
PARALLEL
FUNCTIONAL

ARRAY
PROGRAMMING

Gabriele Keller
(currently) UNSW Sydney

(very soon) Utrecht University

The Implementation of

PARALLEL FUNCTIONAL PROGRAMMING

Parallel Programming

performance!

Functional Languages

abstraction

higher order functions

controlled side effects

…

?

MAKING FP (AND TYPES) WORK FOR US

•Abstraction also means the compiler has more information

- controlled side effects, no user-level pointers,…

•Collection oriented versus explicit loops/recursion

•Expressive type systems help to

- guide the user

- guide the compiler write

Haskell

Boxed values

Composite
data structures

Immutable
structures

Polymorphism
& generics

Strictly isolating
side-effects

Principled, pure,
functional programming

Higher-order functions
& closures

Expressive type
system & inference

Strong static typing

How about
domain specific languages

with
specialised code generation?

DOMAIN SPECIFIC LANGUAGES
➤ Are restricted languages

- Generally have specialised features to a particular
application domain

- HTML, Matlab, SQL, postscript, LaTeX …

➤ Embedded domain specific languages

- Implemented as libraries in the host language, so can
integrate with the host language

- Reuse the syntax of the host language (as well as parser,
type checker…)

- The host language can generate embedded code

- Functional languages are great as host languages

ACCELERATE

Haskell/Accelerate
program

Target code

Compile and run on
the CPU/GPU

Copy result back to Haskell

Reify and optimise
Accelerate program

•An embedded domain-specific language for high-performance
computing in Haskell

ACCELERATE

• Array computations  • Everything else

ray tracing

=(

stable fluid flow

Mandelbrot fractal

n-body gravitational simulation

DOMAIN SPECIFIC EMBEDDED LANGUAGES

➤ There are two ways to embed a language

- shallow embedding

- deep embedding

SHALLOW EMBEDDING
➤ Shallow embedding provides fixed interpretation

➤ Semantics captured in the type

➤ Example: arithmetic expression language

DEEP EMBEDDING

➤ Captures DSL expression as abstract syntax tree (AST),
allowing multiple interpretations

Const

3

Const

Add

1

Mult

Const

5

often, constructors are not exposed, but

wrapped in regular functions

DEEP EMBEDDING

➤ Captures DSL expression as AST, allowing multiple
interpretations

DEEP EMBEDDING

execute :: Expr -> IO Float

DEEP EMBEDDING

➤ The expression representation is untyped:

eval :: Expr -> Float

could be Float or Bool!

DEEP EMBEDDING

➤ The expression representation is untyped:

ASIDE: PARAMETRISED ALGEBRAIC DATA TYPES

ASIDE: PARAMETRISED ALGEBRAIC DATA TYPES

DEEP EMBEDDING

➤ Generalised Algebraic Data Types (GADTs)

DEEP EMBEDDING

➤ Generalised Algebraic Data Types (GADTs)

LET’S LOOK AT ACCELERATE NOW!

ACCELERATE

➤ Computations take place on dense, multidimensional arrays

➤ Parallelism is introduced in the form of collective operations
on arrays

Accelerate
computationArrays in Arrays out

➤ The usual suspects: maps, zipWiths, folds, generators,
permutes and backpermutes, stencil operations

FIRST EXAMPLE

➤ dot-product in Haskell (on lists):

foldl :: (b -> a -> b) -> b -> [a] -> b

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

FIRST EXAMPLE

➤ dot-product in Haskell (on vectors):

foldl :: (b -> a -> b) -> b -> Vector a -> b

zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c

FIRST EXAMPLE

➤ dot-product in Haskell (using Accelerate):

fold :: Elt a =>
 (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) -> Acc (Scalar a)

zipWith : (Elt a, Elt b, Elt c)
 => (Exp a -> Exp b -> Exp c) -> Acc (Vector a) -> Acc (Vector b)
 -> Acc (Vector c)

http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Acc
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Acc
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Elt
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Elt
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Elt
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Exp
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Acc
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Acc
http://hackage.haskell.org/package/accelerate-1.2.0.0/docs/Data-Array-Accelerate.html#t:Acc

DETOUR: TYPE CLASSES IN HASKELL

type annotations may become necessary

DIFFERENT RUN FUNCTIONS
➤ Running an accelerate program:

run :: Arrays a => Acc a -> a

putStrLn $ show $ run (dotp vec1 vec2)

RUNNING AN ACCELERATE PROGRAM

➤ Plugging it all together:

run1 :: Arrays a => (Acc a -> Acc b) -> a -> b

DIFFERENT RUN FUNCTIONS

➤ Compiling Accelerate programs at Haskell compile time:

 runQ

ACCELERATE EXPRESSIONS

➤ Accelerate expressions can be of two distinct types:

➤ Embedded sequential, scalar expression:

Exp a

Acc a

➤ Embedded array computations:

➤ What is the difference between these two?

Acc (Scalar Int)

Exp Int

ACCELERATE EXPRESSIONS

➤ Nested parallel computations can’t be expressed:

map :: (Elt a, Elt b) =>
 (Exp a -> Exp b) -> Acc (Vector a) -> Acc (Vector b)

almost

DEFINITION OF EXP
➤ Exp is a GADT whose constructors represent scalar operations

Apply primitive scalar function: (+), (*) …

…

AD-HOC POLYMORPHISM FOR EXP

➤ Overloaded the standard type classes to reflect arithmetic
expressions

➤ The Num instance for Exp terms allows us to reuse standard
operators like (+) and (*)

AD-HOC POLYMORPHISM FOR EXP
• Use explicit dictionary passing to support ad-hoc polymorphism

- Type checker chooses the correct instance when creating the dictionary

- Pattern matching on the dictionary constructor makes the class constraints
available

AD-HOC POLYMORPHISM FOR EXP

➤ How does the dictionary trick work?

➤ With a standard algebraic data type the following are
equivalent:

➤ But, with GADTs this is not the case

foo :: Foo a -> a -> a
foo _ x = x+1

bar :: Foo a -> a -> a
bar (Foo _) x = x+1

data Foo a where
 Foo :: Num a => a -> Foo a

ACCELERATE TYPES

➤ We encountered two different Accelerate array types:

dotp :: (Num a, Elt a) =>
 Acc (Vector a)-> Acc (Vector a) -> Acc (Scalar a)

➤ These are just two special cases of Accelerate’s Array types

➤ parametrised with the shape type sh

➤ element type a

Array sh a

ARRAY SHAPES

➤ The shape of an array determines its dimensionality and
extent

ARRAY SHAPES

➤ Operations are shape polymorphic:

map :: (Shape sh, Elt a, Elt b) =>
 (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)

zipWith :: (Shape sh, Elt a, Elt b, Elt c) =>
(Exp a -> Exp b -> Exp c) ->
 Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)

fold :: (Shape sh, Elt a) =>
 (Exp a -> Exp a -> Exp a) -> Exp a ->
 Acc (Array (sh :. Int) a) -> Acc (Array sh a)

generate :: (Shape sh, Elt a) =>
 Exp sh -> (Exp sh -> Exp a) -> Acc (Array sh a)

https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Shape
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Shape
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Shape
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t::.
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Int
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Shape
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.1.0.0/docs/Data-Array-Accelerate.html#t:Array

ARRAY SHAPES
➤ This means that out dot-product has actually a more general type:

SUMMARY SO FAR

➤ Looked at deep and shallow embedding

- GADTs to maintain types in the AST

➤ Programming model of Accelerate

- writing simple Accelerate programs
- fromList ::(Elt e, Shape t) => t -> [e] -> Array t e
- use :: Arrays arrays => arrays -> Acc arrays

THE ELT CLASS
➤ Members of the Elt class contain admissible surface types for

array elements:

- ()

- Int, Int32, Int64, Word, Word32, Word64 …

- Float, Double
- Char
- Bool

- Array indices formed from Z and (:.)

- Tuples of all of these, e.g. (Bool, Int, (Float, Float))

- To meet hardware restrictions, there are no nested arrays in
Accelerate

ELT CLASS

➤ GPUs are efficient processing arrays of elementary type

➤ not so much for aggregate types, pointers

➤ similarly CPU when using SIMD vector instructions

➤ set of types LLVM supports is fixed

➤ We map the user-friendly surface types to efficient
representations

ELT CLASS IS USER EXTENSIBLE

➤ Using type families(i.e., functions from type to type)

➤ To extend the class, define

LIFTING

➤ How can we construct values of Exp type?

- Accelerate supplies Exp versions of Haskell Prelude ops,
some constant values via overloading

➤ lift/unlift to switch to and (sometimes) back

LIFTING

➤ The type of lift:
c c is a type constructor

(e.g., Exp, Acc)

c Plain is an associated type (function
from type e to some other type)

Strips away the surface type constructors

BACK TO THE IMPLEMENTATION OF EDSLS

EXECUTION OF AN ACCELERATE PROGRAM

➤ What happens when we compile & run a regular Haskell
program?

GHC

Compile time Run time

EXECUTION OF AN ACCELERATE PROGRAM

➤ What happens when we compile & run an Accelerate
program?

Compile time Run time

GHC Acc

reify/compile/execute

Compile time Run time

WHY A TYPED AST?
➤ We compile the AST during application runtime

- embedded compile time errors become application runtime
errors

➤ Source of the type error can be

- Accelerate user error

- bugs in the Accelerate compiler

➤ Type checking the intermediate representation during
Accelerate compilation

- only shows this particular program is correct

- transformation

WHY A TYPED AST?

➤ Applies to all runtime compiled EDSLs

➤ but particularly important for high-performance DSL

- compilation is more challenging

➤ We learned the hard way

- original CUDA backend was untyped

- many bugs we found could have been avoided with a typed
backend

FIRST ORDER AND HIGHER ORDER AST
➤ Let us look at a slightly more interesting EDSL:

- values of the source language can be lifted into the DSL

 like the Const constructor in the arithmetic DSL

- function application

- lambda-abstraction

How do we model variables?

HIGHER ORDER AST

➤ We can use the variables and abstraction mechanism of the
host language:

HIGHER-ORDER AST

➤ Convenient to write and evaluate:

- abstraction

- application of the host language

➤ Not suitable for transformation & analysis of the AST

- can’t see inside functions

➤ Summary: good for surface syntax, not great for internal
representation

FIRST ORDER AST

➤ Variables as regular terms of the language

evalFO :: FOExpr a -> a
evalFO (FVar varId) = ???

we need an environment of some sort

but what is its type??

DE BRUIJN INDEX

➤ Alternative representation of lambda-terms eliminating
names:

λx. λy. (x + y)

λ λ (i1 + i0)

➤ Names are replaced with indices encoding the nesting depth
of the binder

λx. (x + (λ f. f x)(+1))

λ (i0 + (λ i0 i1)(+1))

FIRST ORDER SYNTAX WITH DE BRUIJN
➤ Idea:

➤ a environment is either empty, or a tuple of value and rest
environment

➤ the type of the environment describes the type of all the
values it contains

➤ ith entry is the value of variable bound at nesting level n

FIRST ORDER SYNTAX WITH DE BRUIJN
➤ Idea:

➤ a variable is a typed index

➤ the type encodes the type of the value the variable it
represents, as well as the type of the environment is needs

DEMO

➤ A term type in our language is parametrised with two types:

- the result type t

- the environment type env

demo

FIRST ORDER SYNTAX WITH DE BRUIJN
➤ The type-safe evaluator is now pretty straight forward:

eval :: Term env t -> Val env -> t
eval (Var ix) val = prj ix val
eval (Con v) val = v
eval (Lam body) val = eval body . (val `Push`)
eval (App fun arg) val = (eval fun val) (eval arg val)

FIRST ORDER SYNTAX WITH DE BRUIJN

➤ Typed higher-order abstract syntax is

- convenient as surface syntax

- not suitable for program analysis, program transformations

➤ Typed De Bruijn first order abstract syntax

- impractical to use as surface syntax

- well suited as internal representation

➤ Solution:

- user writes program in HO-syntax

- we convert it to De Bruijn representation

PROBLEM SOLVED NOW, RIGHT?

UHM, NO…

SUMMARY

➤ Surface types and representation types

➤ First-order and Higher-order abstract syntax

➤ Typed De Bruijn representation

SHARING

➤ What does the AST look like for this expression?

@

@

@

@

@

@

@

1

2
(+)

(*)

(-)

(*)

@

@

@

@

@

(-)

@

1(+)
@

@

1(+)

(*)

2 @

@

1(+)

2

@

@

1(+)

(*)

2 @

@

1(+)

2

@

PROBLEM

➤ Sharing in the host language internal representation

➤ Not readily observable

➤ Processing the tree means we are loosing the sharing
information

- often results in large ASTs

- expressions are evaluated multiple times

- really, really inefficient

PROBLEM

➤ Black-Scholes option pricing

- Accelerate without sharing 20 times slower than CUDA
implementation on GPU

PROBLEM

➤ Including ‘let’ in the surface language would make it
extremely awkward to use

➤ Can we have ‘let’ in the internal representation, and convert
without loosing sharing?

PROBLEM

➤ We need to be able to observe an implementation detail pure
functional languages abstract over

➤ referential equality:

- not enough to know two values are the same, we need to
check if they share a location

- language level reference equality clashes with referential
transparency, garbage collection, compiler optimisations

➤ Luckily, the need for referential equality pops up in other
contexts as well

- memoization, O(1) comparison of large objects,…

STABLE NAMES

➤ Idea:

- associate values with an address-like stable name

STABLE NAMES

mkStableName x = mkStableName y

⇒

x = y

x = y

⇏

mkStableName x = mkStableName y

x ≠ y

⇒

mkStableName x ≠ mkStableName y

SHARING RECOVERY

➤ Traverse the ADT structure and identify the shared nodes
with the help of stable names

➤ insert let-bindings in the de Bruijn internal representation at
the right positions

SHARING RECOVERY

@

@

@

@

@

@

@

1

2

(+)

(*)

(-)

1

2

3 4

5

6 7

8
9

10 11

12
5

11

8

SHARING RECOVERY

@

1(+)

5

@

@

@

@

@

@

2

(*)

(-)

1

8

11

5

11

8

SHARING RECOVERY

@

1(+)
@

@

@

@

@

@

2

(*)

(-)

8

11 11

8

let x =

x

x

SHARING RECOVERY

@

1(+)

let x =

x

@

@

@(-) 8

(*)

@

@

@

2

8

11 11

x

SHARING RECOVERY

@

1(+)

@

@

@(-)

let x =

x

@

@

@

2

(*)
11 11

x

let y =

y

y

SHARING RECOVERY

@

1(+)

@

@

@(-)

let x =

x

@

@

@

2

(*)

x

let y =

y

y

let z =

z
z

COMBINING SHARING RECOVERY AND DE BRUIJN CONVERSION

➤ The two transformation are fused into a single one

- applying De Bruijn conversion first would destroy sharing

➤ We loose type information during conversion from HOAS to
De Bruijn

- type checked dynamically

PERFORMANCE
➤ Impact of sharing recovery*:

➤ Black Scholes, 20M elements:

- CUDA, handwritten: 6.7ms

- Accelerate, w/o sharing: 116ms

- Accelerate w. sharing: 6.12ms

➤ Canny edge detection, 16M pixel:

- OpenCV: 50.6ms

- Accelerate, w/o sharing: 82.7ms

- Accelerate w. sharing: 78.4ms

➤ Fluid-flow simulation, 2M particles

- Accelerate, w/o sharing: 107ms

- Accelerate w. sharing: 119ms

 *Tesla T10 processor (compute capability 1.3, 30 multiprocessors = 240 cores at 1.3GHz, 4GB RAM) backed by two quad-
core Xenon E5405 CPUs (64-bit, 2GHz, 8GB RAM), running GNU/Linux (Ubuntu 12.04 LTS). The reported GPU
runtimes are averages of 100 runs.

FUSION

➤ Well-known problem of collection-oriented programming:

➤ Unnecessary intermediate structures, traversals

FUSION

➤ Like sharing recovery, fusion is essential if we care about
performance

- Mandelbrot: speed up of 1000%

- typically, at least 50% faster

FUSION
➤ Many of the classical techniques don’t work in this context:

- e.g., build/fold like fusion approaches destroy the parallel
pattern

build ::
 (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr k z (build g) = g k z

map f xs = build (\c n -> foldr
 (\a b -> c (f a) b) n xs)
…

FUSION

➤ Fusion often relies on inlining for producer/consumer pairs to
be detected, only done conservatively

➤ Accelerate fusion happens at run time, need to be aware of
the costs (but also: more information available)

➤ Result of fusion transformation needs to fit in to our code
generation templates

FUSION

➤ Producers:

- each element of the result depends on at most one element
of input array (e.g, map, backpermute, generate)

➤ Consumers:

- each element of result depends on multiple elements of
input array (e.g., folds, scans, stencil operations)

➤ We treat them separately

- Producer/Producer fused via program transformation

- Producer/Consumer during code generation

PRODUCER/PRODUCER FUSION

➤ Arrays represented as delayed computations:

FUSION

➤ Example: map

compute :: Arrays a => Acc a -> Acc a

➤ To prevent fusion, arrays can be made manifest

PRODUCER/CONSUMER FUSION

➤ Producer/consumer fusion is done during code generation

➤ Producer operations are inserted in the consumer code
templates

➤ No support for consumer/consumer fusion yet

TYPE SAFE CODE GENERATION

➤ LLVM IR represents types as value-level data structure

➤ We track them as Haskell types in the LLVM binding

➤ Guarantees we only generate type correct LLVM programs

➤ GADT to define LLVM instruction set:

➤ We translate the well-typed Accelerate AST into a well-
typed LLVM AST

LLVM BACKEND FRAMEWORK

➤ LLVM is a reusable framework, portable across diverse
architectures

➤ Accelerate LLVM backend framework

- a set of re-usable components

- reduces the cost of implementing future backends

➤ Existing backends:

- vectorising multicore CPU

- GPU backend

GFLOPS/s (higher is better)

THE ACCELERATE PROJECT

➤ Open source project

- https://github.com/AccelerateHS/

➤ Current project members

- Trevor McDonell

- Rob Everest

- Josh Meredith

- Manuel Chakravarty

https://github.com/AccelerateHS/

