
Lecture 1

Dataflow Model of
Parallelism
Arvind
Computer Science and Artificial Intelligence Laboratory
M.I.T.

Oregon Programming Language Summer School (OPLSS)
Eugene, OR
July 14, 2018

1

Dataflow
Jack Dennis 1969-1973

General purpose parallel machines based on
a dataflow graph model of computation

Inspired all the major players
in dataflow during seventies
and eighties, including Kim
Gostelow and me @ UC Irvine

2

Dataflow Operators

A small set of dataflow operators can be used
to define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F



3

Constructing Dataflow Graphs

G1

. . .

. . .
G2

. . .

. . .
G1

. . .

. . .
G2

. . .

. . . G

Juxtaposition

G1

. . .

. . .

Iteration
G1

. . .

. . . G

Exercise: Construct a graph for f(g(x)) using
juxtaposition and iteration

4

Example:

The Stream Duplicator

T F NOTT

1-to-2
SD SD C

X
Gate: Lets X
pass through
only after C
arrives

What happens
if we don't use
the gate?

5

The Stream Halver

Draw a graph that throws away every other token

SH SH
2-to-1

6

Determinacy Property
The values of output tokens are uniquely
determined by the values of input tokens, i.e.,
the behavior is time independent

Theorem: A dataflow graph formed by
repeated juxtaposition and iteration of
deterministic dataflow operators is
deterministic

Proof?

7

Kahn Process Networks
Gilles Kahn 1973

Computing stations connected by unbounded,
FIFO channels
Each station executes a sequential program

wait(ch): blocking read from a channel
send(x,ch): non blocking

a station either blocks for an input on a specific
channel or computes (no test for emptyness)

P Q

8

An Example

X

Y Z

T0 T1

f

g

h1h0

Process f(U,V; W)
{b= true;
While true do
{i := if b then wait(U)

else wait(V);
print(i);
send(i,W);
b := not b}}

Process g(U ; V,W)
{b= true;
While true do
{i := wait(U);
if b then send(i,V)
else send(i,W);
b := not b }}

Process hC (U ; V)
{send(c,V);
While true do
{i := wait(U);
send(i,V) }}

X = f(Y,Z) || T0 , T1 = g(X) || Y = h0(T0) || Z = h1(T1)

Functionality?
9

Kahnian Networks & Dataflow

Dataflow Graphs can Express any Kahnian Network
and vice versa

X

Y Z

T0 T1

f

g
h1h0

T F not

T F not

T

T

10

Determinacy
A computing station in Kahnian network can
be viewed as a function from sequences to
sequences
A Kahnian network can be viewed a systems
of recursive equations, whose solutions
characterize the I/O behavior of the network
Kleene’s Fixed Point Theorem: If each function
in the network is monotonic and continuous
then the set of recursive equations has a
unique least fixed-point solution

11

Dataflow Operators as
Streams Functions

add(x:xs, y:ys) = +(x,y) : add(xs,ys)

T-gate (T:bs, x:xs) = x: T-gate(bs,xs)
T-gate (F:bs, x:xs) = T-gate(bs,xs)

merge(T:bs, x:xs, ys) = x: merge(bs,xs,ys)
merge(F:bs, xs, y:ys) = y: merge(bs,xs,ys)

12

Dataflow Graphs:
A Set of Recursive Equations

NOT

I

O

T

A

B

O = T-gate (A,I);
A = gate (I,B);
B = T : Not (A) ;

T

G.Kahn: Monotonicity and
Continuity of operators
guarantee a unique solution,
aka determinacy

Kahn Networks = Dennis networks
13

Domain of Sequences
Sequence: [x1, ... , xn]
The least element: [] (aka )
The partial order (): prefix order on sequences
 []  [x1]  [x1,x2]  ...  [x1, x2, x3 ... xn]

Monotonicity: x  y  f(x)  f(y)
 a monotonic operator on sequences can never retract a

value that has been produced.
Continuity: f (Ui Xi) = Ui f (Xi)
 A continuous operator on sequences does not suddenly

produce an output after consuming an infinite amount of
input

Least fixed-point solution: f(f(...(f())...)

14

Computing the solution
an example

I [i1, i2, i3]

A []

B [T]

O []

O = T-gate (A,I) ; A = gate (I,B) ; B = T:Not (A) ;

Assume edges without initial tokens are empty ().
The least fixed point solution can be computed
iteratively, by evaluating one operator at a time

[i1, i2, i3]

[T]

[T]

[]

[i1, i2, i3]

[T]

[T, F]

[i1]

15

Well Behaved Schemas
one-in-one-out & self initializing

Before After

• • •

P

• • •

• • •

P

• • •

T F

f g

T F

Conditional

f

p

T F

T F F

Loop

16

Well Behaved Schemas
one-in-one-out & self initializing

Before After

• • •

P

• • •

• • •

P

• • •

T F

f g

T F

Conditional

f

p

T F

T F F

LoopBounded Loop

Needed for
resource

management
17

Another Conditional Schema

If p then f(a,b) else g(a,b)

Why is this
schema not well

behaved?f g

T Fp

a b

18

Yet another conditional
schema

Suppose g(X2)
computes much

faster than f(X1).

Tokens will come out in the wrong order
without the merge operator

T F T F

T F

f g f g

X2
X1

F T F T

X

X2
X1

19

Tagged-Token Dataflow

Increasing the concurrency

20

Missing Tokens and blocking
behavior

T F T F

F T T

x

x

x cannot be moved to the output because the
token corresponding to T is missing.

How to model stream with “holes” ?

21

Another Interpretation of
DFGs: Streams with “holes”

Streams with missing tokens

{v1, v2, v4, , v6,}

can be modeled by a set of tokens where tokens
carry a tag designating their position in the
stream

{ <1, v1>, <2, v2>, <4, v4>, <6, v6> }

22

Tagged Semantics of
Operators
add(xs,ys) = {<i,x+y> <i,x>  xs, <i,y>  ys}

T-gatebs,xs) =

mergebs,xs,ys) =

Da(xs) =

needed wherever we place an initial token

{<k,x> | <i,T>  bs, <i,x>  xs,
 j  i . <j,bj>  bs , k = T-Count(bs,i)}

{<i,x> | <i,T>  bs, <k,x>  xs,
 j  i . <j,bj>  bs, k = T-Count(bs,i)}

 {<i,y> | <i,F>  bs, <k,y>  ys,
 j  i . <j,bj>  bs, k = F-Count(bs,i)}

{<i+1,x> | <i,x>  xs}  {<1,a>}

23

Ordering on Streams with
Holes
Stream with holes: { <i, vi>, <j, vj>, <k, vk> }

The least element: { } (aka )

The partial order (): subset order

It is easy to show that all the operators under the
tagged semantics are monotonic and continuous

 tagged semantics are also deterministic

24

Tagged versus FIFO
Interpretation
Theorem: Suppose the least fixed point of a
dataflow program under the FIFO interpretation
is X and under the tagged interpretation is Y
then X  Y .

Proof: Based on structural induction on the
graph structure (juxtaposition and iteration)

Tagged interpretation has more parallelism
Arvind & Gostelow 1977

25

Well Behaved Graphs
under tagging

• • •

• • • • • •

• • •
c • s1 c • sn

c • t1 c • tm

1. One-in-one-out property

2. Self Cleaning: Initially the graph contains
no tokens; when all the output tokens have
been produced no tokens remain in the graph

26

Consequences of Tagging
No need of merge in
well behaved dataflow
graphs

Even if f(x1) completes
after g(x2) the output
tokens will carry the
"correct" tag

X

F T

x2
x1

T F

f g

Tagging simplifies well-behaved
schemas, increases parallelism at the
cost of increased complexity in
implementation

27

Data Structures

28

Data Structures
Suppose we want to add two arrays, element
by element
 Option 1: the whole array is carried by a token (not

practical in general)
 Option 2: Array is represented as a stream of tokens
 Option 3: Array is divided into several chunks and

each chunk is fed to a different copy of the operator
 Option 4: Some combination of options 2 and 3

Such a choices of representation has to be
made by the user or the compiler

These options are not suitable for handling complex or
sparse data structures

29

A Parallel Multithreaded Language
Model

Tree of
Activation
Frames

h:g:

f:

loop

threads

asynchronous
and parallel
at all levels

Pure dataflow systems cannot
express such a language model

Global Heap of
Shared Objects

30

Dynamic Dataflow Architectures
and Languages (MIT 1979-94)

Extensions to the tagged dataflow
model to support procedure calls and
dynamically allocated heap objects

31

Data Structures in Dataflow

. . . . PP

MemoryData structures reside in memory
and tokens carry pointers
I-structures
 Write-once, Read multiple times
allocate  write  read*  deallocate

I-structures are like variables in
logic languages (Pingali ...)
 See I-vars, and M-vars in Haskell

At the hardware level, I-fetch and
I-store instructions

No problem if a reader arrives before
the writer at the memory location

I-fetch

a

I-store

a v

32

I-Structure Storage:
Split-phase operations & Presence bits

I-fetch

t

<s, fp, a >
s

1

2

3

4a
a
a
a

v2
fp.ip

I-structure
Memory

Need to deal with multiple deferred reads;
Additional operations: take/put, clear



v1

address to
be read

t

I-fetch
<a, Read, (t,fp)>

s

split
phase

forwarding
address

33

Dataflow Graphs + I-Structures + . . .

Monsoon Dataflow Machine

Language and Architecture
to exploit implicit parallelism

Id (Functional language)

34

The Monsoon Project
Motorola Cambridge Research Center + MIT (1988-91)

Two 16-node systems
- MIT, LANL

Sixteen 2-node systems
- Motorola, Colorado, USC,

Oregon, McGill, ...

Id World Software

Displayed at Super
Computing 1991

35

The Monsoon Project
Motorola Cambridge Research Center + MIT (1988-91)

Two 16-node systems
- MIT, LANL

Sixteen 2-node systems
- Motorola, Colorado, USC,

Oregon, McGill, ...

Id World Software

Displayed at Super
Computing 1991

Tony Dahbura 36

Dataflow people @ MIT
Rishiyur Nikhil,
Keshav Pingali,
Vinod Kathail,
David Culler
Greg Papadopolous
Andy Boughton
Chris Jeorge
Ken Traub
Steve Heller,
Richard Soley,
Dinart Mores
Jamey Hicks,
Alex Caro,
Andy Shaw,
Boon Ang
Shail Anditya
R Paul Johnson
Jacj Costenza
Paul Barth
Jan Maessen
Christine Flood
Jonathan Young
Derek Chiou
Arun Iyangar
Zena Ariola
Mike Bekerle

K. Eknadham (IBM)
Wim Bohm (Colorado)
Joe Stoy (Oxford)
...

Steve HellerKen Traub

R.S. Nikhil Keshav Pingali David Culler

Derek ChiouJamey Hicks

Greg Papadopoulos

37

Dataflow: An assessment
Dataflow ideas are used extensively in modern
microprocessors, but the Instructure Set
Architecture (ISA) remains totally sequential
 Processors use speculation to expose parallelism

Compilers extract parallelism from sequential
codes with varying degree of success
Parallel programming remains difficult – most
users have little interest in rewriting their
programs to exploit parallelism
 Ethos: It is someone else’s program

Yet, most microprocessors are multicores and
most systems have many concurrent processes

Move towards domain specific solutions
38

Fine-grain vs Coarse-grain
Dataflow Models

Dataflow models say nothing about the size of
tokens or the complexity of computing nodes
In practice, the cost of implementing fine-
grain asynchronous parallelism is high, so
many systems use dataflow ideas at the
macro-level and exploit fine-grain
synchronous parallelism within the nodes

39

Applications
Dataflow models are used extensively in many
domains, especially for hardware accelerators:
 Video and Audio codecs (e.g., H.264)
 Network applications (e.g., packet filtering)
 Wireless baseband processing (e.g., OFDM based

protocols)
 Deep Neural Networks (e.g., DNNs, RNNs)
 Map-Reduce applications
 ...

40

H.264 Video Decoder
Chun-Chieh Lin, K Elliott Fleming [MEMOCODE 2008]

May be implemented in hardware
or software depending upon ...

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
om

pr
es

se
d

B
its

Fr
am

es

Different requirements for different environments
- QVGA 320x240p (30 fps)
- DVD 720x480p
- HD DVD 1280x720p (60-75 fps) 41

Wireless Baseband processing
OFDM TX/RX Blocks, Man cheuk Ng et al [2007]

MAC

MAC

standard specific

potential reuse

Scrambler FEC
Encoder Interleaver Mapper

Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

A/D

42

Wireless Baseband processing
OFDM TX/RX Blocks, Man cheuk Ng et al [2007]

MAC

MAC

standard specific

potential reuse

Scrambler FEC
Encoder Interleaver Mapper

Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

A/D

 Different algorithms - No Reuse

Convolutional

Reed-Solomon

Turbo

43

Wireless Baseband processing
OFDM TX/RX Blocks, Man cheuk Ng et al [2007]

MAC

MAC

standard specific

potential reuse

Scrambler FEC
Encoder Interleaver Mapper

Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

A/D

 Different algorithms - No Reuse
 Reusable algorithm with different

parameter settings

WiFi:x7+x4+1

WiMAX:x15+x14+1

WUSB:x15+x14+1

44

Wireless Baseband processing
OFDM TX/RX Blocks, Man cheuk Ng et al [2007]

MAC

MAC
Scrambler FEC

Encoder Interleaver Mapper
Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

 Different algorithms - No Reuse

 Different throughput requirements

WiFi: 64pt @ 0.25MHz

WiMAX: 256pt @ 0.03MHz

 Reusable algorithm with different
parameter settings

WUSB: 128pt 8MHz

We want the same source description but different hardware!
45

There is a need to beyond
dataflow models

Dataflow models, like functional languages,
obscure resource management issues which
must be handled efficiently in any practical
system
Lack of shared state between nodes makes
certain computations, e.g., graph algorithms,
difficult to express
Determinacy, though highly desirable in many
situations, is ultimately quite limiting in
specifying distributed software and hardware

46

Alternative
Serializable atomic actions
 A general model of concurrency for both software

and hardware
 Can express most other models of concurrency
 A specific model – guarded atomic actions – is also

amenable to efficient hardware implementation

stay tuned ...

47

Extras

48

Firing Rules: T-Gate

T T

T T

x

x

x

T

F

49

The Switch Operator

T F

X

T T F
X

T F

T F

50

Firing Rules: Merge

T F

x y

T
T F

y

x

T F

x

T
T F

x

51

Firing Rules: Merge cont

T F

y

T
not ready

to fire

52

Some Conventions

X1 X2

T F
B

T F

X1 X2

T F T F
B



53

Some Conventions Cont.

X1 X2

T F T F
B

X1 X2



X1 X2

T F
B

T F

X1 X2

54

Unbounded Cyclic Graphs

Unbounded number
of tokens on an arc
can only arise due

to cycles.

<n

+1

FT F

f

+

0 1
F

T FT F

T F

55

Bounded Cyclic Graphs

<n

+1

FT F

f

+

0 1
F

T FT F

T F

sync
k-bound

56

Bounded Cyclic Graphs

+ 1

T F

T F

F
T F

T F

f

+

0 1

Sync

k-bound

< n

F

57

Well Behaved Schemas

f

p

T F

T F F

LoopBounded Loop

Needed for
resource

management
58

New Definition of Well
Behavedness

1. One token on each input arc produces
exactly one token on each output arc.

2. The initial distribution of tokens on the arcs
is restored.

3. No arc can have an unbounded buildup of
tokens.

Before After

• • •

P

• • •

• • •

P

• • •

59

Bounded Cyclic Graphs
are Well Behaved

Initial number of tokens at the gate
input determines the maximum number
of tokens on any arc.

However, loop bounding can alter the
"meaning" of a graph, i.e., can cause
deadlock.

In general, restricting the number of
tokens on an arc causes deadlock.

60

Can this program deadlock if the
number of tokens per arc is restricted?

+1

T F

T F

F
T F

T F

+10

0
F

<4

61

