi-pass 

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

SIeI ≈ctxSI(IT eT)
}eS ≈ctxSIT eT



Multi-Lang. Approach: Linking 

es

et e′t

e′sSIT e′t
T IS(es (SIT e′t))
≈ctx et e′t



Compiler Correctness: F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT



Combined language FCAT
• Boundaries mediate between 

   &           &             & 

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC



Compiler Correctness: F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT

[Perconti-Ahmed 
ESOP’14]



Transitivity: 

- structured simulations        - all passes use multi-lang

Check okay-to-link-with:

- satisfies CompCert            - satisfies expected type 

  memory model                    (translation of source type)

Contexts:

- semantic representation     - syntactic representation

Requires uniform memory model across compiler IRs?

- yes                                    - no

CompCompCert vs. Multi-language

≈ctx



Case Study: Closure Conversion
Correctness of typed closure conversion 

using multi-language semantics... [on board]



Challenges
F+C:  Interoperability 
semantics with type abstraction 
in both languages

C+A:  Interoperability when 
compiler pass allocates code & 
tuples on heap

A+T:  What is    ?  What is   ? 
How to define contextual 
equiv. for TAL components?  
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
ve



Challenges

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

F+C:  Interoperability 
semantics with type abstraction 
in both languages

C+A:  Interoperability when 
compiler pass allocates code & 
tuples on heap

A+T:  What is    ?  What is   ? 
How to define contextual 
equiv. for TAL components?  
How to define logical relation?



Interoperability: C and A

H;AC⟨τ⟩⟨v⟩ !−→ H, ℓ #→ ⟨v⟩; ℓ Allocate a new
location for tuple

H, ℓ !→ ⟨v⟩; ⟨τ⟩CA ℓ !−→ H, ℓ !→ ⟨v⟩; ⟨v⟩



Challenges 

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

F+C:  Interoperability 
semantics with type abstraction 
in both languages

C+A:  Interoperability when 
compiler pass allocates code & 
tuples on heap

A+T:  What is    ?  What is   ? 
How to define contextual 
equiv. for TAL components?  
How to define logical relation?



Central Challenge:  interoperability between
high-level (direct-style) language & 

assembly (continuation style) 

FunTAL:  Reasonably Mixing a Functional Language
with Assembly [Patterson et al. ’17]



What is a component in TAL?

e

e : τ ! e

e ::= (I,H)

Instruction Sequence

Heap with basic blocks



Typing TAL Components

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : ( ,�,�)
· ` H :  ` R :�  ` S :�

` (H,R, S:�) : ( ,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap( e)

ret-type(q,�,�) = ⌧ ;�0 ( , e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆ )�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u )�;�[rd : ⌧ ];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs )�;�[rd : ⌧ ];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧  e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

heap
typing

type
environ

reg-file
typing

return
marker

result
type

stack
type

stack type
on return

q ::= ϵ | r | i



Basic blocks

code[∆]{χ;σ}q.I : ∀[∆].{χ;σ}q

e e ::= (I,H)



Logical relations:  related inputs to related outputs

                                  

Equivalence of T Components: Tricky!

related inputs

related outputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box 

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · |  , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : ( ,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)
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Logical relations:  related inputs to related outputs

                                  

Equivalence of T Components

e1 e2
related inputs

related outputs

related outputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}



Ongoing: Multi-lang. Approach
• Underway: Code Generation pass to TAL

• Working on simplifying multi-language design to support 
easier proofs when multiple embedded languages have 
polymorphism & refs
- Matthew Kolosick, Dustin Jamner, Max New,  AA 
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Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

Horizontal / Vertical Compositionality

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Allows linking with behavior
inexpressible in S



Verified Compilers for Multi-lang. World

ML/Haskell/Rust!

preserve types,
info. hiding

Coq/F*!
preserve

equivalence

C/C++!

preserve
behavior

- It’s about principled language interoperability!

untyped dependently typedsimply typedtarget



“Principled” Language Interoperability?

ML!
preserve types,

info. hiding

Scheme!

no call/cccall/cc

preserve contextual 
equivalence?

• Compiler can preserve different properties through 
choice of type-translation: a spectrum of linking options

dynamically typed statically typed target
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Next…
• Fully Abstract Compilation / Secure Compilation

• compiler is equivalence-preserving

• ensures a compiled component does not interact with 
any target behavior that is inexpressible in S

• Recent results on fully abstract compilation

• Do we want to link with behavior inexpressible in S?    
Or do we want fully abstract compilers? 

• Answer: we want both!  

• How to get there?  Languages should let programmers 
specify what behavior they want to link with



Verified Compilers for Multi-lang. World

e

•Runtime
•Drivers

e

e

! ! !



Source programmers should be able to 
reason in the source language!



Source Language Reasoning

Contextual Equivalence
e1

⇡ctx

S : ⌧
e2



e2e1
is indistinguishable from 

by contexts at type⌧

Source Language Reasoning

Contextual Equivalence
e1

⇡ctx

S : ⌧
e2
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Formal basis for
• Refactoring
• Data abstraction

Source Language Reasoning

Contextual Equivalence
e1

⇡ctx

S : ⌧
e2



Formal basis for
• Refactoring
• Data abstraction
• Security

Source Language Reasoning

Contextual Equivalence
e1

⇡ctx

S : ⌧
e2



Secure compilation of components:

Fully Abstract / Secure Compilation

!

es

et

Want guarantee that
  will remain as secure as
  when executed in arbitrary
  target-level contexts

et
es

i.e. target contexts (attackers!) can make 
no more observations about      than a 
source context can make about 

et
es



Ensuring Secure Compilation
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source

target

Must ensure that any a we link with behaves like some source context 
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source
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 Bad!1. Add target features to the source language.
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Ensuring Secure Compilation

   

a
a

source

target

1. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

es

 Bad!
Performance cost

Verification

et : �+



Type-preserving compilation

e : � � e : �+



Equivalence-preserving compilation

If e1 : � � e1 : �+ and e2 : � � e2 : �+ then:

e1 �ctx
S e2 : � =� e1 �ctx

T e2 : �+



If e1 : � � e1 : �+ and e2 : � � e2 : �+ then:

e1 �ctx
S e2 : � �� e1 �ctx

T e2 : �+

Fully abstract compilation

preserves & reflects equivalence



Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

Challenge of proving full abstraction



Suppose � � e1 : � � e1 and � � e2 : � � e2.

Challenge of proving full abstraction

Given:  
No       can 
distinguish  

Show:  
Given arbitrary       ,
it cannot distinguish

Need to be able to 
“back-translate”       
to an equivalent 

CT

CT

CS

e1, e2

CS
e1, e2

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �



Challenge: Back-translation
1. If target is not more expressive than source, use the same 

language: back-translation can be avoided in lieu of 
wrappers between     and

• Closure conversion: System F with recursive types 
[Ahmed-Blume ICFP’08]

• f* (STLC with refs) to js* (encoding of JavaScript in f*) 
[Fournet et al. POPL’13]

τ τ+



Challenge: Back-translation
2. If target is more expressive than source

(a) Both terminating:  use back-translation by partial 
evaluation 

• Equivalence-preserving CPS from STLC to System F 
[Ahmed-Blume ICFP’11]

• Noninterference for Free (DCC to F   )               
[Bowman-Ahmed ICFP’15]

(b) Both nonterminating: use ??                                   
back-trans by partial evaluation is not well-founded!

ω

Observation:  our source lang. has recursive types,        
can write interpreter for target lang. in source lang.



Fully Abstract Closure Conversion
Source: STLC +    types

Target: System F +    types +    types + exceptions

First full abstraction result where target has exceptions but 
source does not.  

Earlier work, due to lack of sufficiently powerful back-
translation techniques, adds features from target to source.

Novel proof technique — Universal Embedding
• Untyped embedding of target in source

• Mediate between strongly typed source and untyped       
back-translation

∃
µ

µ

[New et al.’16]



Fully Abstract Closure Conversion
Source: STLC +    types

Target: System F +    types +    types + exceptions∃
µ

µ

Value Types ⌧ ::= ↵ | ⌧
1

+ ⌧
2

| h⌧i | 8[↵]. ⌧ ! ✓ | µ↵. ⌧ | 0 | 9↵. ⌧

Computation Types ✓ ::= E ⌧
1

⌧
2

Values v ::= x | inj

1

v

1

| inj

2

v

2

| hvi | �[↵](x : ⌧). e | foldµ↵.⌧ v | pack (⌧ ,v)

Results r ::= return v | raise v

Computations e ::= r | casev of x

1

. e
1

| x
2

. e
2

| v.i | v

1

[⌧ ] v
2

| unfoldv |
unpack (↵,x) = v in e | handle e with (x. e

1

) (y. e
2

)

Evaluation Contexts K ::= [·] | handle Kwith (x. e
1

) (y. e
2

)

e 7�! e

0 · · ·
K[(�[↵](x : ⌧). e) [⌧ 0

] v] 7�! K[e[⌧ 0
/↵][v/x]]

K[unpack (↵,x) = (pack (⌧ ,v)) in e] 7�! K[e[⌧/↵][v/x]]

K[handle (return v)with (x. e
1

) (y. e
2

)] 7�! K[e

1

[v/x]]

K[handle (raise v)with (x. e
1

) (y. e
2

)] 7�! K[e

2

[v/y]]

� ` ⌧

· · · ↵ 2 �

� ` ↵

�,↵ ` ⌧ �,↵ ` ✓

� ` 8[↵]. ⌧ ! ✓

�,↵ ` ⌧

� ` µ↵. ⌧

�,↵ ` ⌧

� ` 9↵. ⌧

�;� ` v : ⌧

· · · �;� ` v

i

: ⌧
i

�;� ` hvi : h⌧i
� ` � ↵;x : ⌧ ` e : ✓

�;� ` �[↵](x : ⌧). e : 8[↵]. ⌧ ! ✓

�;� ` v : ⌧ [⌧ 0
/↵] � ` ⌧ 0

�;� ` pack (⌧ 0
,v) : 9↵. ⌧

�;� ` e : ✓

· · · �;� ` v : ⌧ � ` ⌧
exn

�;� ` return v : E ⌧
exn

⌧

�;� ` v : ⌧
exn

� ` ⌧

�;� ` raise v : E ⌧
exn

⌧

�;� ` v : 9↵. ⌧ �,↵;�,x : ⌧ ` e : E ⌧
exn

⌧ 0
� ` ⌧ 0

� ` ⌧
exn

�;� ` unpack (↵,x) = v in e : E ⌧
exn

⌧ 0

�;� ` e : E ⌧ 0
exn

⌧ 0
�;�,x : ⌧ 0 ` e

1

: E ⌧
exn

⌧ �;�,y : ⌧ 0
exn

` e

2

: E ⌧
exn

⌧

�;� ` handle e with (x. e
1

) (y. e
2

) : E ⌧
exn

⌧

Figure 2. �T: Syntax + Semantics (excerpts)

� ` v : � ;
v

v

· · · x : � 2 �

� ` x : � ;
v

x

(y1, . . . , yn) = fv(�(x :�0
). e) � ` y

i

: �
i

⌧
env

= h�1
+
, . . . ,�

n

+i �, x : � ` e : �0 ;
e

e

� ` �(x :�). e : �! �0 ;
v

pack (⌧
env

, h�(z : h⌧
env

,�+i).
let x

env

= return z.1 in

let y

i

= return x

env

.i in
· · ·
let x = return z.2 in e

, hy
1

, . . . ,y

n

ii)

� ` e : � ;
e

e

· · · � ` v : � ;
v

v

� ` v : � ;
e

return v

� ` v1 : �1 ! �2 ;
v

v

1

� ` v2 : �1 ;
v

v

2

� ` v1 v2 : �2 ;
e

unpack (↵, z) = v

1

in

let y

1

= return z.1 in

let y

2

= return z.2 in

y

1

hy
2

,v

2

i

� ` e1 : �1 ;
e

e

1

�, x : �1 ` e2 : �2 ;
e

e

2

� ` let x= e1 in e2 : �2 ;
e

let x = e

1

in e

2

Figure 3. Closure Conversion: Term Translation (excerpts)

exception, a context can distinguish these terms. The context
catch y = ([·] (�x. raise x)) in y returns true when given e1 and
false when given e2. We use our checked exception type to ensure
an exception cannot propagate into source code.

Our closure conversion pass extends the typed closure conversion
in Minamide et al. [26] to accommodate our modal type system.
Figure 4 presents the type translation which is split into the value
type translation �+ and computation type translation �÷. A value
of type � is translated to a value of some value type ⌧ = �+. Non-
trivial expressions of type � are translated to some computation type
✓ = �÷, where �÷

= E0�+, indicating that if this computation
terminates it will result in a value of type �+. The value type
translation �+ is defined by structural recursion in all cases except
for functions. A function of type �1 ! �2 is compiled to a closure,
i.e., a pair of the function and its environment: 9↵. h(h↵,�1

+i!
�2

÷
),↵i. The type of the environment is existentially quantified so

that functions of the same type but with different environments

are translated to functions of the same type. Parametricity of
the language ensures that (standard) typed closure conversion
is equivalence preserving. The existential types ensures that the
function component of a closure can only ever be called with the
environment it is packaged with, and ensures the environment can
only be used as an argument to the function it is pacakged with.
Furthermore the output type of the function is �2

÷
= E0�2

+,
guaranteeing that when the function is called, it does not raise an
exception. Viewed instead as a restriction on target programs, this
means a target context cannot pass a closure that raises uncaught
exceptions to compiled source code. Thus, target contexts cannot
use exceptions to make additional observations.

The term translation is given in Figure 3. We define a value
translation � ` v : � ;

v

v and an expression translation � ` e :

� ;
e

e. Note that since we translate open terms, we translate a free
variable x to x—the same variable name but in the target language. In
the expression translation, we translate values by first translating the

C =

2. Closure Conversion

Our source and target languages are both call-by-value. They are
also in monadic normal form—constructors and eliminators are
only applied to syntactic values [10]—meant to represent compiler
intermediate languages.

Types � ::= ↵ | 1 | �1 + �2 | �1 ⇥ �2 | �1 ! �2 | µ↵.�

Values v ::= x | hi | inj

i

v | hv1, v2i | �(x :�). e | foldµ↵.� v

Expressions e ::= v | case v of x1. e1 | x2. e2 | ⇡

i

v | v1 v2 |
unfold v | let x= e1 in e2

Eval. Contexts K ::= [·] | let x= K in e2

General Contexts C ::= [·] | case C of x1. e1 | x2. e2
case e of x1.C | x2. e2
case e of x1. e1 | x2.C
⇡

i

C | �(x :�).C | · · ·
e 7�! e

0
· · ·

K[(�(x :�). e) v] 7�! K[e[v/x]]

K[unfold (foldµ↵.� v)] 7�! K[v]

� ` e : �

· · · x : � 2 � · ` �

� ` x : �

�, x : �1 ` e : �2

� ` �(x :�1). e : �1 ! �2

� ` v : �[µ↵.�/↵]

� ` foldµ↵.� v : µ↵.�

� ` v : µ↵.�

� ` unfold v : �[µ↵.�/↵]

Figure 1. �S: Syntax + Semantics (excerpts)

Source Language Our source language �S is a simply-typed
lambda calculus with unit, sums, pairs, and recursive types. Figure 1
presents the syntax and excerpts of the semantics. We present the
dynamic semantics (e 7�! e

0) using evaluation contexts K [15]
to define a standard left-to-right call-by-value semantics. Since
our language is in a normal form, the only non-trivial evaluation
contexts are let-bindings. We elide most of the reduction rules and
typing rules (� ` e : �) as they are completely standard. The typing
environment � maps term variables x to their types �.

Figure 1 also presents an excerpt of the syntax for general
contexts which are expressions with a single hole in them. We
omit some of the details caused by the monadic syntax; for instance,
some contexts can only be plugged with values. Context typing
(` C : (� ` �) ) (�

0 ` �0
)), ensures that for any expression e such

that � ` e : �, we can conclude that �0 ` C[e] : �0.
We define contextual equivalence (� ` e1 ⇡ctx

S

e2 : �) for �S

as follows. Informally, two components e1 and e2 are contextually
equivalent if either can be replaced by the other in any appropriately
typed program context C without affecting the program’s observable
behavior. As it is a simple, functional language, we take termination
(written e +) as our notion of observable behavior. We write e1 m e2

when e1 + if and only if e2 +.

Definition 2.1 (�S
Contextual Equivalence)

� ` e1 ⇡ctx

S

e2 : �
def
= � ` e1 : � ^ � ` e2 : � ^

8�0
,C. ` C : (� ` �) ) (· ` �0

) =) (C[e1] m C[e2])

Target Language Our target language �T is a polymorphic �-
calculus with the empty type, sums, n-ary tuples, existential types,
recursive types, and exceptions tracked by a modal type system.
Figure 2 presents the syntax and excerpts of the dynamic and static
semantics.

The target language has three syntactic categories for terms: v is
a value, e is a computation that may have effects and r is a result,
i.e. a normalized computation: either a returned value return v or
a raised exception raise v.

The let-form of the �S is subsumed in �T by a combined let and
try-catch form called handle in the style of Benton and Kennedy [9].
On a successful computation, i.e., a return, it continues with the
left branch:

handle return v with (x. e
1

) (y. e
2

) 7�! e

1

[v/x]

On an exception it continues with the right branch:
handle raise v with (x. e

1

) (y. e
2

) 7�! e

2

[v/y]

We define let-forms as syntactic sugar for a handle that imme-
diately re-raises any exception it encounters. We similarly define a
more traditional try-catch by doing the opposite:

let x = e in e

0 def
= handle e with (x. e0) (y. raise y)

catch y = e in e

0 def
= handle e with (x. return x) (y. e0)

We use a modal type system to track exceptions: ⌧ is a value
type (for values v) and ✓ is a computation type (for computations e).
If e has type ✓ = E ⌧

exn

⌧ then type soundness for this language
means that if e reduces to a normal form it will either be a return v

where v has type ⌧ , or a raise v

0 where v

0 has type ⌧
exn

. Crucially
for our compiler, we can use the empty type 0 as the exception type
to enforce that a computation does not throw an exception.

Context typing and contextual equivalence are defined analo-
gously to �S.

�÷
= E0�+

↵

+
= ↵

1

+
= hi

(�1 + �2)
+

= �1
+
+ �2

+

(�1 ⇥ �2)
+

= h�1
+
,�2

+i
(�1 ! �2)

+
= 9↵. h(h↵,�1

+i! �2
÷
),↵i

(µ↵.�)+ = µ↵.�+

(·)+ = ·
(�, x : �)+ = �

+
,x : �+

Figure 4. Closure Conversion: Type Translation

Definition 2.2 (�T
Contextual Equivalence)

�;� ` e

1

⇡ctx

T

e

2

: ✓
def
= �;� ` e

1

: ✓ ^ �;� ` e

2

: ✓ ^
8✓0

,C. ` C : (�;� ` ✓) ) (·; · ` ✓0
) =) (C[e

1

] m C[e

2

])

Closure Conversion Closure conversion is a standard internal
compiler pass translating a substitution-based language into one
that can be implemented with all values being passed by specified
registers or memory locations. The pass translates functions with
references to free variables, i.e. variables from the local environment,
to be closed so that all variables references are bound by the
functions parameters. We collect the values of free variables used
in a function definition into a closure environment that is stored
with the function, where the function itself is modified to take the
environment as an additional input. We face two challenges in typing
this translation to ensure full abstraction.

First, different terms of the same function type may have differ-
ently typed closure environments. To see why, consider two func-
tions e1 = �x. x and e2 = �x. z of type bool ! bool, where z is a
free variable of type bool. The function part of the translation of
e1 would have type hhi, booli ! bool while the translation of e2

would have type hhbooli, booli ! bool. Furthermore, there is no
way to access the closure environment in the source language, so
if the interface to the environment is too liberal then equivalence
can’t possibly be preserved. Both of these problems are solved in
Minamide et al. [26] by using existential types to hide the type of
the environment, as described below.

Second, to preserve equivalence when compiling to a target lan-
guage with exceptions, we must ensure target contexts cannot use
exceptions to make additional observations of translated terms. Con-
sider e1 = �f. (f true; f false; hi) and e2 = �f. (f false; f true; hi).
In a language with just non-termination, these terms are con-
textually equivalent. However, if the argument f can raise an

2. Closure Conversion

Our source and target languages are both call-by-value. They are
also in monadic normal form—constructors and eliminators are
only applied to syntactic values [10]—meant to represent compiler
intermediate languages.

Types � ::= ↵ | 1 | �1 + �2 | �1 ⇥ �2 | �1 ! �2 | µ↵.�

Values v ::= x | hi | inj

i

v | hv1, v2i | �(x :�). e | foldµ↵.� v

Expressions e ::= v | case v of x1. e1 | x2. e2 | ⇡

i

v | v1 v2 |
unfold v | let x= e1 in e2

Eval. Contexts K ::= [·] | let x= K in e2

General Contexts C ::= [·] | case C of x1. e1 | x2. e2
case e of x1.C | x2. e2
case e of x1. e1 | x2.C
⇡

i

C | �(x :�).C | · · ·
e 7�! e

0
· · ·

K[(�(x :�). e) v] 7�! K[e[v/x]]

K[unfold (foldµ↵.� v)] 7�! K[v]

� ` e : �

· · · x : � 2 � · ` �

� ` x : �

�, x : �1 ` e : �2

� ` �(x :�1). e : �1 ! �2

� ` v : �[µ↵.�/↵]

� ` foldµ↵.� v : µ↵.�

� ` v : µ↵.�

� ` unfold v : �[µ↵.�/↵]

Figure 1. �S: Syntax + Semantics (excerpts)

Source Language Our source language �S is a simply-typed
lambda calculus with unit, sums, pairs, and recursive types. Figure 1
presents the syntax and excerpts of the semantics. We present the
dynamic semantics (e 7�! e

0) using evaluation contexts K [15]
to define a standard left-to-right call-by-value semantics. Since
our language is in a normal form, the only non-trivial evaluation
contexts are let-bindings. We elide most of the reduction rules and
typing rules (� ` e : �) as they are completely standard. The typing
environment � maps term variables x to their types �.

Figure 1 also presents an excerpt of the syntax for general
contexts which are expressions with a single hole in them. We
omit some of the details caused by the monadic syntax; for instance,
some contexts can only be plugged with values. Context typing
(` C : (� ` �) ) (�

0 ` �0
)), ensures that for any expression e such

that � ` e : �, we can conclude that �0 ` C[e] : �0.
We define contextual equivalence (� ` e1 ⇡ctx

S

e2 : �) for �S

as follows. Informally, two components e1 and e2 are contextually
equivalent if either can be replaced by the other in any appropriately
typed program context C without affecting the program’s observable
behavior. As it is a simple, functional language, we take termination
(written e +) as our notion of observable behavior. We write e1 m e2

when e1 + if and only if e2 +.

Definition 2.1 (�S
Contextual Equivalence)

� ` e1 ⇡ctx

S

e2 : �
def
= � ` e1 : � ^ � ` e2 : � ^

8�0
,C. ` C : (� ` �) ) (· ` �0

) =) (C[e1] m C[e2])

Target Language Our target language �T is a polymorphic �-
calculus with the empty type, sums, n-ary tuples, existential types,
recursive types, and exceptions tracked by a modal type system.
Figure 2 presents the syntax and excerpts of the dynamic and static
semantics.

The target language has three syntactic categories for terms: v is
a value, e is a computation that may have effects and r is a result,
i.e. a normalized computation: either a returned value return v or
a raised exception raise v.

The let-form of the �S is subsumed in �T by a combined let and
try-catch form called handle in the style of Benton and Kennedy [9].
On a successful computation, i.e., a return, it continues with the
left branch:

handle return v with (x. e
1

) (y. e
2

) 7�! e

1

[v/x]

On an exception it continues with the right branch:
handle raise v with (x. e

1

) (y. e
2

) 7�! e

2

[v/y]

We define let-forms as syntactic sugar for a handle that imme-
diately re-raises any exception it encounters. We similarly define a
more traditional try-catch by doing the opposite:

let x = e in e

0 def
= handle e with (x. e0) (y. raise y)

catch y = e in e

0 def
= handle e with (x. return x) (y. e0)

We use a modal type system to track exceptions: ⌧ is a value
type (for values v) and ✓ is a computation type (for computations e).
If e has type ✓ = E ⌧

exn

⌧ then type soundness for this language
means that if e reduces to a normal form it will either be a return v

where v has type ⌧ , or a raise v

0 where v

0 has type ⌧
exn

. Crucially
for our compiler, we can use the empty type 0 as the exception type
to enforce that a computation does not throw an exception.

Context typing and contextual equivalence are defined analo-
gously to �S.

�÷
= E0�+

↵

+
= ↵

1

+
= hi

(�1 + �2)
+

= �1
+
+ �2

+

(�1 ⇥ �2)
+

= h�1
+
,�2

+i
(�1 ! �2)

+
= 9↵. h(h↵,�1

+i! �2
÷
),↵i

(µ↵.�)+ = µ↵.�+

(·)+ = ·
(�, x : �)+ = �

+
,x : �+

Figure 4. Closure Conversion: Type Translation

Definition 2.2 (�T
Contextual Equivalence)

�;� ` e

1

⇡ctx

T

e

2

: ✓
def
= �;� ` e

1

: ✓ ^ �;� ` e

2

: ✓ ^
8✓0

,C. ` C : (�;� ` ✓) ) (·; · ` ✓0
) =) (C[e

1

] m C[e

2

])

Closure Conversion Closure conversion is a standard internal
compiler pass translating a substitution-based language into one
that can be implemented with all values being passed by specified
registers or memory locations. The pass translates functions with
references to free variables, i.e. variables from the local environment,
to be closed so that all variables references are bound by the
functions parameters. We collect the values of free variables used
in a function definition into a closure environment that is stored
with the function, where the function itself is modified to take the
environment as an additional input. We face two challenges in typing
this translation to ensure full abstraction.

First, different terms of the same function type may have differ-
ently typed closure environments. To see why, consider two func-
tions e1 = �x. x and e2 = �x. z of type bool ! bool, where z is a
free variable of type bool. The function part of the translation of
e1 would have type hhi, booli ! bool while the translation of e2

would have type hhbooli, booli ! bool. Furthermore, there is no
way to access the closure environment in the source language, so
if the interface to the environment is too liberal then equivalence
can’t possibly be preserved. Both of these problems are solved in
Minamide et al. [26] by using existential types to hide the type of
the environment, as described below.

Second, to preserve equivalence when compiling to a target lan-
guage with exceptions, we must ensure target contexts cannot use
exceptions to make additional observations of translated terms. Con-
sider e1 = �f. (f true; f false; hi) and e2 = �f. (f false; f true; hi).
In a language with just non-termination, these terms are con-
textually equivalent. However, if the argument f can raise an

Equivalent source terms, inequivalent in lang. with exceptions: 

Idea:  use modal type system at target to rule out linking 
with code that throws unhandled exceptions

C[e1] ⇓ true C[e2] ⇓ false



Ensuring Full Abstraction

e1 ⇡ctx

S e2 : (bool! 1)! 1

C = ([·] �(x : bool). raise x)

(bool!E01)!E01

C : (bool!Ebool 1)!Ebool 1

6=



Static Fully Abstract Compilation
• Type checking ensures that we never link with target 

code whose (extensional) behavior does not match some 
source behavior

• But what if we want to link with behaviors unavailable in 
the source?  
- Surely, we want that when building multi-language 

software!



Listener

Protocol Parser

Web Server

Spam System

…

…

Stateful DSL

Terminating CFG DSL

Declarative Data-driven DSL

Multi-Language System



Protocol Parser Listener

Terminating DSL Stateful DSL

Web Server

???

C
O

M
PILE

Protocol Parser Listener

Common Target Common Target
Linking

C
O

M
PILE

How are DSLs 
represented in target?Can we instead allow 

reasoning at source level?

Does Nontermination Leak?



Linking types are about raising 
programmer reasoning back to the 

source level

Linking Types for Multi-Language Software:

Have Your Cake and Eat it Too 

[Patterson-Ahmed SNAPL’17]



Refactoring is reasoning about equivalence 

How to reason in       while linking with           ? 

(simply-typed 
lambda calculus)

(extended with 
ML references)

In a Simpler Setting 



Reasoning About Refactoring

Should be okay because

Fully abstract 
compilers preserve 

equivalences



What about linking with         ?

When linked with      ,   no longer equivalent!

but



Is this refactoring correct?

It depends on what it is linked with!

Programmer should be able to specify 
which they want, so that the compiler 

can be fully abstract!



with linking types extension

Type and effect systems, e.g., F*, Koka



Allows Programmers To Write Both



Refactoring: Pure Inputs

Ill-typed, since  f  requires pure code



Well-typed, since f accepts impure code

Refactoring: Impure Inputs



Minimal Annotation Burden

must provide default translation



Stepping Back…



Correct Compilation of Components

es

et e′t

! eS ≈ eT=⇒

specifies behaviors
compiled code may

be linked with



es

et e′t

! eS ≈ eT=⇒

specifies behaviors
compiled code may

be linked with

- Compositional CompCert  
- SepCompCert
- Pilsner

e′s

expressible in S

Correct Compilation of Components



Correct Compilation: Multi-Language

es

et e′t

! eS ≈ eT=⇒

specifies behaviors
compiled code may

be linked with

- [Perconti-Ahmed’14]
- Verified Compilers for a 

Multi-Language World 
[Ahmed SNAPL’15] 

inexpressible in S
!



Correct Compilation: Multi-Language

es

et e′t

! eS ≈ eT=⇒

inexpressible in S
!

Problem: programmer cannot 
reason at source level!



Fully Abstract Compilation?

RustML Java

Target

Language specifications are incomplete!
Don’t account for linking

C FFI unsafe JNI
escape
hatches



Rethink PL Design with Linking Types

RustML Java
C FFI unsafe JNI

escape
hatches

Design linking types extensions that 
support safe interoperability with other 

languages



PL Design, Linking Types

RustML Scheme
continuations

affine

fine-grained
capabilities

Only need linking types extensions to 
interact with behavior inexpressible in 

your language.



PL Design, Linking Types, Compilers

LLVM

Typed IR

RustML Scheme
continuations

affine

fine-grained
capabilitiesFully

abstract
compilers

! ! !
Gallina

type & effect
modal types /



PL Design, Linking Types, Compilers

RustML Scheme
continuations

affine

fine-grained
capabilities

Gallina

! ! ! !pure

+ pure 
+ dependent types

LLVM

Typed IR

Fully
abstract
compilers



Linking Types
• Allow programmers to reason in almost their own 

source languages, even when building multi-language 
software

• Allow compilers to be fully abstract, yet support 
multi-language linking



Conclusion



Compiler Verif. for Multi-Lang. World
• Compositional Compiler Correctness 

- horizontal and vertical compositionality



Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

Horizontal / Vertical Compositionality

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Transitivity
requires 
effort /
engineering



Compiler Verif. for Multi-Lang. World
• CompCert started a renaissance in compiler verification

- major advances in mechanized proof

• Now we need: Compositional Compiler Correctness 
- but horizontal and vertical compositionality at odds

• Need to rethink proof architectures for compiler 
verification to support linking with code of arbitrary 
provenance.  But want transitivity to be easier!



 Verification of realistic compilers for a multi-language world        
 demands formal techniques and language design

-  compositional equational reasoning 

-  formal semantics of language interoperability 

-  types and logics to enforce sensible (safe, secure) linking

-  extending our language designs with principled extensions  
to replace unprincipled escape hatches


