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PARALLEL FUNCTIONAL PROGRAMMING

Parallel Programming 

performance!

Functional Languages 

abstraction 

higher order functions 

controlled side effects 

… 

?



MAKING FP (AND TYPES) WORK FOR US

•Abstraction also means the compiler has more information 

- controlled side effects, no user-level pointers,… 

•Collection oriented versus explicit loops/recursion 

•Expressive type systems help to  

- guide the user 

- guide the compiler write



Haskell

Boxed values

Composite 
data structures

Immutable 
structures

Polymorphism 
& generics

Strictly isolating 
side-effects

Principled, pure, 
functional programming

Higher-order functions 
& closures

Expressive type 
system & inference

Strong static typing



How about 
domain specific languages 

with 
specialised code generation?



DOMAIN SPECIFIC LANGUAGES
➤ Are restricted languages 

- Generally have specialised features to a particular 
application domain 

- HTML, Matlab, SQL, postscript, LaTeX … 

➤ Embedded domain specific languages 

- Implemented as libraries in the host language, so can 
integrate with the host language 

- Reuse the syntax of the host language (as well as parser, 
type checker…) 

- The host language can generate embedded code 

- Functional languages are great as host languages



ACCELERATE

Haskell/Accelerate 
program

Target code

Compile and run on 
the CPU/GPU

Copy result back to Haskell

Reify and optimise 
Accelerate program

•An embedded domain-specific language for high-performance 
computing in Haskell



ACCELERATE

• Array computations  • Everything else

ray tracing

=(

stable fluid flow

Mandelbrot fractal

n-body gravitational simulation



DOMAIN SPECIFIC EMBEDDED LANGUAGES

➤ There are two ways to embed a language 

- shallow embedding 

- deep embedding



SHALLOW EMBEDDING
➤ Shallow embedding provides fixed interpretation 

➤ Semantics captured in the type 

➤ Example: arithmetic expression language



DEEP EMBEDDING

➤ Captures DSL expression as abstract syntax tree (AST), 
allowing multiple interpretations

Const

3

Const

Add

1

Mult

Const

5

often, constructors are not exposed, but 

wrapped in regular functions



DEEP EMBEDDING

➤ Captures DSL expression as AST, allowing multiple 
interpretations



DEEP EMBEDDING

execute :: Expr -> IO Float



DEEP EMBEDDING

➤ The expression representation is untyped:

eval :: Expr -> Float 

 

could be Float or Bool!



DEEP EMBEDDING

➤ The expression representation is untyped:



ASIDE: PARAMETRISED ALGEBRAIC DATA TYPES



ASIDE: PARAMETRISED ALGEBRAIC DATA TYPES



DEEP EMBEDDING

➤ Generalised Algebraic Data Types (GADTs)



DEEP EMBEDDING

➤ Generalised Algebraic Data Types (GADTs)



LET’S LOOK AT ACCELERATE NOW!



ACCELERATE

➤ Computations take place on dense, multidimensional arrays 

➤ Parallelism is introduced in the form of collective operations 
on arrays

Accelerate 
computationArrays in Arrays out

➤ The usual suspects: maps, zipWiths, folds, generators, 
permutes and backpermutes, stencil operations



FIRST EXAMPLE

➤ dot-product in Haskell (on lists):

foldl :: (b -> a -> b) -> b -> [a] -> b

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]



FIRST EXAMPLE

➤ dot-product in Haskell (on vectors):

foldl :: (b -> a -> b) -> b -> Vector a -> b

zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c



FIRST EXAMPLE

➤ dot-product in Haskell (using Accelerate):

fold :: Elt a =>  
  (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) -> Acc (Scalar a)

zipWith : (Elt a, Elt b, Elt c)  
  => (Exp a -> Exp b -> Exp c) -> Acc (Vector a) -> Acc (Vector b)  
                                                 -> Acc (Vector c)
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DETOUR: TYPE CLASSES IN HASKELL

type annotations may become necessary



DIFFERENT RUN FUNCTIONS
➤ Running an accelerate program:

run :: Arrays a => Acc a -> a 

putStrLn $ show $ run (dotp vec1 vec2)



RUNNING AN ACCELERATE PROGRAM

➤ Plugging it all together:

run1 :: Arrays a => (Acc a -> Acc b) -> a -> b 



DIFFERENT RUN FUNCTIONS

➤ Compiling Accelerate programs at Haskell compile time:

  runQ 



ACCELERATE EXPRESSIONS

➤ Accelerate expressions can be of two distinct types: 

➤ Embedded sequential, scalar expression:

Exp a

Acc a

➤ Embedded array computations:

➤ What is the difference between these two?

Acc (Scalar Int)

Exp Int



ACCELERATE EXPRESSIONS

➤ Nested parallel computations can’t be expressed:

map :: (Elt a, Elt b) =>    
  (Exp a -> Exp b) -> Acc (Vector a) -> Acc (Vector b)

almost



DEFINITION OF EXP
➤ Exp is a GADT whose constructors represent scalar operations

Apply primitive scalar function: (+), (*) … 

… 



AD-HOC POLYMORPHISM FOR EXP

➤ Overloaded the standard type classes to reflect arithmetic 
expressions 

➤ The Num instance for Exp terms allows us to reuse standard 
operators like (+) and (*)



AD-HOC POLYMORPHISM FOR EXP
• Use explicit dictionary passing to support ad-hoc polymorphism 

- Type checker chooses the correct instance when creating the dictionary 

- Pattern matching on the dictionary constructor makes the class constraints 
available



AD-HOC POLYMORPHISM FOR EXP

➤ How does the dictionary trick work? 

➤ With a standard algebraic data type the following are 
equivalent: 

➤ But, with GADTs this is not the case

foo :: Foo a -> a -> a 
foo _       x = x+1 

bar :: Foo a -> a -> a 
bar (Foo _) x = x+1

data Foo a where 
  Foo :: Num a => a -> Foo a



ACCELERATE TYPES

➤ We encountered two different Accelerate array types:

dotp :: (Num a, Elt a) =>  
    Acc (Vector a)-> Acc (Vector a) -> Acc (Scalar a) 

➤ These are just two special cases of Accelerate’s Array types 

➤ parametrised with the shape type sh 

➤ element type a

Array sh a



ARRAY SHAPES

➤ The shape of an array determines its dimensionality and 
extent



ARRAY SHAPES

➤ Operations are shape polymorphic:

map :: (Shape sh, Elt a, Elt b) =>  
 (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b) 

zipWith :: (Shape sh, Elt a, Elt b, Elt c) =>  
(Exp a -> Exp b -> Exp c) ->  
 Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)

fold :: (Shape sh, Elt a) =>  
  (Exp a -> Exp a -> Exp a) -> Exp a ->  
  Acc (Array (sh :. Int) a) -> Acc (Array sh a)

generate :: (Shape sh, Elt a) =>  
   Exp sh -> (Exp sh -> Exp a) -> Acc (Array sh a)
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ARRAY SHAPES
➤ This means that out dot-product has actually a more general type:



SUMMARY SO FAR

➤ Looked at deep and shallow embedding 

- GADTs to maintain types in the AST 

➤ Programming model of Accelerate 

- writing simple Accelerate programs 
- fromList ::(Elt e, Shape t) => t -> [e] -> Array t e 
- use :: Arrays arrays => arrays -> Acc arrays



THE ELT CLASS
➤ Members of the Elt class contain admissible surface types for 

array elements: 

- () 

- Int, Int32, Int64, Word, Word32, Word64 … 

- Float, Double 
- Char 
- Bool 

- Array indices formed from Z and (:.) 

- Tuples of all of these, e.g. (Bool, Int, (Float, Float)) 

- To meet hardware restrictions, there are no nested arrays in 
Accelerate



ELT CLASS

➤ GPUs are efficient processing arrays of elementary type 

➤ not so much for aggregate types, pointers 

➤ similarly CPU when using SIMD vector instructions 

➤ set of types LLVM supports is fixed 

➤ We map the user-friendly surface types to efficient 
representations



ELT CLASS IS USER EXTENSIBLE

➤ Using type families(i.e., functions from type to type)

➤ To extend the class, define



LIFTING

➤ How can we construct values of Exp type? 

- Accelerate supplies Exp versions of Haskell Prelude ops, 
some constant values via overloading 

➤ lift/unlift to switch to and (sometimes) back



LIFTING

➤ The type of lift:
c c is a type constructor 

(e.g., Exp, Acc) 

c Plain is an associated type (function 
from type e to some other type) 

Strips away the surface type constructors  





BACK TO THE IMPLEMENTATION OF EDSLS



EXECUTION OF AN ACCELERATE PROGRAM

➤ What happens when we compile & run a regular Haskell 
program?

GHC

Compile time Run time



EXECUTION OF AN ACCELERATE PROGRAM

➤ What happens when we compile & run an Accelerate 
program?

Compile time Run time

GHC Acc

reify/compile/execute

Compile time Run time



WHY A TYPED AST?
➤ We compile the AST during application runtime 

- embedded compile time errors become application runtime 
errors 

➤ Source of the type error can be 

- Accelerate user error 

- bugs in the Accelerate compiler 

➤ Type checking the intermediate representation during 
Accelerate compilation 

- only shows this particular program is correct 

- transformation



WHY A TYPED AST?

➤ Applies to all runtime compiled EDSLs 

➤ but particularly important for high-performance DSL 

- compilation is more challenging 

➤ We learned the hard way 

- original CUDA backend was untyped 

- many bugs we found could have been avoided with a typed 
backend



FIRST ORDER AND HIGHER ORDER AST
➤ Let us look at a slightly more interesting EDSL: 

- values of the source language can be lifted into the DSL 

 like the Const constructor in the arithmetic DSL 

- function application 

- lambda-abstraction

How do we model variables?



HIGHER ORDER AST

➤ We can use the variables and abstraction mechanism of the 
host language:



HIGHER-ORDER AST

➤ Convenient to write and evaluate: 

- abstraction  

- application of the host language 

➤ Not suitable for transformation & analysis of the AST 

- can’t see inside functions 

➤ Summary: good for surface syntax, not great for internal 
representation



FIRST ORDER AST

➤ Variables as regular terms of the language

evalFO :: FOExpr a -> a 
evalFO (FVar varId)  = ??? 

we need an environment of some sort 

but what is its type??



DE BRUIJN INDEX

➤ Alternative representation of lambda-terms eliminating 
names:

λx. λy. (x + y) 

λ λ (i1 + i0) 

➤ Names are replaced with indices encoding the nesting depth 
of the binder

λx.  (x + (λ f. f x)(+1))   

λ ( i0 + (λ i0 i1)(+1)) 



FIRST ORDER SYNTAX WITH DE BRUIJN
➤ Idea: 

➤ a environment is either empty, or a tuple of value and rest 
environment 

➤ the type of the environment describes the type of all the 
values it contains 

➤ ith entry is the value of variable bound at nesting level n



FIRST ORDER SYNTAX WITH DE BRUIJN
➤ Idea: 

➤ a variable is a typed index 

➤ the type encodes the type of the value the variable it 
represents, as well as the type of the environment is needs



DEMO

➤ A term type in our language is parametrised with two types: 

- the result type t 

- the environment type env

demo



FIRST ORDER SYNTAX WITH DE BRUIJN
➤ The type-safe evaluator is now pretty straight forward:

eval :: Term env t -> Val env -> t 
eval (Var ix)       val = prj ix val 
eval (Con v)        val = v 
eval (Lam body)     val = eval body . (val `Push`) 
eval (App fun arg)  val = (eval fun val) (eval arg val)



FIRST ORDER SYNTAX WITH DE BRUIJN

➤ Typed higher-order abstract syntax is  

- convenient as surface syntax 

- not suitable for program analysis, program transformations 

➤ Typed De Bruijn first order abstract syntax 

- impractical to use as surface syntax 

- well suited as internal representation 

➤ Solution:  

- user writes program in HO-syntax 

- we convert it to De Bruijn representation



PROBLEM SOLVED NOW, RIGHT?

UHM, NO…



SUMMARY

➤ Surface types and representation types 

➤ First-order and Higher-order abstract syntax 

➤ Typed De Bruijn representation



SHARING

➤ What does the AST look like for this expression?
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PROBLEM

➤ Sharing in the host language internal representation 

➤ Not readily observable   

➤ Processing the tree means we are loosing the sharing 
information 

- often results in large ASTs 

- expressions are evaluated multiple times 

- really, really inefficient



PROBLEM

➤ Black-Scholes option pricing  

- Accelerate without sharing 20 times slower than CUDA 
implementation on GPU



PROBLEM

➤ Including ‘let’ in the surface language would make it 
extremely awkward to use 

➤ Can we have ‘let’ in the internal representation, and convert 
without loosing sharing?



PROBLEM

➤ We need to be able to observe an implementation detail pure 
functional languages abstract over 

➤ referential equality: 

- not enough to know two values are the same, we need to 
check if they share a location 

- language level reference equality clashes with referential 
transparency, garbage collection, compiler optimisations 

➤ Luckily, the need for referential equality pops up in other 
contexts as well 

- memoization, O(1) comparison of large objects,…



STABLE NAMES

➤ Idea: 

- associate values with an address-like stable name



STABLE NAMES

mkStableName x = mkStableName y 

⇒       

x = y

x = y  

⇏       

mkStableName x = mkStableName y

x ≠ y  

⇒      

mkStableName x ≠ mkStableName y



SHARING RECOVERY

➤ Traverse the ADT structure and identify the shared nodes 
with the help of stable names 

➤ insert let-bindings in the de Bruijn internal representation at 
the right positions



SHARING RECOVERY
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SHARING RECOVERY
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SHARING RECOVERY
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let x = 

x

x



SHARING RECOVERY

@

1(+)

let x = 

x

@

@

@(-) 8

(*)

@

@

@

2

8

11 11

x



SHARING RECOVERY

@

1(+)

@

@

@(-)

let x = 

x

@

@

@

2

(*)
11 11

x

let y = 

y

y



SHARING RECOVERY

@

1(+)

@

@

@(-)

let x = 

x

@

@

@

2

(*)

x

let y = 

y

y

let z = 

z
z



COMBINING SHARING RECOVERY AND DE BRUIJN CONVERSION

➤ The two transformation are fused into a single one 

- applying De Bruijn conversion first would destroy sharing 

➤ We loose type information during conversion from HOAS to 
De Bruijn  

- type checked dynamically



PERFORMANCE
➤ Impact of sharing recovery*: 

➤ Black Scholes, 20M elements:   

- CUDA, handwritten: 6.7ms 

- Accelerate, w/o sharing: 116ms 

- Accelerate w. sharing: 6.12ms 

➤ Canny edge detection, 16M pixel: 

- OpenCV: 50.6ms 

- Accelerate, w/o sharing: 82.7ms 

- Accelerate w. sharing: 78.4ms 

➤ Fluid-flow simulation, 2M particles 

- Accelerate, w/o sharing: 107ms 

- Accelerate w. sharing:  119ms

 *Tesla T10 processor (compute capability 1.3, 30 multiprocessors = 240 cores at 1.3GHz, 4GB RAM) backed by two quad-
core Xenon E5405 CPUs (64-bit, 2GHz, 8GB RAM), running GNU/Linux (Ubuntu 12.04 LTS). The reported GPU 
runtimes are averages of 100 runs.



FUSION

➤ Well-known problem of collection-oriented programming:

➤ Unnecessary intermediate structures, traversals



FUSION

➤ Like sharing recovery, fusion is essential if we care about 
performance 

- Mandelbrot: speed up of 1000% 

- typically, at least 50% faster



FUSION
➤ Many of the classical techniques don’t work in this context: 

- e.g., build/fold like fusion approaches destroy the parallel 
pattern

build ::  
  (forall b. (a -> b -> b) -> b -> b) -> [a] 
build g = g (:) [] 

foldr :: (a -> b -> b) -> b -> [a] -> b 
foldr f z []     =  z 
foldr f z (x:xs) =  f x (foldr f z xs)

foldr k z (build g) = g k z

map f xs = build (\c n -> foldr 
            (\a b -> c (f a) b) n xs) 
…



FUSION

➤ Fusion often relies on inlining for producer/consumer pairs to 
be detected, only done conservatively 

➤ Accelerate fusion happens at run time, need to be aware of 
the costs (but also: more information available) 

➤ Result of fusion transformation needs to fit in to our code 
generation templates



FUSION

➤ Producers: 

- each element of the result depends on at most one element 
of input array (e.g, map, backpermute, generate) 

➤ Consumers: 

- each element of result depends on multiple elements of 
input array (e.g., folds, scans, stencil operations) 

➤ We treat them separately 

- Producer/Producer fused via program transformation 

- Producer/Consumer during code generation









PRODUCER/PRODUCER FUSION

➤ Arrays represented as delayed computations:



FUSION 

➤ Example: map

compute :: Arrays a => Acc a -> Acc a

➤ To prevent fusion, arrays can be made manifest 



PRODUCER/CONSUMER FUSION

➤ Producer/consumer fusion is done during code generation 

➤ Producer operations are inserted in the consumer code 
templates 

➤ No support for consumer/consumer fusion yet



TYPE SAFE CODE GENERATION

➤ LLVM IR represents types as value-level data structure 

➤ We track them as Haskell types in the LLVM binding 

➤ Guarantees we only generate type correct LLVM programs 

➤ GADT to define LLVM instruction set:

➤ We translate the well-typed Accelerate AST into a well-
typed LLVM AST



LLVM BACKEND FRAMEWORK

➤ LLVM is a reusable framework, portable across diverse 
architectures  

➤ Accelerate LLVM backend framework 

- a set of re-usable components 

- reduces the cost of implementing future backends 

➤ Existing backends: 

- vectorising multicore CPU 

- GPU backend





GFLOPS/s (higher is better)  



THE ACCELERATE PROJECT

➤ Open source project 

- https://github.com/AccelerateHS/ 

➤ Current project members 

- Trevor McDonell 

- Rob Everest 

- Josh Meredith 

- Manuel Chakravarty 

https://github.com/AccelerateHS/

