
Algebraic effects and handlers
(OPLSS 2018 lecture notes)

Andrej Bauer
University of Ljubljana

July 2018

These are the notes and materials for the lectures on algebraic effects and handlers at the Oregon pro-
gramming languages summer school 2018 (OPLSS). The notes were originally written in Markdown and
converted to LATEX semi-automatically, please excuse strange formatting. You can find all the resources at
the accomanying GitHub repository.

The lectures were recorded on video that are available at the summer school web site.

General resources & reading material

• Effects bibliography

• Effects Rosetta Stone

• Programming language Eff

1 What is algebraic about algebraic effects and handlers?

The purpose of the first two lectures is to review algebraic theories and related concepts, and connect them
with computational effects. We shall start on the mathematical side of things and gradually derive from it
a programming language.

Outline

Pretty much everything that will be said in the first two lectures is written up in “What is algebraic about
algebraic effects and handlers?”, which still a bit rough around the edges, so if you see a typo please let me
know.

Contents of the first two lectures:

• signatures, terms, and algebraic theories

• models of an algebraic theory

• free models of an algebraic theory

• generalization to parameterized operations with arbitrary arities

• sequencing and generic operations

• handlers

• comodels and tensoring of comodels and models

1

https://www.cs.uoregon.edu/research/summerschool/summer18/index.php
https://www.cs.uoregon.edu/research/summerschool/summer18/index.php
https://github.com/OPLSS/introduction-to-algebraic-effects-and-handlers
https://github.com/yallop/effects-bibliography
https://github.com/effect-handlers/effects-rosetta-stone
http://www.eff-lang.org
https://arxiv.org/abs/1807.05923
https://arxiv.org/abs/1807.05923
https://github.com/andrejbauer/what-is-algebraic-about-algebraic-effects
https://github.com/andrejbauer/what-is-algebraic-about-algebraic-effects

1.1 Problems

Each section contains a list of problems, which are ordered roughly in the order of difficulty, either in terms
of trickiness, the amount of work, or prerequisites. I recommend that you discuss the problems in groups,
and pick whichever problems you find interesting.

Problem 1.1 (The theory of an associative unital operation). Consider the theory T of an associative opera-
tion with a unit. It has a constant ε and a binary operation · satisfying equations

(x · y) · z = x · (y · z)
ε · x = x

x · ε = x

Give a useful description of the free model of T generated by a set X . You can either guess an explicit
construction of free models and show that it has the required universal property, or you can analyze the
free model construction (equivalence classes of well-founded trees) and provide a simple description of it.

Problem 1.2 (The theory of apocalypse). We formulate an algebraic theory Time in it is possible to explicitly
record passage of time. The theory has a single unary operation tick and no equations. Each application of
tick records the passage of one time step.
Task: Give a useful description of the free model of the theory, generated by a set X .
Task: Let a given fixed natural number n be given. Describe a theory Apocalypse which extends the theory
Time so that a computation crashes (aborts, necessarily terminates) if it performs more than n of ticks. Give
a useful description of its free models.

Advice: do not concern yourself with any sort of operational semantics which somehow “aborts” after
n ticks. Instead, use equations and postulate that certain computations are equal to an aborted one.

Problem 1.3 (The theory of partial maps). The models of the empty theory are precisely sets and functions.
Is there a theory whose models form (a category equivalent to) the category of sets and partial functions?

Recall that a partial function f : A ↪→ B is an ordinary function f : S → B defined on a subset S ⊆ A.
(How do we define composition of partial functions?)

Problem 1.4 (Models in the category of models). In Example 1.27 of the reading material it is calculated
that a model of the theory Group in the category Mod(Group) is an abelian group. We may generalize this
idea and ask about models of theory T1 in the category of models Mod(T2) of theory T2.

The tensor product T1 ⊗ T2 of algebraic theories T1 and T2 is a theory such that the category of models
of T1 in the category Mod(T2) is equivalent to the category of models of T1 ⊗ T2.

Hint: start by outlining what data is needed to have a T1-model in Mod(T2) is, and pay attention to
the fact that the operations of T1 must be interpreted as T2-homomorphisms. That will tell you what the
ingredients of T1 ⊗ T2 should be.

1.1.1 Problem: Morita equivalence

It may happen that two theories T1 and T2 have equivalent categories of models, i.e.,

Mod(T1) ' Mod(T2)

In such a case we say that T1 and T2 are Morita equivalent.
Let T be an algebraic theory and t a term in context x1, . . . , xi. Define a definitional extension T+(op:=t)

to be the theory T extended with an additional operation op and equation

x1, . . . , xi | op(x1, . . . , xi) = t

We say that op is a defined operation.
Task: Confirm the intuitive feeling that T +(op:=t) by proving that T and T +(op:=t) are Morita equivalent.
Task: Formulate the idea of a definitional extension so that we allow an arbitrary set of defined operations,
and show that we still have Morita equivalence.

2

https://arxiv.org/abs/1807.05923

Problem 1.5 (The theory of a given set). Given any set A, define the theory T (A) of the set A as follows:

• for every n and every map f : An → A, op(f) is an n-ary operation

• for all f : Ai → A, g : Aj → A and h1, . . . , hi : A
j → A, if

f ◦ (h1, . . . , hi) = g

then we have an equation

x1, . . . , xj | op(f)(op(h1)(x1, . . . , xj), . . . , hi(x1, . . . , xj)) = g(x1, . . . , xj)

Task: Is T ({0, 1}) Morita equivalent to another, well-known algebraic theory?

Problem 1.6 (A comodel for non-determinism). In Example 4.6 of the reading material it is shown that there
is no comodel of non-determinism in the category of sets. Can you suggest a category in which we get a
reasonable comodel of non-determinism?

Problem 1.7 (Formalization of algebraic theories). If you prefer avoiding doing Real Math, you can formal-
ize algebraic theories and their comodels in your favorite proof assistant. A possible starting point is this
gist, and a good goal is the construction of the free model of a theory generated by a set (or a type).

Because the free model requires quotienting, you should think ahead on how you are going to do that.
Some possibilities are:

• use homotopy type theory and make sure that the types involved are h-Sets

• use setoids

• suggest your own solution

It may be wiser to first show as a warm-up exercise that theories without equations have initial models, as
that only requires the construction of well-founded trees (which are inductive types).

2 Designing a programming language

Having worked out algebraic theories in previous lectures, let us turn the equational theories into a small
programming language.

What we have to do:

1. Change mathematical terminology to one that is familiar to programmers.

2. Reuse existing concepts (generators, operations, trees) to set up the overall structure of the language.

3. Add missing features, such as primitive types and recursion, and generally rearrange things a bit to
make everything look nicer.

4. Provide operational semantics.

5. Provide typing rules.

2.1 Reading material

There are many possible ways and choices of designing a programming language around algebraic op-
erations and handlers, but we shall mostly rely on Matija Pretnar’s tutorial An Introduction to Algebraic
Effects and Handlers. Invited tutorial paper. A more advanced treatment is available in An effect system
for algebraic effects and handlers.

3

https://arxiv.org/abs/1807.05923
https://gist.github.com/andrejbauer/3cc438ab38646516e5e9278fdb22022c
https://gist.github.com/andrejbauer/3cc438ab38646516e5e9278fdb22022c
http://www.eff-lang.org/handlers-tutorial.pdf
http://www.eff-lang.org/handlers-tutorial.pdf
https://arxiv.org/abs/1306.6316
https://arxiv.org/abs/1306.6316

2.2 Change of terminology

• The elements of FreeΣ(V) are are computations (instead of trees).

• The elements of V are values (instead of generators).

• We speak of value types (instead of sets of generators).

• We speak of computation type (instead of free models).

Henceforth we ignore equations.

2.3 Abstract syntax

We add only one primitive type, namely bool. Other constructs (integers, products, sums) are left as exer-
cises.
Value:

1 v ::= x (variable)
2 | false (boolean constants)
3 | true
4 | h (handler)
5 | λ x . c (function)

Handler:

1 h ::= handler { return x 7→ c_ret, ... opi(x, κ) 7→ ci, ... }

Computation:

1 c ::= return v (pure computation)
2 | if v then c1 else c2 (conditional)
3 | v1 v2 (application)
4 | with v handle c (handling)
5 | do x ← c1 in c2 (sequencing)
6 | op (v, λ x . c) (operation call)
7 | fix x . c (fixed point)

We introduce generic operations as syntactic abbreviation and let op v stand for op(v, λx.return x).

2.4 Operational semantics

We provide small-step semantics, but big step semantics can also be given (see reading material). In the
rules below h stands for

1 handler { return x 7→ c_ret, ... opi(x,y) 7→ ci, ... }

We write e1[e2/x] for e1 with e2 substituted for x. The operational rules are:

1 ________________________________
2 (if true then c1 else c2) 7→ c1

3

4 _________________________________
5 (if false then c1 else c2) 7→ c2

6

7 ______________________
8 (λ x . c) v 7→ c[v/x]
9

10 _____________________________________
11 with h handle return v 7→ c_ret[v/x]
12

13 ___
14 with h handle opi(v,κ) 7→ ci[v/x, (λ x . with h handle κ x)/y]

4

15

16 _________________________________
17 do x ← return v in c2 7→ c2[v/x]
18

19 ___
20 do x ← op(v, κ) in c2 7→ op(v, λ y . do x ← κ y in c2)
21

22 ______________________________
23 fix x . c 7→ c[(fix x . c)/x]

2.5 Effect system

2.5.1 Value and computation types

Value type:

1 A, B := bool | A → C | C ⇒ D

Computation type:

1 C, D := A!∆

Dirt:

1 ∆ ::= {op1, . . ., opj}

The idea is that a computation which returns values of type A and may perform operations op1, . . ., opj

has the computation type A!{op1, . . ., opj}.

2.5.2 Signature

We presume that some way of declaring operations is given, i.e., that we have a signature Σ which lists
operations with their parameters and arities:

1 Σ = { . . ., opi : Ai Bi, . . . }

Note that the the parameter and the arity types Ai and Bi are both value types.

2.5.3 Typing rules

A typing context assigns value types to free variables:

1 Γ ::= x1:A1, . . ., xi:Ai

We think of Γ as a map which takes variables to their types.
There are two forms of typing judgement:

1. Γ ` v : A – value v has value type A in context Γ

2. Γ ` c : C – computation c has computation type C in context Γ

Rules for value typing:

1 Γ(x) = A
2 _________
3 Γ ` x : A
4

5 ________________
6 Γ ` false : bool
7

8 ________________
9 Γ ` true : bool

10

5

11 Γ, x : A ` c_ret : B!Θ
12 Γ, x : Pi, κ : Ai → B!Θ ` ci : B!Θ (for each opi : Pi Ai in ∆)
13 ___
14 Γ ` (handler { return x 7→ c_ret, ... opi(x) κ 7→ ci, ... }) : A!∆⇒ B!Θ
15

16 Γ, x:A ` c : C
17 _____________________
18 Γ ` (λ x . c) : A → C

Rules for computation typing:

1 Γ ` v : A
2 __________________
3 Γ ` return v : A!∆
4

5 Γ ` v : bool Γ ` c1 : C Γ ` c2 : C
6 __
7 Γ ` (if v then c1 else c2) : C
8

9 Γ ` v1 : A → C Γ ` v2 : A
10 ____________________________
11 Γ ` v1 v2 : C
12

13 Γ ` v : C ⇒ D Γ ` c : C
14 ___________________________
15 Γ ` (with v handle c) : D
16

17 Γ ` c1 : A!∆ Γ, x:A ` c2 : B!∆
18 _________________________________
19 Γ ` (do x ← c1 in c2) : B!∆
20

21 Γ ` v : Ai opi ∈ ∆ opi : Ai Bi

22 ___________________________________
23 Γ ` op v : Bi!∆
24

25 Γ, x:A ` c : A!∆
26 _____________________
27 Γ ` (fix x . c) : A!∆

2.6 Safety theorem

If ` c : A!∆ then:

1. c = return v for some ` v : A or

2. c = op(v, κ) for some op ∈∆ and some value v and continuation κ, or

3. c 7→c’ for some ` c’ : A!∆.

For a mechanised proof see An effect system for algebraic effects and handlers.

2.7 Other considerations

The effect system suffers from the so-called poisoning, which can be resolved if we introduce effect subtyp-
ing. Recursion requires that we use domain-theoretic denotational semantics. Such a semantics turns out
to be adequate (but not fully abstract for the same reasons that domain theory is not fully abstract for PCF).
See An effect system for algebraic effects and handlers where the above points are treated carefully.

6

https://arxiv.org/abs/1306.6316
https://arxiv.org/abs/1306.6316

2.7.1 Problems

Problem 2.1 (Products). Add simple products A ×B to the core language:

1. Extend the syntax of values with pairs.

2. Extend the syntax of computations with an elimination of pairs, e.g., do (x,y) ←c1in c2.

3. Extend the operational semantics.

4. Extend the typing rules.

Problem 2.2 (Sums). Add simple sums A + B to the core language:

1. Extend the syntax of values with injections.

2. Extend the syntax of computations with an elimination of sums (a suitable match statement).

3. Extend the operational semantics.

4. Extend the typing rules.

Add the empty and unit types to the core language. Follow the same steps as in the previous exercises.

Problem 2.4 (Non-terminating program). Define a program which prints infinitely many booleans. You
may assume that the print : bool →unit operation is handled appropriately by the runtime environ-
ment. For extra credit, make it "funny".

Problem 2.5 (Implementation). Implement the core language from Matija Pretnar’s tutorial. To make it
interesting, augment it with recursive function definitions, integers, and product types. Consider imple-
menting the language as part of the Programming Languages Zoo.

3 Programming with algebraic effects and handlers

In the last lecture we shall explore how algebraic operations and handlers can be used in programming.

3.1 Eff

There are several languages that support algebraic effects and handlers. The ones most faithful to the
theory of algebraic effects are Eff and the multicore OCaml. They have very similar syntax, and we could
use either, but let us use Eff, just because it was the first language with algebraic effects and handlers.

You can run Eff in your browser or install it locally. The page also has a quick overview of the syntax of
Eff, which mimics the syntax of OCaml.

3.2 Reading material

We shall draw on examples from An introduction to algebraic effects and handlers and Programming with
algebraic effects and handlers. Some examples can be seen also at the Effects Roset Stone.

Other examples, such as I/O and redirection can be seen at the try Eff page.

3.3 Basic examples

Exceptions

7

http://www.eff-lang.org/handlers-tutorial.pdf
http://plzoo.andrej.com
http://www.eff-lang.org
https://github.com/ocamllabs/ocaml-multicore
http://www.eff-lang.org/try/
https://github.com/matijapretnar/eff/#installation--usage
http://www.eff-lang.org/handlers-tutorial.pdf
https://arxiv.org/abs/1203.1539
https://arxiv.org/abs/1203.1539
https://github.com/effect-handlers/effects-rosetta-stone
http://www.eff-lang.org/try/

1 effect Abort : unit -> empty
2

3 let example b =
4 handle
5 let x = 7 in
6 let y = 8 in
7 if b then
8 (match perform (Abort ()) with)
9 else

10 x + y
11 with
12 | v -> v + 20
13 | effect (Abort ()) _ -> 42

State

1 (** State *)
2

3 effect Get : unit -> int
4 effect Set : int -> unit
5

6 (* The standard state handler. *)
7 let state’ = handler
8 | v -> (fun _ -> v)
9 | effect (Get ()) k -> (fun s -> (k s) s)

10 | effect (Set s’) k -> (fun _ -> (k ()) s’)
11 ;;
12

13 let example1 () =
14 let f =
15 (with state’ handle
16 let x = perform (Get ()) in
17 perform (Set (2 * x)) ;
18 perform (Get ()) + 10)
19 in
20 f 30
21 ;;
22

23 (* Better state handler, using finally clause *)
24 let state initial = handler
25 | y -> (fun _ -> y)
26 | effect Get k -> (fun s -> k s s)
27 | effect (Set s’) k -> (fun _ -> k () s’)
28 | finally f -> f initial
29 ;;
30

31 let example2 () =
32 with state 30 handle
33 let x = perform (Get ()) in
34 perform (Set (2 * x)) ;
35 perform Get + 10

3.4 Multi-shot handlers

A handler has access to the continuation, and it may do with it whatever it likes. We may distinguish
handlers according to how many times the continuation is invoked:

• an exception-like handler does not invoke the continuation

• a single-shot handler invokes the continuation exactly once

8

• a multi-shot handler invokes the continuation more than once

Of course, combinations of these are possible, and there are handlers where it’s difficult to “count” the
number of invocations of the continuation, such as multi-threading below.

An exception-like handler is, well, like an exception handler.
A single-shot handler appears to the programmer as a form of dynamic-dispatch callbacks: performing

the operation is like calling the callback, where the callback is determined dynamically by the enclosing
handlers.

The most interesting (and confusing!) are multi-shot handlers. Let us have a look at one such handler.

3.4.1 Ambivalent choice

Ambivalent choice is a computational effect which works as follows. There is an exception Fail : unit →
empty which signifies failure to compute successfully, and an operation Select : α list → α, which returns
one of the elements of the list. It has to do return an element such that the subsequent computation does
not fail (if possible).

With ambivalent choice, we may solve the n-queens problem (of placing n queens on an n × n chess
board so they do not attack each other):

1 (* The queens problem using ambivalent choice. *)
2

3 type queen = int * int
4

5 effect Select : int list -> int
6 effect Fail : unit -> empty
7

8 (* Do the given queens attack each other? *)
9 let no_attack (x,y) (x’,y’) =

10 x <> x’ && y <> y’ && abs (x - x’) <> abs (y - y’)
11 ;;
12

13 (* Given that queens qs are already placed, return the list of
14 rows in column x which are not attacked yet. *)
15 let available x qs =
16 filter (fun y -> forall (no_attack (x,y)) qs) [1;2;3;4;5;6;7;8]
17 ;;
18

19 (* Solve the queens problem by guessing what to do *)
20 let queens () =
21 let rec place x qs =
22 if x = 9 then
23 qs
24 else
25 let y = perform (Select (available x qs)) in
26 place (x+1) ((x,y) :: qs)
27 in
28 place 1 []
29

30 (* A handler for ambivalent choice which uses depth-first search *)
31 let dfs = handler
32 | v -> v
33 | effect (Select lst) k ->
34 let rec tryem = function
35 | [] -> (match perform (Fail ()) with)
36 | x::xs -> (handle k x with effect (Fail ()) _ -> tryem xs)
37 in
38 tryem lst
39 ;;

9

40

41 (* A handler for ambivalent choice which uses depth-first search *)
42 let dfs_all = handler
43 | v -> [v]
44 | effect (Select lst) k ->
45 let rec tryem = function
46 | [] -> []
47 | x::xs -> (handle k x with
48 | lst -> lst @ (tryem xs)
49 | effect (Fail ()) _ -> tryem xs)
50 in
51 tryem lst
52 ;;
53

54 (* And we can solve the problem: *)
55 let solution =
56 with dfs handle queens ()
57 ;;
58

59 let all_solutions =
60 with dfs_all handle queens ()

3.5 Cooperative multi-threading

Operations and handlers have explicit access to continuations. A handler need not invoke a continue, it
may instead store it somewhere and run another (previously stored) continuation. This way we get threads.

1 (* This example is described in Section 6.10 of "Programming with Algebraic Effects and
2 Handlers" by A. Bauer and M. Pretnar. *)
3

4 type thread = unit -> unit
5

6 effect Yield : unit -> unit
7 effect Spawn : thread -> unit
8

9 (* We will need a queue to keep track of inactive threads.
10 We implement the queue as state. *)
11

12 effect Dequeue : unit -> thread option
13 effect Enqueue : thread -> unit
14

15 (* The queue handler *)
16 let queue initial = handler
17 | effect (Dequeue ()) k ->
18 (fun queue -> match queue with
19 | [] -> k None []
20 | hd::tl -> k (Some hd) tl)
21 | effect (Enqueue y) k -> (fun queue -> k () (queue @ [y]))
22 | x -> (fun _ -> x)
23 | finally x -> x initial
24 ;;
25

26 (* Round-robin thread scheduler. It is an example of a recursively defined handler. *)
27 let round_robin =
28 let dequeue_thread () =
29 match perform (Dequeue ()) with
30 | None -> ()
31 | Some t -> t ()

10

32 in
33 let rec h () = handler
34 | effect Yield k -> perform (Enqueue k) ; dequeue_thread ()
35 | effect (Spawn t) k -> perform (Enqueue k) ; with h () handle t ()
36 | () -> dequeue_thread ()
37 in
38 h ()
39 ;;
40

41 (* An example of nested multithreading. We have a thread which prints
42 the letter a and another one which has two sub-threads printing x and y. *)
43

44 let print_list lst =
45 iter (fun x -> perform (Print x) ; perform Yield) lst
46 ;;
47

48 with queue [] handle
49 with round_robin handle
50 perform (Spawn (fun _ -> print_list ["a"; "b"; "c"; "d"; "e"])) ;
51 perform (Spawn (fun _ -> print_list ["A"; "B"; "C"; "D"; "E"]))
52 ;;
53

54

55 (* We can run an unbounded amount of threads. The following example enumerates all
56 reduced positive fractions less than 1 by spawning a thread for each denominator
57 between d and e. *)
58

59 let rec fractions d e =
60 let rec find_fractions n =
61 (* If the fraction is reduced, print it and yield *)
62 if gcd n d = 1 then
63 perform (Print (to_string n ^ "/" ^ to_string d ^ ", ")); perform Yield
64 else ();
65 if d > n then
66 find_fractions (n+1)
67 else ()
68 in
69 (* Spawn a thread for the next denominator *)
70 (if d < e then
71 perform (Spawn (fun _ -> perform Yield; fractions (d + 1) e)) else ()) ;
72 (* List all the fractions with the current denominator *)
73 find_fractions 1
74 ;;
75

76 with queue [] handle
77 with round_robin handle
78 fractions 1 100
79 ;;

3.6 Tree representation of a functional

Suppose we have a functional
h : (int→ bool)→ bool

When we apply it to a function f : int→ bool, we feel that h f will proceed as follows: h will ask f about
the value f x0 for some integer x0. Depending on the result it gets, it will then ask some furter question
f x1, and so on, until it provides an answer a.

We may therefore represent such a functional h as a tree:

11

• the leaves are the answers

• a node is labeled by a question, which has two subtrees representing the two possible continuations
(depending on the answer)

We may encode this as the datatype:

type tree =
| Answer of bool
| Question of int * tree * tree

Given such a tree, we can recreate the functional h:

let rec tree2fun t f =
match t with
| Answer y -> y
| Question (x, t1, t2) -> tree2fun (if f x then t1 else t2) f

Can we go backwards? Given h, how do we get the tree? It turns out this is not possible in a purely
functional setting in general (but is possible for out specific case because int → bool is compact, Google
“impossible functionals”), but it is with computational effects.

1 (** This code is compatible with Eff 5.0, see http://www.eff-lang.org *)
2

3 (** We show that with algebraic effects and handlers a total functional
4 [(int -> bool) -> bool] has a tree representation. *)
5

6 (* A tree representation of a functional. *)
7 type tree =
8 | Answer of bool
9 | Question of int * tree * tree

10

11 (** Convert a tree to a functional. *)
12 let rec tree2fun t a =
13 match t with
14 | Answer y -> y
15 | Question (x, t1, t2) -> tree2fun (if a x then t1 else t2) a
16

17 (** An effect that we will use to report how the functional is using its argument. *)
18 effect Report : int -> bool
19

20 (** Convert a functional to a tree. *)
21 let rec fun2tree h =
22 handle
23 Answer (h (fun x -> perform (Report x)))
24 with
25 | effect (Report x) k -> Question (x, k false, k true)
26

27 let example1 = fun2tree (fun f -> true)
28

29 let example2 = fun2tree (fun f -> f 10; true)
30

31 let example3 = fun2tree (fun f -> if f 10 then (f 30 || f 15) else (f 20 && not (f 8)))
32

33 (* This one is pretty large, so take care *)
34 let example4 =
35 (* convert a string of booleans to an int *)
36 let rec to_int = function
37 | [] -> 0
38 | b :: bs -> (if b then 1 else 0) + 2 * to_int bs

12

39 in
40 fun2tree (fun a -> a (to_int [a 0; a 1; a 2; a 3; a 4; a 5; a 6; a 7; a 8]))

3.7 Problems

Problem 3.1 (Breadth-first search). Implement the breadth-first search strategy for ambivalent choice.

Problem 3.2 (Monte Carlo sampling). The online Eff page has an example showing a handler which modi-
fies a probabilistic computation (one that uses randomness) to one that computes the distribution of results.
The handler computes the distribution in an exhaustive way that quickly leads to inefficiency.

Improve it by implement a Monte Carlo handler for estimating distributions of probabilistic computa-
tions.

Problem 3.3 (Recursive cows). Contemplate the recursive cows.

13

http://www.eff-lang.org/try/
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow

	What is algebraic about algebraic effects and handlers?
	Problems
	Problem: Morita equivalence

	Designing a programming language
	Reading material
	Change of terminology
	Abstract syntax
	Operational semantics
	Effect system
	Value and computation types
	Signature
	Typing rules

	Safety theorem
	Other considerations
	Problems

	Programming with algebraic effects and handlers
	Eff
	Reading material
	Basic examples
	Multi-shot handlers
	Ambivalent choice

	Cooperative multi-threading
	Tree representation of a functional
	Problems

