
Keshav Pingali
The University of Texas at Austin

Three Lectures
on

Parallel Programming

My background

• UT Austin
– Professor in CS and ECE departments
– Member of Institute for Computational Engineering and Science (ICES)

• Cornell University
– Professor in CS and ECE departments

• MIT
– ScD (Advisor: Arvind)

• IIT Kanpur, India
– B.Tech.

Intelligent Software Systems group (ISS)
• Faculty

– Keshav Pingali, CS/ECE/ICES
• Research associates

– Swarnendu Biswas
– Vishwesh Jatala

• PhD students
– Roshan Dathathri
– Gurbinder Gill
– Michael He
– Ian Hendrickson
– Loc Hoang
– Yi-Shan Lu
– Sepideh Maliki
– Francis Pei

• Visitors from France, India, Norway, Poland, Portugal
• Home page: http://iss.ices.utexas.edu
• Funding: DARPA, NSF, BAE, HP, NEC, NVIDIA…

http://iss.ices.utexas.edu/

Parallel computing is changing

• Platforms
– Dedicated clusters versus cloud, mobile

• People
– Small number of scientists and engineers versus large number of

self-trained parallel programmers
• Data

– Structured (vector, dense matrix) versus unstructured, sparse

Old World New World

The Search for
“Scalable” Parallel Programming

Models
• Tension between productivity and

performance
– support large number of application

programmers with small number of
expert parallel programmers

– performance comparable to hand-
optimized codes

• Galois project
– data-centric abstractions for

parallelism and locality
– operator formulation of algorithms

5

Joe

Stephanie

Some projects using Galois

• BAE Systems (RIPE DARPA program)
– intrusion detection in computer networks
– data-mining in hierarchical interaction graphs

• HP Enterprise
– [ICPE 2016,MASCOTS 2016] workloads for designing

enterprise systems
• FPGA tools

– [DAC’14] “Parallel FPGA Routing based on the Operator
Formulation”, Moctar and Brisk

– [IWLS’18] “Parallel AIG Rewriting” Andre Reis et al. (UFRGS,
Brazil), Alan Mishchenko (UCB), et al.

• Multi-frontal finite-elements for fracture problems
– Maciej Paszynski, Krakow

• 2017 DARPA HIVE Graph Challenge Champion

Data-centric abstractions

Parallelism: Old world

• Functional languages
– map f (e1,e2,…,en)

• Imperative languages
for i = 1, N

y[i] = a*x[i] +y[i]
for i = 1, N

y[i] =a*x[i] + y[i-1]
for i = 1,N

y[2*i] = a*x[i] + y[2*i-1]
• Key idea

– find parallelism by analyzing algorithm or program text
– major success: auto-vectorization in compilers (Kuck, UIUC)

Parallelism: Old world (contd.)

• Static analysis techniques
– points-to and shape analysis

• Fail to find parallelism
– may be there is no parallelism

in program?
– may be we need better static

analysis techniques?

Mesh m = /* read in mesh */
WorkList wl;
wl.add(m.badTriangles());
while (true) {

if (wl.empty()) break;
Element e = wl.get();
if (e no longer in mesh)

continue;
Cavity c = new Cavity();
c.expand();
c.retriangulate();
m.update(c);//update mesh
wl.add(c.badTriangles());

}

Parallelism: New world
• Parallelism:

– Bad triangles whose cavities do not
overlap can be processed in parallel

– Parallelism must be found at runtime

• Data-centric view of algorithm
– Active elements: bad triangles
– Operator: local view

{Find cavity of bad triangle (blue);
Remove triangles in cavity;
Retriangulate cavity and update mesh;}

– Schedule: global view
Processing order of active elements

– Algorithm = Operator + Schedule

• Parallel data structures
– Graph
– Worklist of bad triangles

Delaunay mesh refinement
Red Triangle: badly shaped triangle
Blue triangles: cavity of bad triangle

Operator formulation of algorithms

• Active node/edge:
– site where computation is needed

• Operator:
– local view of algorithm
– computation at active node/edge

• Schedule:
– global view of algorithm
– unordered algorithms:

• active nodes can be processed in any order
• all schedules produce the same answer but

performance may vary

– ordered algorithms:
• problem-dependent order on active nodes

: active node

: neighborhood

TAO terminology for algorithms

• Active nodes
– Topology-driven algorithms

• Algorithm is executed in rounds
• In each round, all nodes/edges are initially active
• Iterate till convergence

– Data-driven algorithms
• Some nodes/edges initially active
• Applying operator to active node may create new active nodes
• Terminate when no more active nodes/edges in graph

• Operator
– Morph: may change the graph structure by adding/removing nodes/edges
– Label computation: updates labels on nodes/edges w/o changing graph structure
– Reader: makes no modification to graph

Label computation

Graph problem:SSSP

• Problem: single-source shortest-
path (SSSP) computation

• Formulation:
– Given an undirected graph with

positive weights on edges, and a
node called the source

– Compute the shortest distance
from source to every other node

• Variations:
– Negative edge weights but no

negative weight cycles
– All-pairs shortest paths
– Breadth-first search: all edge

weights are 1
• Applications:

– GPS devices for driving directions
– social network analyses: centrality

metrics

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0 5

2
3

6

7

8

9

Node A is the source

SSSP Problem
• Many algorithms

– Dijkstra (1959)
– Bellman-Ford (1957)
– Chaotic relaxation (1969)
– Delta-stepping (1998)

• In textbook presentations, they seem
unrelated to each other

• Common structure:
– Each node has a label d that is updated

repeatedly
• initialized to 0 for source and for all other

nodes
• during algorithm: shortest known distance to that

node from source
• termination: shortest distance from source

– All of them use the same operator
relax-edge(u,v):

if d[v] > d[u]+w(u,v)
then d[v]  d[u]+w(u,v)

relax-node(u):
relax all edges connected to u

– Differences between algorithms: schedule

G

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0 ∞

∞

∞
∞

∞

∞

∞∞

Chaotic relaxation (1969)

• Active node
– node whose label has been

updated
– initially, only source is active

• Schedule
– pick active node at random
– use a (work)-set or multiset to

track active nodes
• TAO: unordered, data-driven

algorithm
• Main inefficiency:

– number of node relaxations
depends on the schedule

– can be exponential in the size of
graph

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

A B
C

DE F

0

D Set

0
5

2

12

15

16

3

Dijkstra’s algorithm (1959)
• Active nodes

– node whose label has been
updated

– initially, only source is active
• Schedule for processing nodes

– ordered by increasing label
• Implementation of work-set

– priority queue ordered by node
label

• Work-efficient ordered
algorithm
– node is relaxed just once
– O(|E|*lg(|V|))

• Main inefficiency:
– there is little parallelism for most

graphs

H

<A,0> <B,5><C,2><D,3>

A

B

C
D

E

F

G

2

5

1

7

4

3

2

9

2

1

0

2

5

3

6

7

<B,5> <E,6> <F,7>

Priority queue

Delta-stepping (1998)
• Controlled chaotic relaxation

– Exploit the fact that SSSP is robust
to priority inversions

– “soft” priorities
• Implementation of work-set:

– parameter: ∆
– sequence of sets
– nodes whose current distance is

between n∆ and (n+1)∆ are put in
the nth set

– nodes in set n are completed before
processing of nodes in set (n+1) are
started

• ∆ = 1: Dijkstra
• ∆= ∞: Chaotic relaxation
• Picking an optimal ∆ :

– depends on graph and machine
– high-diameter graph  large ∆
– find experimentally

G

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0

∆ ∆ ∆

Bellman-Ford (1957)

• Algorithm:
– execute algorithm in rounds
– in each round, iterate over all

nodes and apply relaxation
operator

– terminate rounds when no node
changes value in a round

• Work-efficiency:
– O(|E|*|V|)
– in each round, we may visit many

nodes where there is no work to
do

– however, we do not need a
worklist, so there is one less
problem for the implementation
to worry about

• TAO analysis:
– topology-driven
– each round is unordered

A

B

C
E

F
H

2

5

1

7

4

3

2

9

2

1

0

GD

Summary of SSSP Algorithms
• Chaotic relaxation

– unordered, data-driven algorithm
• use sets/multisets for work-set

– amount of work depends on schedule: can be exponential in size of
graph

• Dijkstra’s algorithm
– ordered, data-driven algorithm

• use priority queue for work-set
– O(|V|log(|E|)): work-efficient but little parallelism

• Delta-stepping
– controlled chaotic relaxation: parameter ∆
– ∆ permits trade-off between parallelism and work-efficiency

• Bellman-Ford algorithm
– unordered, topology-driven algorithm
– O(|V||E|) time

• Operator formulation brings out commonality and differences
– useful even if you do not care about parallelism

Stencil computation

Jacobi iteration, 5-point stencil

At At+1

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

• Active nodes
– nodes in At+1

• Operator
– five-point stencil

• Different schedules have
different locality

• Regular application
– grid structure and active

nodes known statically
– application can be

parallelized using static
analysis

Machine learning

• Examples:
– Page rank: used to rank webpages to answer

Internet search queries
– Recommender systems: used to make

recommendations to users in Netflix, Amazon,
Facebook etc.

Recommender system

• Problem
– given a database of users, items, and ratings given by each

user to some of the items
– predict ratings that user might give to items he has not

rated yet (usually, we are interested only in the top few
items in this set)

• Netflix challenge
– in 2006, Netflix released a subset of their database and

offered $1 million prize to anyone who improved their
algorithm by 10%

– triggered a lot of interest in recommender systems
– prize finally given to BellKor’s Pragmatic Chaos team in

2009

Data structure for database

• Sparse matrix view:
– rows are users
– columns are movies
– A(u,m) = v is user u has given rating v

to movie m

• Graph view:
– bipartite graph
– two sets of nodes, one for users, one

for movies
– edge (u,m) with label v

• Recommendation problem:
– predict missing entries in sparse matrix
– predict labels of missing edges in

bipartite graph

1
u mAij

Users

Movies

2

3

1

2

3

4

v

Matrix View

Graph View

U
se

rs

Moviesusers
movies

A

v

One approach: matrix completion

• Optimization problem
– Find m×k matrix W and k×n matrix H

(k << min(m,n)) such that A ≈ WH
– Low-rank approximation
– H and W are dense so all missing

values are predicted
• Graph view

– Label of user nodes i is vector
corresponding to row Wi*

– Label of movie node j is vector
corresponding to column H*j

– If graph has edge (u,m), inner
product of labels on u and m must
be approximately equal to label on
edge

1
i jAij

Users Movies

2

3

1

2

3

4

Wi* H*j

k

W

H

A

Matrix View

Graph View

U
se

rs

Movies
k

One algorithm:SGD

• Stochastic gradient descent
(SGD)

• Iterative algorithm:
– initialize all node labels to

some arbitrary values
– iterate until convergence

• visit all edges (u,m) in some
order and update node labels at
u and m based on the residual

• TAO analysis:
– topology-driven, unordered

1
i j

v

Users

Movies

2

3

1

2

3

4

Summary of discussion of
algorithms

von Neumann programming model

……….

initial
state

final
state

state
update

Program
Execution

State update: assignment statement
(local view)

Schedule: control-flow constructs
(global view)

von Neumann bottleneck [Backus 79]

Program counter

what

Data-centric programming model

Program
Execution

State update: operator
(local view)

Schedule: ordering between active nodes
(global view)

von Neumann bottleneck [Backus 79]

Active nodes

what

…..state
update

Connections
• Functional languages: λ-calculus

– operator: β-reduction
– schedule: applicative order, normal order,…

• Unity (Chandy and Misra)
– atomic state updates
– fair-scheduling for unordered algorithms

• Transactional memory (Herlihy and Moss)
– operators have transactional semantics

• Stencil programs (Steele), Halide
(Amarasinghe)
– finite-differences, image processing
– do not handle irregular graph algorithms

• Vertex programs (Pregel, GraphLab,Ligra)
– neighborhood restricted to immediate neighbors

of active node: not adequate for pointer-jumping
algorithms

– graph structure cannot be modified

m p g

m p g

Questions

• How do we implement this model?
– Shared-memory machines
– GPUs
– Distributed-memory machines

• What structure can we exploit for efficiency?
– (e.g.) Why can we find parallelism statically in finite-

differences but not in Delaunay mesh-refinement?
– Locality

Graph Algorithms

Overview

• Graph: abstract data type
– G = (V,E) where V is set of nodes, E is set of edges ⊆ VxV

• Structural properties of graphs
– Power-law graphs, uniform-degree graphs

• Graph representations: concrete data type
– Compressed-row/column, coordinate, adjacency list

• Graph algorithms
– Operator formulation: abstraction for algorithms
– Algorithms for single-source shortest-path (SSSP) problem

• Machine learning algorithms
– Page-rank
– Matrix-completion for recommendation systems

Structural properties
of graphs

Graph-matrix duality
• Graph (V,E) as a matrix

– Choose an ordering of vertices
– Number them sequentially
– Fill in |V|x|V| matrix

• A(i,j) is w if graph has edge from node i to
node j with label w

– Called adjacency matrix of graph
– Edge (u  v):

• v is out-neighbor of u
• u is in-neighbor of v

• Observations:
– Diagonal entries: weights on self-loops
– Symmetric matrix  undirected

graph
– Lower triangular matrix  no edges

from lower numbered nodes to higher
numbered nodes

– Dense matrix  clique (edge
between every pair of nodes)

1

2

3

4
5

a

bc

d
e

f

g

0 a f 0 0
0 0 0 c 0
0 0 0 e 0
0 0 0 0 d
0 b 0 0 g

1
2
3
4
5

1 2 3 4 5
from

to

Sparse graphs
• Terminology:

– Degree of node: number of edges connected to it
– (Average) diameter of graph: average number of

hops between two nodes
• Power-law graphs

– small number of very high degree nodes (see next
slide for example)

– low diameter
• “six degrees of separation” (Karinthy 1929, Milgram

1967), on Facebook, it is 4.74
– typical of social network graphs like the Internet

graph or the Facebook graph
• Uniform-degree graphs

– nodes have roughly same degree
– high diameter
– road networks, IC circuits, finite-element meshes

• Random (Erdӧs-Rènyi) graphs
– constructed by random insertion of edges
– mathematically interesting but few real-life

examples

Node degree distribution
of power-law graphs

Airline route map: power-law graph

Road map: uniform-degree graph

Graph representations:
how to store graphs in memory

Three storage formats:CSR,CSC,COO

1 2 4 5 3 1 2 3 4 5

2 4 6 6 5 3 3 2 3 4

16 12 20 4 15 13 10 4 9 7

Coordinate storage

Labels on nodes are stored in a separate vector (not shown)

Adjacency list representation

Permits you to add and remove edges from graph
Deleting edges: often it is more efficient to just to mark an edge as deleted

rather than delete it physically from the list

From: https://www.thecrazyprogrammer.com

Graph algorithms

Overview

• Algorithms: usually specified by pseudocode
• We take a different approach:

– operator formulation of algorithms
– data-centric abstraction in which data structures play

central role
• Advantages of operator formulation abstraction:

– Connections between seemingly unrelated algorithms
– Sources of parallelism and locality become evident
– Suggests common set of mechanisms for exploiting

parallelism and locality for all algorithms

Web search

• When you type a set of keywords to do an Internet
search, which web-pages should be returned and in
what order?

• Basic idea:
– offline:

• crawl the web and gather webpages into data center
• build an index from keywords to webpages

– online:
• when user types keywords, use index to find all pages containing

the keywords
– key problem:

• usually you end up with tens of thousands of pages
• how do you rank these pages for the user?

Ranking pages
• Manual ranking

– Yahoo did something like this initially, but this solution does not scale
• Word counts

– order webpages by how many times keywords occur in webpages
– problem: easy to mess with ranking by having lots of meaningless occurrences

of keyword
• Citations

– analogy with citations to articles
– if lots of webpages point to a webpage, rank it higher
– problem: easy to mess with ranking by creating lots of useless pages that point

to your webpage
• PageRank

– extension of citations idea
– weight link from webpage A to webpage B by “importance” of A
– if A has few links to it, its links are not very “valuable”
– how do we make this into an algorithm?

Web graph

• Directed graph: nodes represent webpages, edges represent links
– edge from u to v represents a link in page u to page v

• Size of graph: commoncrawl.org (2012)
– 3.5 billion nodes
– 128 billion links

• Intuitive idea of pageRank algorithm:
– each node in graph has a weight (pageRank) that represents its

importance
– assume all edges out of a node are equally important
– importance of edge is scaled by the pageRank of source node

u
v

Webgraph from commoncrawl.org

w

PageRank (simple version)

• Iterative algorithm:
– compute a series PR0, PR1, PR2, … of node labels

• Iterative formula:

– ∀v∈V. PR0(v) = 1/N
– ∀v∈V. PRi+1 v = ∑u∈in−neighbors(v)

PRi(u)
out−degree(u)

• Implement with two fields PRcurrent and PRnext in each node

u
PRcurrent
PRnext

PRcurrent
PRnext

v
Graph G = (V,E)
|V| = N

Page Rank (contd.)

• Small twist needed to handle nodes with no outgoing edges
• Damping factor: d

– small constant: 0.85
– assume each node may also contribute its pageRank to a randomly

selected node with probability (1-d)

• Iterative formula

– ∀v∈V. PR0(v) = 1
N

– ∀v∈V. PRi+1 v = 1−d
N

+ d ∗ ∑u∈in−neighbors(v)
PRi(u)

out−degree(u)

• Convergence

– ∀v∈V. PR v = 1−d
N

+ d ∗ ∑u∈in−neighbors(v)
PR(u)

out−degree(u)

PageRank example

• Nice example from Wikipedia
• Note

– B and E have many in-edges but
pageRank of B is much greater

– C has only one in-edge but high
pageRank because its in-edge is
very valuable

• Caveat:
– search engines use many

criteria in addition to pageRank
to rank webpages

PageRank discussion

• TAO:
– Topology: unstructured graph
– Active nodes

• Topology-driven
• Unordered

– Operator
• Label computation operator
• Pull-style

• Interesting application of TAO
– Can you think of a data-driven

version of pageRank?

What we have learned
• Operator formulation:

– data-centric view of algorithms
• TAO classification
• Location of active nodes

– Topology-driven algorithms
– Data-driven algorithms
– Data-driven algorithm may be more

work-efficient than topology-driven
one

• Ordering of active nodes
– Unordered algorithms
– Ordered algorithms

• Some problems
– have both ordered and unordered

algorithms (e.g. SSSP)
– have both topology-driven and data-

driven algorithms (e.g. SSSP,
pageRank)

	Slide Number 1
	My background
	Intelligent Software Systems group (ISS)
	Parallel computing is changing
	The Search for�“Scalable” Parallel Programming Models
	Some projects using Galois
	Data-centric abstractions
	Parallelism: Old world
	Parallelism: Old world (contd.)
	Parallelism: New world
	Operator formulation of algorithms
	TAO terminology for algorithms
	Graph problem:SSSP
	SSSP Problem
	Chaotic relaxation (1969)
	Dijkstra’s algorithm (1959)
	Delta-stepping (1998)
	Bellman-Ford (1957)
	Summary of SSSP Algorithms
	Stencil computation
	Machine learning
	Recommender system
	Data structure for database
	One approach: matrix completion
	One algorithm:SGD
	Summary of discussion of algorithms
	von Neumann programming model
	Data-centric programming model
	Connections
	Questions
	Graph Algorithms
	Overview
	Structural properties�of graphs
	Graph-matrix duality
	Sparse graphs
	Airline route map: power-law graph
	Road map: uniform-degree graph
	Graph representations:�how to store graphs in memory
	Three storage formats:CSR,CSC,COO
	Adjacency list representation
	Graph algorithms
	Overview
	Web search
	Ranking pages
	Web graph
	PageRank (simple version)
	Page Rank (contd.)
	PageRank example
	PageRank discussion
	What we have learned

