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Dataflow
Jack Dennis 1969-1973

General purpose parallel machines based on 
a dataflow graph model of computation

Inspired all the major players 
in dataflow during seventies 
and eighties, including Kim 
Gostelow and me @ UC Irvine
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Dataflow Operators

A small set of dataflow operators can be used 
to define a general programming language 

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F


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Constructing Dataflow Graphs

G1

. . .

. . .
G2

. . .

. . .
G1

. . .

. . .
G2

. . .

. . . G

Juxtaposition

G1

. . .

. . .

Iteration
G1

. . .

. . . G

Exercise: Construct a graph for f(g(x)) using 
juxtaposition and iteration
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Example: 

The Stream Duplicator

T F NOTT

1-to-2
SD SD C

X
Gate: Lets X 
pass through 
only after C 
arrives

What happens 
if we don't use 
the gate?
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The Stream Halver

Draw a graph that throws away every other token

SH SH
2-to-1
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Determinacy Property
The values of output tokens are uniquely 
determined by the values of input tokens, i.e., 
the behavior is time independent

Theorem: A dataflow graph formed by 
repeated juxtaposition and iteration of 
deterministic dataflow operators is 
deterministic

Proof?
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Kahn Process Networks
Gilles Kahn 1973

Computing stations connected by unbounded, 
FIFO channels
Each station executes a sequential program

wait(ch): blocking read from a channel
send(x,ch): non blocking

a station either blocks for an input on a specific 
channel or computes (no test for emptyness)

P Q
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An Example

X

Y Z

T0 T1

f

g

h1h0

Process f(U,V; W)
{b= true;
While true do
{i := if b then wait(U)

else wait(V);
print(i);
send(i,W);
b := not b}}

Process g(U ; V,W)
{b= true;
While true do
{i := wait(U);
if b then send(i,V)
else send(i,W);
b := not b }}

Process hC (U ; V)
{send(c,V);
While true do
{i := wait(U);
send(i,V) }}

X = f(Y,Z)   ||   T0 , T1 = g(X)  ||   Y = h0(T0)   ||   Z = h1(T1) 

Functionality?
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Kahnian Networks & Dataflow

Dataflow Graphs can Express any Kahnian Network 
and vice versa

X

Y Z

T0 T1

f

g
h1h0

T      F not

T      F not

T

T
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Determinacy
A computing station in Kahnian network can 
be viewed as a function from sequences to 
sequences
A Kahnian network can be viewed a systems 
of recursive equations, whose solutions 
characterize the I/O behavior of the network
Kleene’s Fixed Point Theorem: If each function 
in the network is monotonic and continuous 
then the set of recursive equations has a 
unique least fixed-point solution
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Dataflow Operators as
Streams Functions

add(x:xs, y:ys)   =   +(x,y) : add(xs,ys)

T-gate (T:bs, x:xs)   =   x: T-gate(bs,xs)
T-gate (F:bs, x:xs)   =   T-gate(bs,xs)

merge(T:bs, x:xs, ys)   =   x: merge(bs,xs,ys)
merge(F:bs, xs, y:ys)   =   y: merge(bs,xs,ys)
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Dataflow Graphs:
A Set of Recursive Equations

NOT

I

O

T

A

B

O = T-gate (A,I);
A = gate (I,B); 
B = T :  Not (A) ;

T

G.Kahn: Monotonicity and 
Continuity of operators 
guarantee a unique solution, 
aka determinacy

Kahn Networks = Dennis networks
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Domain of Sequences
Sequence: [x1, ... , xn]
The least element:  [ ]  (aka )
The partial order ():  prefix order on sequences
 [ ]  [x1]  [x1,x2]  ...  [x1, x2, x3 ...  xn]

Monotonicity: x  y  f(x)  f(y)
 a monotonic operator on sequences can never retract a 

value that has been produced.
Continuity:   f (Ui Xi)  =  Ui f (Xi) 
 A continuous operator on sequences does not suddenly 

produce an output after consuming an infinite amount of 
input 

Least fixed-point solution: f(f(...(f())...)
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Computing the solution
an example

I     [i1, i2, i3]

A     [  ] 

B     [ T ] 

O     [  ]

O = T-gate (A,I) ; A = gate (I,B) ; B = T:Not (A) ;

Assume edges without initial tokens are empty (). 
The least fixed point solution can be computed 
iteratively, by evaluating one operator at a time 

[i1, i2, i3]

[ T ]     

[ T ]

[  ]

[i1, i2, i3]

[ T ] 

[ T, F ]

[ i1 ]
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Well Behaved Schemas
one-in-one-out & self initializing

Before After

•  •  •

P

•  •  •

•  •  •

P

•  •  •

T F

f g

T F

Conditional

f

p

T F

T F F

Loop
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Well Behaved Schemas
one-in-one-out & self initializing

Before After

•  •  •

P

•  •  •

•  •  •

P

•  •  •

T F

f g

T F

Conditional

f

p

T F

T F F

LoopBounded Loop

Needed for 
resource 

management
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Another Conditional Schema

If p then f(a,b) else g(a,b) 

Why is this 
schema not well 

behaved?f g

T           Fp

a b
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Yet another conditional 
schema

Suppose g(X2)
computes much

faster than f(X1).

Tokens will come out in the wrong order 
without the merge operator

T F T F

T F

f g f g

X2
X1

F  T F  T

X

X2
X1

19



Tagged-Token Dataflow

Increasing the concurrency
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Missing Tokens and blocking 
behavior

T            F T            F

F  T T

x

x

x cannot be moved to the output because the 
token corresponding to T is missing.

How to model stream with “holes” ? 
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Another Interpretation of 
DFGs: Streams with “holes”

Streams with missing tokens

{v1, v2, v4, , v6, ....}

can be modeled by a set of tokens where tokens 
carry a tag designating their position in the 
stream

{ <1, v1>, <2, v2>, <4, v4>, <6, v6> }
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Tagged Semantics of 
Operators
add(xs,ys) =  {<i,x+y> <i,x>  xs, <i,y>  ys}

T-gatebs,xs) =

mergebs,xs,ys)  =  

Da(xs) =

needed wherever we place an initial token

{<k,x> | <i,T>  bs, <i,x>  xs,
 j  i . <j,bj>  bs , k = T-Count(bs,i)}

{<i,x> | <i,T>  bs, <k,x>  xs,
 j  i . <j,bj>  bs, k = T-Count(bs,i)}

 {<i,y> | <i,F>  bs, <k,y>  ys,
 j  i . <j,bj>  bs, k = F-Count(bs,i)}

{<i+1,x> | <i,x>  xs}  {<1,a>}
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Ordering on Streams with 
Holes
Stream with holes: { <i, vi>, <j, vj>, <k, vk> }

The least element:  { } (aka )

The partial order ():  subset order

It is easy to show that all the operators under the 
tagged semantics are monotonic and continuous

 tagged semantics are also deterministic
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Tagged versus FIFO 
Interpretation
Theorem:  Suppose the least fixed point of a 
dataflow program under the FIFO interpretation 
is X and under the tagged interpretation is Y 
then X  Y . 

Proof:  Based on structural induction on the 
graph structure (juxtaposition and iteration)

Tagged interpretation has more parallelism
Arvind & Gostelow 1977
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Well Behaved Graphs 
under tagging

•   •   •

•   •   • •   •   •

•   •   •
c • s1 c • sn

c • t1 c • tm

1.  One-in-one-out property

2.  Self Cleaning:  Initially the graph contains 
no tokens;  when all the output tokens have
been produced no tokens remain in the graph
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Consequences of Tagging
No need of merge in 
well behaved dataflow 
graphs

Even if f(x1) completes 
after g(x2) the output 
tokens will carry the 
"correct" tag

X

F  T

x2
x1

T        F

f g

Tagging simplifies well-behaved 
schemas, increases parallelism at the 
cost of increased complexity in 
implementation
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Data Structures
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Data Structures
Suppose we want to add two arrays, element 
by element
 Option 1: the whole array is carried by a token (not 

practical in general)
 Option 2: Array is represented as a stream of tokens
 Option 3: Array is divided into several chunks and 

each chunk is fed to a different copy of the operator
 Option 4: Some combination of options 2 and 3

Such a choices of representation has to be 
made by the user or the compiler 

These options are not suitable for handling complex or 
sparse data structures
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A Parallel Multithreaded Language 
Model 

Tree of
Activation
Frames

h:g:

f:

loop

threads

asynchronous 
and parallel 
at all levels 

Pure dataflow systems cannot 
express such a language model 

Global Heap of
Shared Objects
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Dynamic Dataflow Architectures 
and Languages (MIT 1979-94)

Extensions to the tagged dataflow 
model to support procedure calls and 
dynamically allocated heap objects
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Data Structures in Dataflow

. . . . PP

MemoryData structures reside in memory 
and tokens carry pointers
I-structures 
 Write-once, Read multiple times 
allocate  write  read*  deallocate

I-structures are like variables in  
logic languages (Pingali ...)
 See I-vars, and M-vars in Haskell

At the hardware level, I-fetch and 
I-store instructions

No problem if a reader arrives before 
the writer at the memory location

I-fetch

a

I-store

a v
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I-Structure Storage: 
Split-phase operations & Presence bits

I-fetch

t

<s, fp, a >
s

1

2

3

4a
a
a
a

v2
fp.ip

I-structure
Memory

Need to deal with multiple deferred reads; 
Additional operations: take/put, clear



v1

address to 
be read

t

I-fetch
<a, Read, (t,fp)>

s

split 
phase

forwarding 
address
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Dataflow Graphs + I-Structures + . . .

Monsoon Dataflow Machine

Language and Architecture 
to exploit implicit parallelism

Id (Functional language)                 

34



The Monsoon Project
Motorola Cambridge Research Center + MIT (1988-91)

Two     16-node systems  
- MIT, LANL

Sixteen 2-node systems 
- Motorola, Colorado, USC,

Oregon, McGill, ...

Id World Software

Displayed at Super 
Computing 1991
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The Monsoon Project
Motorola Cambridge Research Center + MIT (1988-91)

Two     16-node systems  
- MIT, LANL

Sixteen 2-node systems 
- Motorola, Colorado, USC,

Oregon, McGill, ...

Id World Software

Displayed at Super 
Computing 1991

Tony Dahbura 36



Dataflow people @ MIT
Rishiyur Nikhil, 
Keshav Pingali, 
Vinod Kathail, 
David Culler
Greg Papadopolous
Andy Boughton
Chris Jeorge
Ken Traub
Steve Heller, 
Richard Soley,
Dinart Mores 
Jamey Hicks, 
Alex Caro, 
Andy Shaw, 
Boon Ang
Shail Anditya
R Paul Johnson
Jacj Costenza
Paul Barth
Jan Maessen
Christine Flood
Jonathan Young
Derek Chiou
Arun Iyangar
Zena Ariola
Mike Bekerle

K. Eknadham (IBM)
Wim Bohm (Colorado)
Joe Stoy (Oxford)
...

Steve HellerKen Traub

R.S. Nikhil Keshav Pingali David Culler

Derek ChiouJamey Hicks

Greg Papadopoulos
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Dataflow: An assessment
Dataflow ideas are used extensively in modern 
microprocessors, but the Instructure Set 
Architecture (ISA) remains totally sequential
 Processors use speculation to expose parallelism 

Compilers extract parallelism from sequential 
codes with varying degree of success
Parallel programming remains difficult – most
users have little interest in rewriting their 
programs to exploit parallelism  
 Ethos: It is someone else’s program

Yet, most microprocessors are multicores and 
most systems have many concurrent processes

Move towards domain specific solutions
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Fine-grain vs Coarse-grain 
Dataflow Models

Dataflow models say nothing about the size of 
tokens or the complexity of computing nodes
In practice, the cost of implementing fine-
grain asynchronous parallelism is high, so 
many systems use dataflow ideas at the 
macro-level and exploit fine-grain 
synchronous parallelism within the nodes
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Applications
Dataflow models are used extensively in many 
domains, especially for hardware accelerators:
 Video and Audio codecs (e.g., H.264)
 Network applications (e.g., packet filtering)
 Wireless baseband processing (e.g., OFDM based 

protocols)
 Deep Neural Networks (e.g., DNNs, RNNs)
 Map-Reduce applications
 ...
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H.264 Video Decoder
Chun-Chieh Lin, K Elliott Fleming [MEMOCODE 2008]

May be implemented in hardware 
or software depending upon ...

NAL
unwrap

Parse
+

CAVLC

Inverse 
Quant 

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
om

pr
es

se
d 

B
its

Fr
am

es

Different requirements for different environments
- QVGA 320x240p (30 fps)
- DVD 720x480p
- HD DVD 1280x720p (60-75 fps) 41



Wireless Baseband processing
OFDM TX/RX Blocks,   Man cheuk Ng et al [2007]

MAC

MAC

standard specific

potential reuse

Scrambler FEC
Encoder Interleaver Mapper

Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

A/D
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Wireless Baseband processing
OFDM TX/RX Blocks,   Man cheuk Ng et al [2007]

MAC

MAC

standard specific

potential reuse

Scrambler FEC
Encoder Interleaver Mapper

Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

A/D

 Different algorithms - No Reuse

Convolutional

Reed-Solomon

Turbo
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Wireless Baseband processing
OFDM TX/RX Blocks,   Man cheuk Ng et al [2007]

MAC

MAC

standard specific

potential reuse

Scrambler FEC
Encoder Interleaver Mapper

Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

A/D

 Different algorithms - No Reuse
 Reusable algorithm with different 

parameter settings

WiFi:x7+x4+1

WiMAX:x15+x14+1

WUSB:x15+x14+1
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Wireless Baseband processing
OFDM TX/RX Blocks,   Man cheuk Ng et al [2007]

MAC

MAC
Scrambler FEC

Encoder Interleaver Mapper
Pilot &
Guard

Insertion
IFFT CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater FFT Synchronizer

TX
Controller

RX
Controller S/P

D/A

 Different algorithms - No Reuse

 Different throughput requirements

WiFi: 64pt @ 0.25MHz

WiMAX: 256pt @ 0.03MHz

 Reusable algorithm with different 
parameter settings

WUSB: 128pt 8MHz

We want the same source description but different hardware!
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There is a need to beyond 
dataflow models

Dataflow models, like functional languages, 
obscure resource management issues which 
must be handled efficiently in any practical 
system
Lack of shared state between nodes makes 
certain computations, e.g., graph algorithms, 
difficult to express
Determinacy, though highly desirable in many 
situations, is ultimately quite limiting in 
specifying distributed software and hardware
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Alternative
Serializable atomic actions
 A general model of concurrency for both software 

and hardware
 Can express most other models of concurrency
 A specific model – guarded atomic actions – is also 

amenable to efficient hardware implementation

stay tuned ...
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Extras
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Firing Rules: T-Gate

T T

T T

x

x

x

T

F
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The Switch Operator

T F

X

T T F
X

T F

T F
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Firing Rules: Merge

T          F

x y

T
T          F

y

x

T          F

x

T
T          F

x
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Firing Rules: Merge cont

T          F

y

T
not ready

to fire
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Some Conventions

X1 X2

T F
B

T F

X1 X2

T F T F
B


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Some Conventions Cont.

X1 X2

T F T F
B

X1 X2



X1 X2

T F
B

T F

X1 X2
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Unbounded Cyclic Graphs

Unbounded number 
of tokens on an arc 
can only arise due 

to cycles.

<n

+1

FT     F

f

+

0 1
F

T     FT     F

T     F
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Bounded Cyclic Graphs

<n

+1

FT     F

f

+

0 1
F

T     FT     F

T     F

sync
k-bound

56



Bounded Cyclic Graphs

+ 1

T         F

T         F

F
T         F

T         F

f

+

0 1

Sync

k-bound

< n

F
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Well Behaved Schemas

f

p

T F

T F F

LoopBounded Loop

Needed for 
resource 

management
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New Definition of Well 
Behavedness

1. One token on each input arc produces 
exactly one token on each output arc.

2. The initial distribution of tokens on the arcs 
is restored.

3. No arc can have an unbounded buildup of 
tokens.

Before After

•  •  •

P

•  •  •

•  •  •

P

•  •  •
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Bounded Cyclic Graphs
are Well Behaved

Initial number of tokens at the gate 
input determines the maximum number 
of tokens on any arc.

However, loop bounding can alter the 
"meaning" of a graph, i.e., can cause 
deadlock.

In general, restricting the number of 
tokens on an arc causes deadlock.
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Can this program deadlock if the 
number of tokens per arc is restricted?

+1

T      F

T      F

F
T       F

T       F

+10

0
F

<4
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