N

JLectu re 2

Bluespec System Verilog (BSV):

A language for hardware design

Arvind
Computer Science and Artificial Intelligence Laboratory
M.L.T.

l
Oregon Programming Language Summer School (OPLSS)

Eugene, OR
July 16, 2018

L2-1

What is needed to bring
hardware design to 21st Century

N

L/
N Extremuse “Intellectual Property”

= Multiple instantiations of a block for different
performance and application requirements

s Packaging of IP so that the blocks can be assembled
easily to build a large system (black box model)

@ Ability to do modular refinement

® Whole system simulation to enable concurrent
hardware-software development

L2-2

IP reuse sounds wonderful

until you try It

data_in data_out

push_req_n)

Example: Commercially available Q
FIFO IP block q

An error occurs if a push is attempted while the FIFO is full.

Thus. there 1s no conflict in a simultaneous push and pop when the FIFO is full. A

simultaneous push and pop cannot occur when the FIFO is empty. since there is 110 pop
data to prefetch. However, push data 1s captured 1 the FIFO.

A pop operation occurs wWhen pop_req n is asserted (LOW), as long as the FIFO is not
Smpty. Asserting pop_req_n causes the miermnal read pomter 1o be incremented on the

next rising edge of ¢1k. Thus. the RAM read data must be captured on the c1k following
the assertion of pop_req n.

These constraints are spread over many pages of
the documentation...

L2-3

IP reuse sounds wonderful
until you try it ...

data_in data_out

push_req_n)

Example: Commercially available Q
FIFO IP block q

These constraints are spread over many pages of

the documentation...

Bluespec can change all this

L2-4

EIREEES: A new way of expressing
behavior using Guarded Atomic Actions

® A module, like an object in OO languages, has
a well-defined interface

® However, unlike software OO languages, the
Interface methods are guarded; it can be
applied only if it is “ready”

® The modules are glued together (composed)
using atomic actions, which call the methods

€ An atomic action can execute only if all the
called methods can be executed
simultaneously

An example ...

L2-5

A system that calls the GCD

N

module repeatedly

start

GCD

result

outQ

H%

interface GCD;

endinterface

method Action start (Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;

rule invokeGCD;
let x = tpl 1(inQ.first);
let y = tpl 2(inQ.first);
gcd.start(x,y);
inQ.deq;

endrule

rule getResult;
let x <- gcd.getResult;
outQ.enq(x);
endrule

L2-6

Plan

N

@ Use the GCD example to illustrate
s Guarded interfaces
s Guarded atomic rules
= Hardware generation
s High-performance GCD

but first a tutorial on digital circuits

L2-7

Finite State Machines (FSM)
and Sequential Circuits

N

Boolean Algebra

® FSMs are a mathematical object like the

= A computer (in fact any digital hardware) is an FSM

® Synchronous Sequential Circuits is a method
to implement FSMs In hardware

state

_
»

fﬁjock

input

Combinational
logic

Next
state

_, output

@ Large circuits need to be described as a
collection of cooperating FSMs

L2-8

D Flip-flop with Write Enable

The basic storage element

N
\J

EN
EN |
D — l :ﬁ‘
D —.Q > B D’ .Q
C _’> C :>
t1 t2 t3
EN | D | Qo+
0 X 0 0 C ___ J I
L hold
0 X 1 | EN \ \
1 0 X | 0 Jlcopy bpD_/ \@{ \
1 1 x| 12 [input o

No need to show the

i Data iIs captured only if EN Is on
clock explicitly P Y

L2-9

Registers

N

en 4 44411

Register: A group of flip-flops with a common enable

Register file: A group of registers with a shared set of
Input and output ports

L2-10

N

Clocked Sequential Circuits

® Any sequential circuit can be built using D flip-
flops (with write-enable)

= The state of the flip flop can change only when the
write enable is on

= The change of state can only be seen a clock later

@ In a circuit with a single-clock domain all flip
flops are connected to the same clock
= To avoid clutter, the clock input is not shown

@ Clock inputs are not needed in BSV descriptions
unless we design multi-clock circuits

L2-11

A module In BSV describes a

N

&

&
N4
&

sequential circuit

A module has internal state

The internal state can only be read and manipulated
by the (interface) methods

An action method specifies which state elements are
to be modified

Actions are atomic -- either all the specified state
elements are modified or none of them are modified
(no partially modified state is visible)

Let us design a GCD module

L2-12

'GCD algorithm

Euclid’s algorithm for computing the Greatest
Common Divisor (GCD):

15 6
9 6 subtract
3 6 subtract
6 3 swap
3 3 subtract
0

@ subtract
answer
def gcd(a, b):

If a == 0: return b # stop
elif a >= b: return gcd(a-b,b) # subtract
else: return gcd (b,a) # swap

L2-13

GCD

‘module mkGCD (GCD);
Reg#(Bit#(32)) x <- mkReg(@); Reg#(Bit#(32)) y <- mkReg(9);
Reg#(Bool) busy flag <- mkReg(False);

N

rule gcd;

method Action start(Bit#(32) a, Bit#(32) b)if (!busy flag);
X-<=-a3--yY-<=-b;-busy-flag <=-True;
endmethod

method ActionValue#(Bit#(32)) getResult

start should be called only

endmodule if the module is not busy

Assume b /=0 1214

GCD

‘module mkGCD (GCD);
Reg#(Bit#(32)) x <- mkReg(@); Reg#(Bit#(32)) y <- mkReg(9);
Reg#(Bool) busy flag <- mkReg(False);

N

rule gcd;

method Action start(Bit#(32) a, Bit#(32) b)if (!busy flag);
X-<=-a3--yY-<=-b;-busy-flag <=-True;
endmethod

method ActionValue#(Bit#(32)) getResultif (busy flag && (x==0));
busy flag <= False; return y;

endmethod
endmodule
getResult can be called only
Assume b /=0 when the result is ready is true -,

GCD

‘module mkGCD (GCD);
Reg#(Bit#(32)) x <- mkReg(@); Reg#(Bit#(32)) y <- mkReg(9);
Reg#(Bool) busy flag <- mkReg(False);

. —— untilx becomes 0
rule gcd;

if (x >= y) begin x <= x - y; end //subtract
else if (x != @) begin x <= y; y <= x; end //swap
endrule

N

method Action start(Bit#(32) a, Bit#(32) b)if (!busy flag);
X-<&=-ay--Y-<=-b;-busy-flag -<=-True;
endmethod

gcd will execute repeatedly

method ActionValue#(Bit#(32)) getResultif (busy flag && (x==0));

busy_flag <= False; return y;
endmethod
endmodule

Assume b /=0

L2-16

Rule

N

A module may contain rules

rule gcd;

if-(x->=-y)-begin x <=-x--y;-end-//subtract

else if (x != 0) begin x <= y; y <= x; end //swap
endrule

@ A rule is a collection of actions, which invoke
methods

@ All actions in a rule execute in parallel 1

- . AW
@ A rule can execute any time and when it (('\o\
executes all of its actions must execute

L2-17

Guarded interfaces

N

fullness,

® Guarded Interface:

J@ User convenience: Include some checks (readyness,
...) In the method definition itself to avoid having
to test the applicability of the method from outside

n ——
Every method has a guard (rdy wire) - o
The value returned by a method is not fu"%f
meaningful only if its guard is true _y,g

. . n

Every action method has an enable signal o empty<red_§ FIFO
(en wire) and it can be invoked (en can }f =]
be set to true) only if its guard is true not emptng

interface Fifo#(numeric type size, type t);
method Action enqg(t x);
method Action deq;
method t first;

endinterface

notice, en and
rdy wires are
implicit

L2-18

Rules with guards

N

@ Like a method, a rule can have an explicit and
iImplicit guard (true guards can be omitted)

endrule

rule foo if?ﬁﬁl;P
begin x1 <= ei}xgz\ii e2 end

explicit guard

@ A rule can execute only if all of it’s explicit and

Implicit guards are true, i.e., If any guard is false

the rule has no effect

L2-19

N

Streaming the

S%&lrt

GCD

INQ

rule invokeGCD;
let x = tpl 1(inQ.first);
let y = tpl _2(inQ.first);
gcd.start(x,y);
inQ.deq;
endrule

rule getResult;

let X <- gcd.getResult;
outQ.enq(x);
endrule

explicit guard?
implicit guards?

\

Action value method

L2-20

Latency-Insensitive
Interface

N

@ Notice, GCD interface is latency-insensitive;
no assertion can be made about how many
cycles later the result would be ready

@ The interface also does not tell us if GCD is
pipelined or not
s Our implementation is not pipelined

@® The interface also does not tell us if the results

come out In-order

s If the results can come out of order, the user should
tag the inputs and outputs

@ This latency-insensitivity allows us to refine
the GCD module as we see fit.

L2-21

GCD with twice

the

N

en

turnl

en

start

Y

en

throughput

«— en

X

— o8| gcdl |F
(2]]

(D)

(@)}

X

M 8| gcd2 | &
(2]]

(D)

(@)}

«— en

<

getResult

+«— €n

turnO

® We can build a GCD module with the same interface but
with twice the throughput by putting two gcd modules in

parallel

@ A variable turnl can be used by start to direct the input

to the gcd whose turn it is. Then flip it

€ Similalry getResult can use turnO to pull the result from
the appropriate gcd

L2-22

High throughput GCD code

N

“module mkMultiGCD (GCD);
GCD gcdl <- mkGCD();
GCD gcd2 <- mkGCD();
Reg#(Bool) turnl <- mkReg(False);
Reg#(Bool) turnO <- mkReg(False);

method Action start(Bit#(32) a, Bit#(32) b);
if (turnl) gcdl.start(a,b); else gcd2.start(a,b);
turnI <= lturnI;

endmethod

method ActionValue (Bit#(32)) getResult;
Bit#(32) y;
if (turnO) y <- gcdl.getResult
else y <- gcd2.getResult;
turnO0 <= !turnO
return y;

endmethod

endmodule

L2-23

Switch using FIFOs with

guarded Interfaces

N

redQ

INQ \//',
-)
.

greenQ

rule switch;
if (inQ.first.color == Red) begin

redQ.enq(inQ.first.value); inQ.deq;
end else begin // color is Green
greenQ.enq(inQ.first.value); inQ.deq;
end
endrule

What is the
implicit guard?

L2-24

Switch using FIFOs with

guarded Interfaces

g
\
IN
Q —» | |redQ
— - greenQ
rule switch;
if (inQ.first.color == Red) begin :
redQ.enq(inQ.first.value); inQ.deq; thT_'S the
end else begin // color is Green implicit guard?
greenQ.enq(inQ.first.value); inQ.deq;
end
endrule

inQ.notEmpty ?
((inQ.first.color == Red) ?
redQ.notFull : greenQ.notFull)

convenient!
L2-25

Mutually Exclusive rules

N

InQ : redQ

greenQ

Switch can be split into two mutually exclusive rules

rule switchRed if (inQ.first.color == Red);
redQ.enq(inQ.first.value); inQ.deq;
endrule;

rule switchGreen if (inQ.first.color == Green);
greenQ.enq(inQ.first.value); inQ.deq;
endrule;

Only one of the rules can be active in a given state

L2-26

' Hardware Synthesis
from BSV

N

L2-27

Synchronous Seqguential
Machines

g
\J
v L 2 _' v L V‘
reg wegl|| s reg —ireg
L ¥
—)))
Input—— Combinational logic
. (no cycles, no clock)
=
Output

I Y =

L2-28

BSV to Seguential Circuits

N

L/
® Each Register and its width is — [=
declared explicitly *I:E LE | Ll

@ All registers are driven by a ‘ y Y
common clock which is implicit;
your program has no control
over it

A\ A 4

Combinational logic

AA

® Combinational logic is derived from the rules and methods
you write

@ Your program defines the input value and the enable for
each register

@ Each rule, action method, and action value method
generates an enable signal for each register it sets directly
or indirectly

L2-29

One-Element FIFO
Implementation with guards

p
\J
module mkFifo (Fifo#(1, t)); .
Reg#(t) d <- mkRegU; 1D
Reg#(Bool) v <- mkReg(False); not full rdy_f
method Action enq(t x) if (!lv); —en "B FIFO
v <= True; d <= Xx; notempYy <y 12
endmethod nMemmy<—J9—g
method Action deq if (v); rdy
v <= False;
endmethod
method t first if (v); interface Fifo#(numeric type size,
return d; type t);
endmethod method Action enq(t x);
endmodule method Action deq;
method t first;
endinterface

L2-30

FIFO Circuit

module mkFifo (Fifo#(1, t));
Reg#(t) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);
method Action enq(t x) if (lv);
v <= True; d <= X;

endmethod

method Action deq if (v);
v <= False;

endmethod

method t first if (v);
return d;

endmethod

endmodule

{l

L2-31

FIFO Circuit

module mkFifo (Fifo#(1, t));
Reg#(t) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);
method Action enq(t x) if (lv);
v <= True; d <= X;

endmethod

method Action deq if (v);
v <= False;

endmethod

method t first if (v);
return d;

endmethod

endmodule

eng.en v.data
deq.enC v.en

{l

eng.en | [: I_\ \
|/

deg.en

L2-32

Redrawing the FIFO Circuit

N

enqg.data | d first.data

eng.en

True v eng.rdy
False [>

deg.en deq.rdy

T\ first.rdy
— L/

A module is a sequential circuit with input and output wires
corresponding to its interface methods

L2-33

lllegal inputs

Next state transition

Partial Truth Table

/\

)

inputs

state

next
state

outputs

enq eng. | deq. | dt eng. | deq. | first. |rst
data | en rdy rdy rdy |data

I - i O e O

=

R O X X X

©O O O O O

=

X X BB B O

P O BN O Iy - e -

k, O L LB O

P P R O R

SO r r O L O

© O +r O P

0]
1
0]
1
0]
0]

0]
0]

(?)

1(?)

1
?

?

L2-34

Constraints on the use of
methods of a FIFO

N

® The BSV compiler makes sure that the eng.en
IS not set to True unless eng.rdy is True

@ Similarly, for deg.en and deq.rdy

@ Your code is such that eng.rdy and deq.rdy
also cannot be True simultaneously. Thus, the

Input for the v register is always well defined

more on this topic in the next lecture

L2-35

Streaming a function: Circuit

N

outQ

rule stream;
outQ.enq(f(inQ.first));
inQ.deq;

endrule

This is a sequential machine too! =

Notice that eng.en cannot be True unless enq.rdy is true

L2-36

Module as a sequential

circult

N

interface GCD; =
method Action start =t o D
(Bit#(32)-a;-Bit#(32)-b); en — g %“—en
method ActionValue# 2
(Bit#(32)) getResult;

endinterface

In general:

» A read method has no enable input wire
= An Action method has no output data wires

= An ActionValue method has both ready and enable
wires as well as both input and output data wires

We can determine all the input and output wires of
a module from its interface definition

L2-37

Register as a primitive
module

N

@® A register is a primitive module in BSV and its
Implementation is defined outside the language

interface Reg#(type t);
method Action write(t x);
method t read;

endinterface

write
read

en ——»

@ Special syntax: we write

m X <= e Instead of x. write(e)

m X Instead on x. _read In expressions
® The guards of write and _read are always true

s The guard wires are not generated for registers

Reg

L2-38

Hierarchical sequential circuits

sequential circuits containing modules

L

N

) 4 ¥ \ 4 ¥ \ 4

Module 1 Module 2 Module n

Jw Jw VY \A 4 \ 4 \A 4

ﬁ - - -
nput——— Combinational logic
. (no cycles, no clock)
e
Output

= i

Each module
represents
a sequential
machine

Register inputs and outputs are replaced by method

Inputs and outputs

L2-39

N

Rules and methods only
define combinational logic

module mkEx1l (...);
Reg#(t) x <- mkRegU;
method Action f(t a);
X <= e;
endmethod endmodule

module mkEx2 (...);
Reg#(t) x <- mkRegU;
method Action f(t a);
if (b) x <= e;
endmethod endmodule

module mkEx3 (...);
Reg#(t) x <- mkRegU;
method Action f(t a);
if (b) x <= el;
else x <= e2;
endmethod
endmodule

a _j.@__.x.data —{ X
f.en L X.en
1t
a f@__,x.data
pita
f.en i_)f_,x.en
.F
° :@ja__. X.data
f.en - » X. €N

L2-40

Streaming the GCD module

N

GCD

start

getResult

L/
— e
— —eeeep
en en

INQ outQ

rule invokeGCD;
let x = tpl 1(inQ.first);

let y = tpl_2(inQ.first); Draw a hardware
gcd.start(x,y); circuit for these rules
inQ.deq;
endrule

rule getResult;
let x <- gcd.getResult;
outQ.enqg(x);

endrule

L2-41

High-level Synthesis from
Bluespec

N

3 L Bluespec SystemVerilog source J

Bluespec Compiler

Verilog 95 RTL|

\ 4

cyee T Verilog sim |RTL synthesis

Accurate

[VCD output]\

Bluesim

Place &

Route
v

Debussy Power

.) . estimation FPGA
Visualization

tool

-00-0K3J7

Tapeout

L2-42

High-level Synthesis from
Bluespec

N

% J First simulate

L Bluespec SystemVgrilo§ source

Third synthesize an
ASIC

[Verilo

\ 4

= cvele = Veri\og sim |RTL s¥nthesis

Accurate

[VCD output]\ gite

Second run on FPGASs

Debussy Power Place & /'y,

: : i estimation Route 4 X PGA
Visualization tool v :
Ta ut =

L2-43

Takeaway

] n —
% data_in data_out +>c7
—
push_req_n full ! en |g
empty not fu W:
PeP_TEat ~en | FIFO
<+«—F0O
Clk not empty rd?_]/ :
rstn 2
not emptywq:

® What makes the FIFO in BSV more useful is its
precise interface definition and properties

€ Modular refinement requires latency-insensitive
designs, which are naturally supported by
s Guarded interfaces

s Guarded atomic actions, which provide the glue to
connect modules, and which support synchrony of actions
across modules

next lecture - parallel execution of rules and BSV semantics
L2-44

NI

Extras

I

L2-45

N
\J

FIFO Interface without guards

interface Fifo#(numeric type size, type t);
method Bool notFull; Type variable
method Bool notEmpty;
method Action enq(t X);

method Actio en ’g
method t first; O
endinterface €n =

© Q

~notFull S| 2 3

hould be called only if = &2
- eng should be called only i notEmptvi>
notFull returns True; : B y*é'
- deq and first should be called _ S
only if notEmpty returns True —lrst_15

L2-46

Streaming GCD
(without guards)

N

start
result

FJE&5 -]
™ el

inQ outQ
rule invokeGCD;
if(inQ.notEmpty && !gcd.busy)
begin let x = tpl 1(inQ.first);
let y = tpl 2(inQ.first);
gcd.start(x,y); inQ.deq;

busy
ready

end
endrule

rule getResult;

if(outQ.notFull ady)
begin let |x <- gcd.result; »utQ.enq(x); end
endrule ction value method

L2-47

Guards vs Ifs

N

L/
method Action enq(t x) if (!v); guard is !'v; eng can
v <= True; d <= x; be applied only if v
endmethod Is false
Versus
method Action enq(t x); guard is True, i.e.,
if (lv) begin v <= True; d <= x; end | the method is
endmethod always applicable.
If v is true
then x would
get lost;
bad

L2-48

