

Three Lectures on Parallel Programming

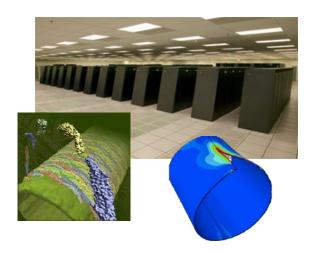
Keshav Pingali The University of Texas at Austin

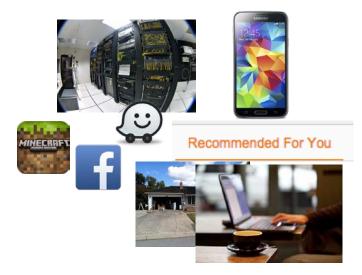
- UT Austin
 - Professor in CS and ECE departments
 - Member of Institute for Computational Engineering and Science (ICES)
- Cornell University
 - Professor in CS and ECE departments
- MIT
 - ScD (Advisor: Arvind)
- IIT Kanpur, India
 - B.Tech.

Intelligent Software Systems group (ISS)

- Faculty
 - Keshav Pingali, CS/ECE/ICES
- Research associates
 - Swarnendu Biswas
 - Vishwesh Jatala
- PhD students
 - Roshan Dathathri
 - Gurbinder Gill
 - Michael He
 - Ian Hendrickson
 - Loc Hoang
 - Yi-Shan Lu
 - Sepideh Maliki
 - Francis Pei
- Visitors from France, India, Norway, Poland, Portugal
- Home page: <u>http://iss.ices.utexas.edu</u>
- Funding: DARPA, NSF, BAE, HP, NEC, NVIDIA...

Parallel computing is changing





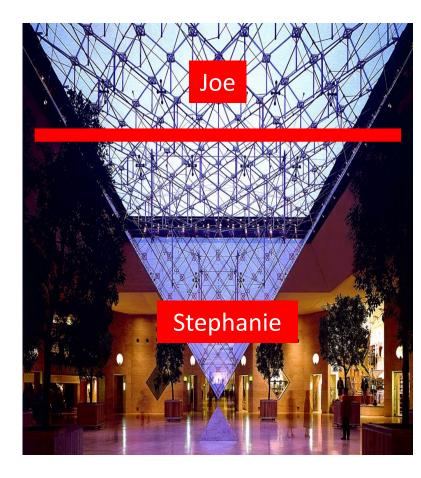
New World

Old World

- Platforms
 - Dedicated clusters versus cloud, mobile
- People
 - Small number of scientists and engineers versus large number of self-trained parallel programmers
- Data
 - Structured (vector, dense matrix) versus unstructured, sparse

<u>The Search for</u> <u>"Scalable" Parallel Programming</u> <u>Models</u>

- Tension between productivity and performance
 - support large number of application programmers with small number of expert parallel programmers
 - performance comparable to handoptimized codes
- Galois project
 - data-centric abstractions for parallelism and locality
 - operator formulation of algorithms

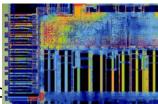


Some projects using Galois

BAE Systems (RIPE DARPA program)

- intrusion detection in computer networks
- data-mining in hierarchical interaction graphs
- HP Enterprise
 - [ICPE 2016, MASCOTS 2016] workloads for designing enterprise systems
- FPGA tools
 - [DAC'14] "Parallel FPGA Routing based on the Operator Formulation", Moctar and Brisk
 - [IWLS'18] "Parallel AIG Rewriting" Andre Reis et al. (UFRG Brazil), Alan Mishchenko (UCB), et al.
- Multi-frontal finite-elements for fracture problems
 - Maciej Paszynski, Krakow
- 2017 DARPA HIVE Graph Challenge Champion


```
Hewlett Packard
Enterprise
```



Data-centric abstractions

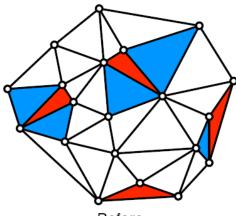
Parallelism: Old world

- Functional languages
 - mapf (e₁,e₂,...,e_n)
- Imperative languages
 - for i = 1, N y[i] = a*x[i] +y[i] for i = 1, N y[i] =a*x[i] + y[i-1] for i = 1, N y[2*i] = a*x[i] + y[2*i-1]
- Key idea
 - find parallelism by analyzing algorithm or program text
 - major success: auto-vectorization in compilers (Kuck, UIUC)

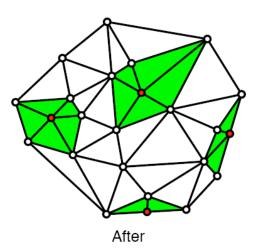
Parallelism: Old world (contd.)

- Mesh m = /* read in mesh */ WorkList wl; wl.add(m.badTriangles()); Cavity c = new Cavity(); c.expand(); c.retriangulate(); m.update(c)//Obnate wl add(wl.add(c.badTriangles()); }
 - Static analysis techniques
 - points-to and shape analysis

Parallelism: New world



Before



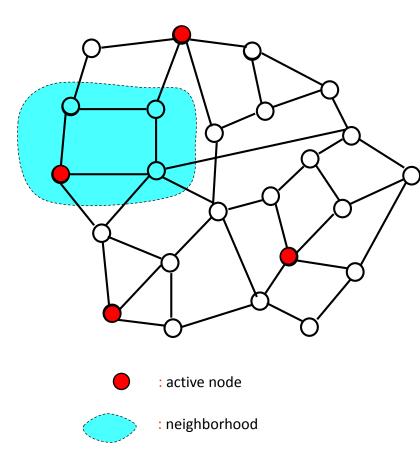
Delaunay mesh refinement Red Triangle: badly shaped triangle Blue triangles: cavity of bad triangle

• Parallelism:

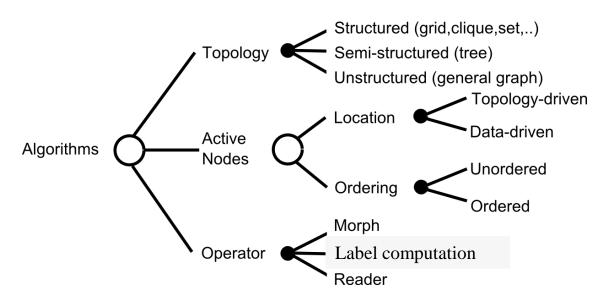
- Bad triangles whose cavities do not overlap can be processed in parallel
- Parallelism must be found at runtime
- Data-centric view of algorithm
 - Active elements: bad triangles
 - Operator: local view
 - {Find cavity of bad triangle (blue);
 - Remove triangles in cavity;
 - Retriangulate cavity and update mesh;}
 - Schedule: global view
 - Processing order of active elements
 - Algorithm = Operator + Schedule
- Parallel data structures
 - Graph
 - Worklist of bad triangles

Operator formulation of algorithms

- Active node/edge:
 - site where computation is needed
- Operator:
 - local view of algorithm
 - computation at active node/edge
- Schedule:
 - global view of algorithm
 - unordered algorithms:
 - active nodes can be processed in any order
 - all schedules produce the same answer but performance may vary
 - ordered algorithms:
 - problem-dependent order on active nodes



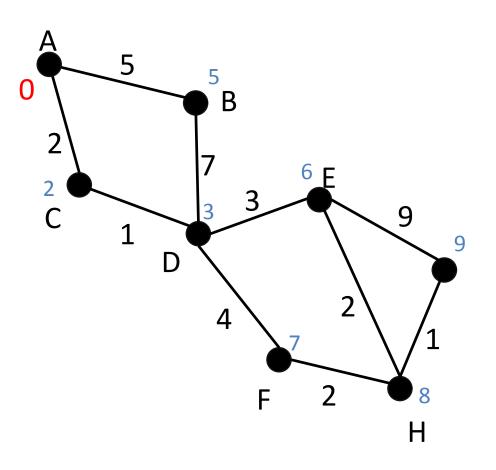
TAO terminology for algorithms

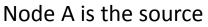


- Active nodes
 - Topology-driven algorithms
 - Algorithm is executed in rounds
 - In each round, all nodes/edges are initially active
 - Iterate till convergence
 - Data-driven algorithms
 - Some nodes/edges initially active
 - Applying operator to active node may create new active nodes
 - Terminate when no more active nodes/edges in graph
- Operator
 - Morph: may change the graph structure by adding/removing nodes/edges
 - Label computation: updates labels on nodes/edges w/o changing graph structure
 - Reader: makes no modification to graph

Graph problem:SSSP

- Problem: single-source shortestpath (SSSP) computation
- Formulation:
 - Given an undirected graph with positive weights on edges, and a node called the source
 - Compute the shortest distance from source to every other node
- Variations:
 - Negative edge weights but no negative weight cycles
 - All-pairs shortest paths
 - Breadth-first search: all edge weights are 1
- Applications:
 - GPS devices for driving directions
 - social network analyses: centrality metrics





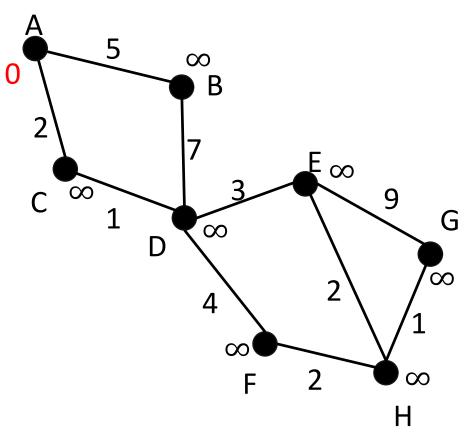
SSSP Problem

- Many algorithms
 - Dijkstra (1959)
 - Bellman-Ford (1957)
 - Chaotic relaxation (1969)
 - Delta-stepping (1998)
- In textbook presentations, they seem unrelated to each other
- Common structure:
 - Each node has a label d that is updated repeatedly
 - initialized to 0 for source and \bigotimes for all other nodes
 - during algorithm: shortest known distance to that node from source
 - termination: shortest distance from source
 - All of them use the same *operator*

```
relax-edge(u,v):
if d[v] > d[u]+w(u,v)
then d[v] \leftarrow d[u]+w(u,v)
```

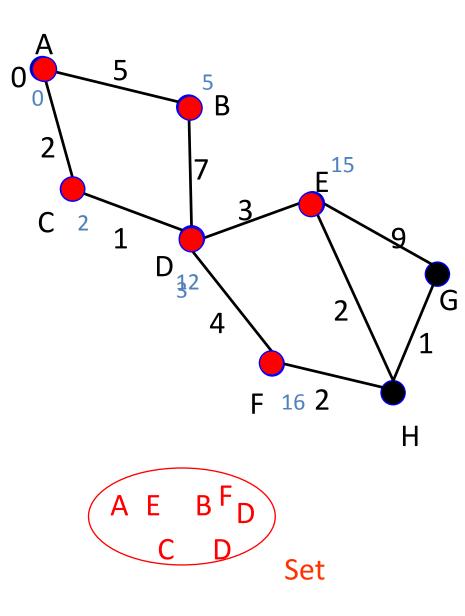
relax-node(u): relax all edges connected to u

- Differences between algorithms: schedule



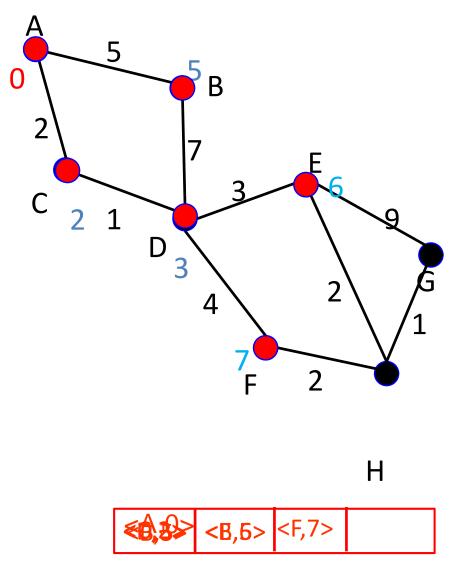
Chaotic relaxation (1969)

- Active node
 - node whose label has been updated
 - initially, only source is active
- Schedule
 - pick active node at random
 - use a (work)-set or multiset to track active nodes
- TAO: unordered, data-driven algorithm
- Main inefficiency:
 - number of node relaxations depends on the schedule
 - can be exponential in the size of graph



Dijkstra's algorithm (1959)

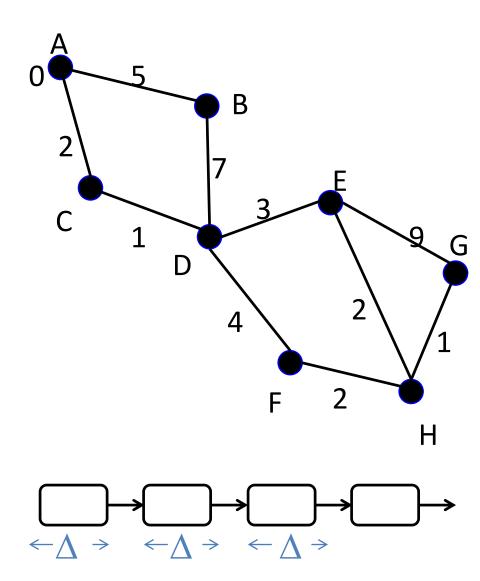
- Active nodes
 - node whose label has been updated
 - initially, only source is active
- Schedule for processing nodes
 ordered by increasing label
- Implementation of work-set
 - priority queue ordered by node label
- Work-efficient ordered algorithm
 - node is relaxed just once
 - O(|E|*lg(|V|))
- Main inefficiency:
 - there is little parallelism for most graphs



Priority queue

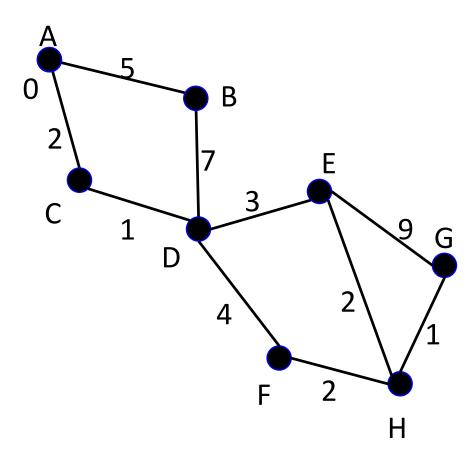
Delta-stepping (1998)

- Controlled chaotic relaxation
 - Exploit the fact that SSSP is robust to priority inversions
 - "soft" priorities
- Implementation of work-set:
 - parameter: Δ
 - sequence of sets
 - nodes whose current distance is between $n\Delta$ and $(n+1)\Delta$ are put in the nth set
 - nodes in set n are completed before processing of nodes in set (n+1) are started
- $\Delta = 1$: Dijkstra
- $\Delta = \infty$: Chaotic relaxation
- Picking an optimal Δ :
 - depends on graph and machine
 - high-diameter graph \rightarrow large Δ
 - find experimentally



Bellman-Ford (1957)

- Algorithm:
 - execute algorithm in rounds
 - in each round, iterate over all nodes and apply relaxation operator
 - terminate rounds when no node changes value in a round
- Work-efficiency:
 - O(|E|*|V|)
 - in each round, we may visit many nodes where there is no work to do
 - however, we do not need a worklist, so there is one less problem for the implementation to worry about
- TAO analysis:
 - topology-driven
 - each round is unordered



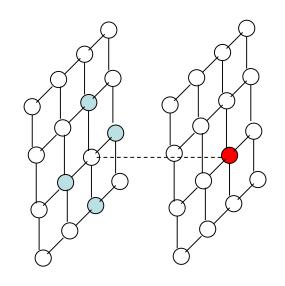
Summary of SSSP Algorithms

• Chaotic relaxation

- unordered, data-driven algorithm
 - use sets/multisets for work-set
- amount of work depends on schedule: can be exponential in size of graph
- Dijkstra's algorithm
 - ordered, data-driven algorithm
 - use priority queue for work-set
 - O(|V|log(|E|)): work-efficient but little parallelism
- Delta-stepping
 - controlled chaotic relaxation: parameter Δ
 - Δ permits trade-off between parallelism and work-efficiency
- Bellman-Ford algorithm
 - unordered, topology-driven algorithm
 - O(|V||E|) time
- Operator formulation brings out commonality and differences
 - useful even if you do not care about parallelism

Stencil computation

- Active nodes
 - nodes in A_{t+1}
- Operator
 - five-point stencil
- Different schedules have different locality
- Regular application
 - grid structure and active nodes known statically
 - application can be parallelized using static analysis



Jacobi iteration, 5-point stencil

```
//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps
for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)
```

Machine learning

- Examples:
 - Page rank: used to rank webpages to answer Internet search queries
 - Recommender systems: used to make recommendations to users in Netflix, Amazon, Facebook etc.

Recommender system

• Problem

- given a database of users, items, and ratings given by each user to some of the items
- predict ratings that user might give to items he has not rated yet (usually, we are interested only in the top few items in this set)
- Netflix challenge
 - in 2006, Netflix released a subset of their database and offered \$1 million prize to anyone who improved their algorithm by 10%
 - triggered a lot of interest in recommender systems
 - prize finally given to BellKor's Pragmatic Chaos team in 2009

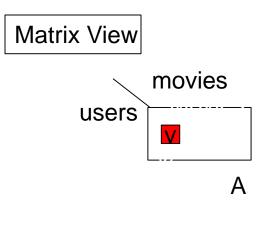
Data structure for database

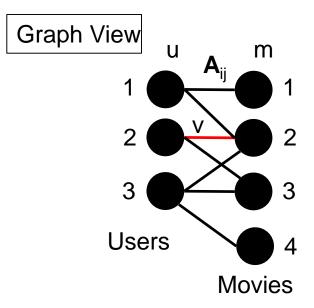
• Sparse matrix view:

- rows are users
- columns are movies
- A(u,m) = v is user u has given rating v to movie m

• Graph view:

- bipartite graph
- two sets of nodes, one for users, one for movies
- edge (u,m) with label v
- Recommendation problem:
 - predict missing entries in sparse matrix
 - predict labels of missing edges in bipartite graph





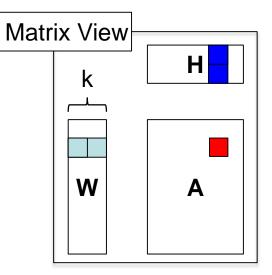
One approach: matrix completion

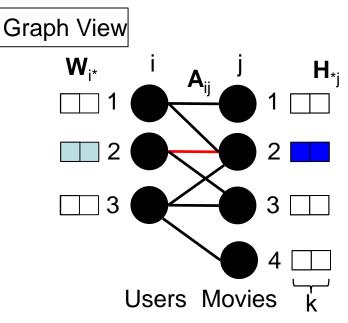
• Optimization problem

- Find m×k matrix W and k×n matrix H $(k \le \min(m,n))$ such that $A \approx WH$
- Low-rank approximation
- H and W are dense so all missing values are predicted

• Graph view

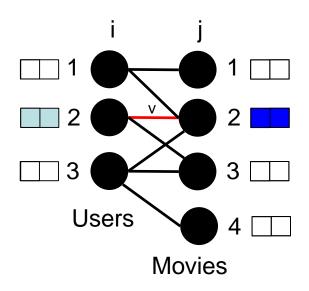
- Label of user nodes i is vector corresponding to row W_i*
- Label of movie node j is vector corresponding to column H_{*i}
- If graph has edge (u,m), inner product of labels on u and m must be approximately equal to label on edge





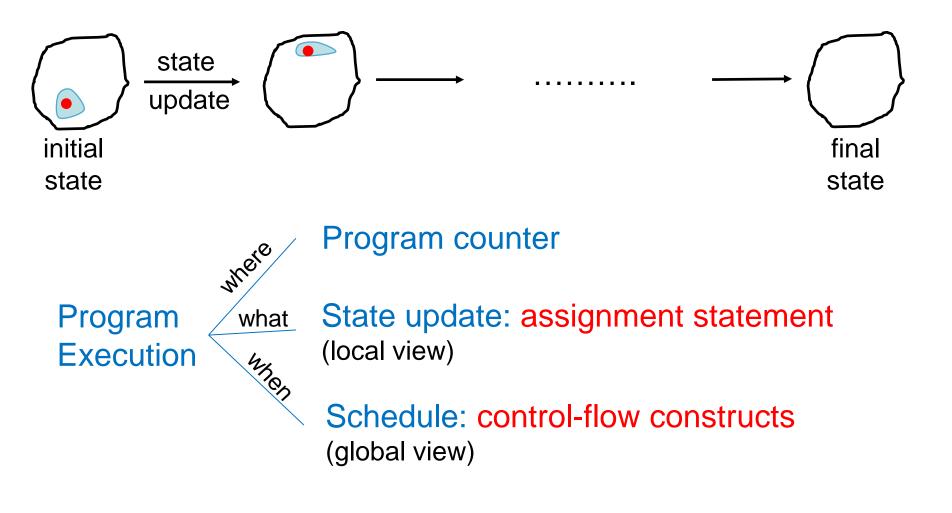
One algorithm:SGD

- Stochastic gradient descent (SGD)
- Iterative algorithm:
 - initialize all node labels to some arbitrary values
 - iterate until convergence
 - visit all edges (u,m) in some order and update node labels at u and m based on the residual
- TAO analysis:
 - topology-driven, unordered



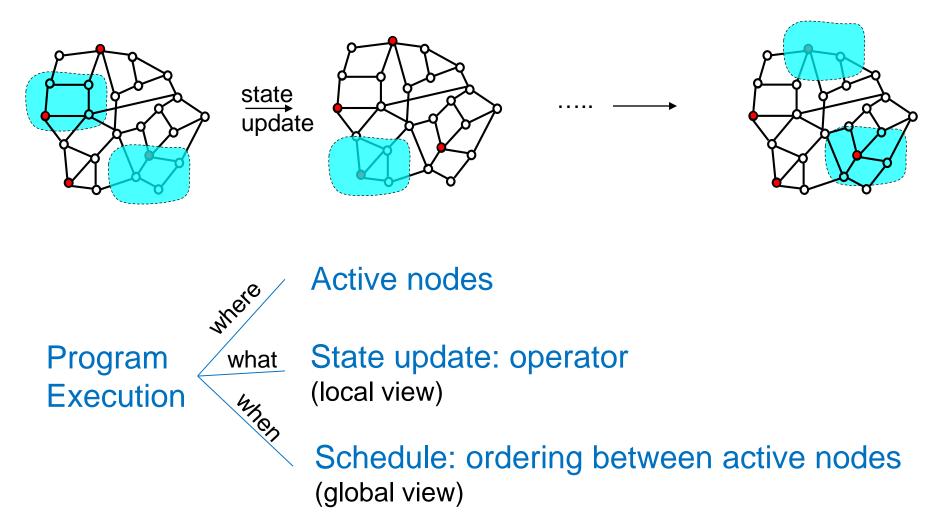
<u>Summary of discussion of</u> <u>algorithms</u>

von Neumann programming model



von Neumann bottleneck [Backus 79]

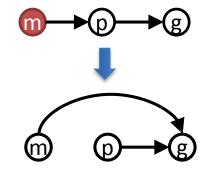
Data-centric programming model



von Neumann bottleneck [Backus 79]

Connections

- Functional languages: λ-calculus
 - operator: β-reduction
 - schedule: applicative order, normal order,...
- Unity (Chandy and Misra)
 - atomic state updates
 - fair-scheduling for unordered algorithms
- Transactional memory (Herlihy and Moss)
 - operators have transactional semantics
- Stencil programs (Steele), Halide (Amarasinghe)
 - finite-differences, image processing
 - do not handle irregular graph algorithms
- Vertex programs (Pregel, GraphLab,Ligra)
 - neighborhood restricted to immediate neighbors of active node: not adequate for pointer-jumping algorithms
 - graph structure cannot be modified



<u>Questions</u>

- How do we implement this model?
 - Shared-memory machines
 - GPUs
 - Distributed-memory machines
- What structure can we exploit for efficiency?
 - (e.g.) Why can we find parallelism statically in finitedifferences but not in Delaunay mesh-refinement?
 - Locality

Graph Algorithms

<u>Overview</u>

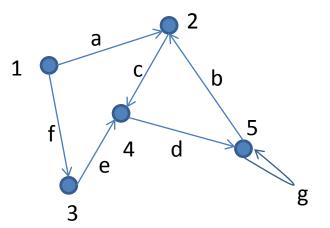
- Graph: abstract data type
 - G = (V,E) where V is set of nodes, E is set of edges \subseteq VxV
- Structural properties of graphs
 - Power-law graphs, uniform-degree graphs
- Graph representations: concrete data type
 - Compressed-row/column, coordinate, adjacency list
- Graph algorithms
 - Operator formulation: abstraction for algorithms
 - Algorithms for single-source shortest-path (SSSP) problem
- Machine learning algorithms
 - Page-rank
 - Matrix-completion for recommendation systems

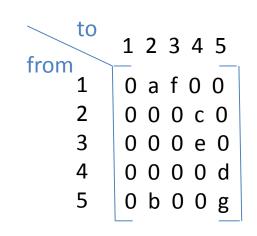
Structural properties of graphs

Graph-matrix duality

• Graph (V,E) as a matrix

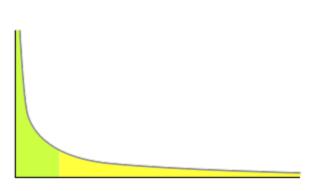
- Choose an ordering of vertices
- Number them sequentially
- Fill in |V|x|V| matrix
 - A(i,j) is w if graph has edge from node i to node j with label w
- Called *adjacency matrix* of graph
- Edge (u \rightarrow v):
 - v is *out-neighbor* of u
 - u is in-neighbor of v
- Observations:
 - Diagonal entries: weights on self-loops
 - Symmetric matrix ←→ undirected graph
 - Lower triangular matrix ←→ no edges from lower numbered nodes to higher numbered nodes
 - Dense matrix ←→ clique (edge between every pair of nodes)





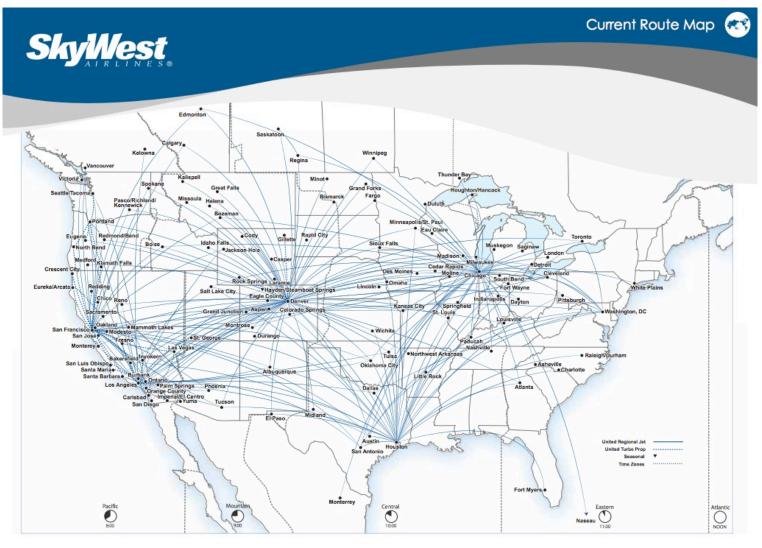
Sparse graphs

- Terminology:
 - Degree of node: number of edges connected to it
 - (Average) diameter of graph: average number of hops between two nodes
- Power-law graphs
 - small number of very high degree nodes (see next slide for example)
 - low diameter
 - "six degrees of separation" (Karinthy 1929, Milgram 1967), on Facebook, it is 4.74
 - typical of social network graphs like the Internet graph or the Facebook graph
- Uniform-degree graphs
 - nodes have roughly same degree
 - high diameter
 - road networks, IC circuits, finite-element meshes
- Random (Erdös-Rènyi) graphs
 - constructed by random insertion of edges
 - mathematically interesting but few real-life examples



Node degree distribution of power-law graphs

Airline route map: power-law graph



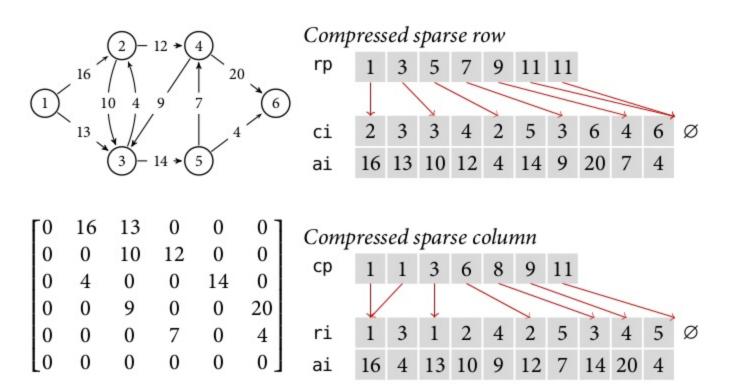
Road map: uniform-degree graph

Graph representations: how to store graphs in memory

Three storage formats:CSR,CSC,COO

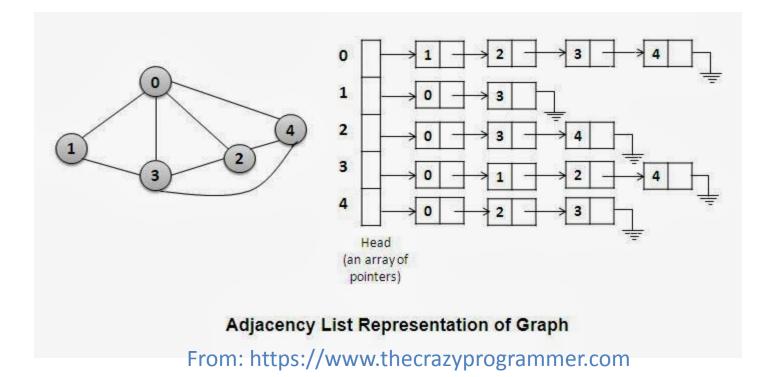
Coordinate storage

1	2	4	5	3	1	2	3	4	5
2	4	6	6	5	3	3	2	3	4
16	12	20	4	15	13	10	4	9	7



Labels on nodes are stored in a separate vector (not shown)

Adjacency list representation



Permits you to add and remove edges from graph Deleting edges: often it is more efficient to just to mark an edge as deleted rather than delete it physically from the list

Graph algorithms

Overview

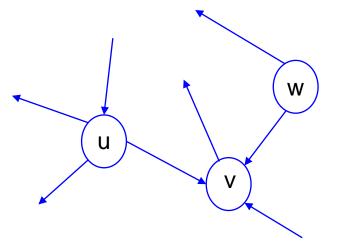
- Algorithms: usually specified by pseudocode
- We take a different approach:
 - operator formulation of algorithms
 - data-centric abstraction in which data structures play central role
- Advantages of operator formulation abstraction:
 - Connections between seemingly unrelated algorithms
 - Sources of parallelism and locality become evident
 - Suggests common set of mechanisms for exploiting parallelism and locality for all algorithms

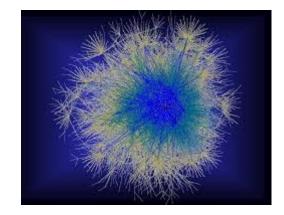
- When you type a set of keywords to do an Internet search, which web-pages should be returned and in what order?
- Basic idea:
 - offline:
 - crawl the web and gather webpages into data center
 - build an index from keywords to webpages
 - online:
 - when user types keywords, use index to find all pages containing the keywords
 - key problem:
 - usually you end up with tens of thousands of pages
 - how do you rank these pages for the user?

Ranking pages

- Manual ranking
 - Yahoo did something like this initially, but this solution does not scale
- Word counts
 - order webpages by how many times keywords occur in webpages
 - problem: easy to mess with ranking by having lots of meaningless occurrences of keyword
- Citations
 - analogy with citations to articles
 - if lots of webpages point to a webpage, rank it higher
 - problem: easy to mess with ranking by creating lots of useless pages that point to your webpage
- PageRank
 - extension of citations idea
 - weight link from webpage A to webpage B by "importance" of A
 - if A has few links to it, its links are not very "valuable"
 - how do we make this into an algorithm?

Web graph



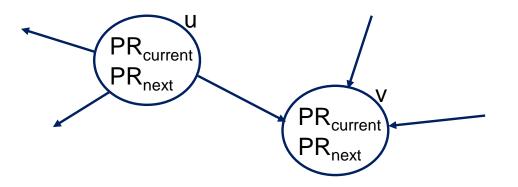


Webgraph from commoncrawl.org

- Directed graph: nodes represent webpages, edges represent links
 - edge from u to v represents a link in page u to page v
- Size of graph: commoncrawl.org (2012)
 - 3.5 billion nodes
 - 128 billion links
- Intuitive idea of pageRank algorithm:
 - each node in graph has a weight (pageRank) that represents its importance
 - assume all edges out of a node are equally important
 - importance of edge is scaled by the pageRank of source node

PageRank (simple version)

Graph G = (V,E) |V| = N



- Iterative algorithm:
 - compute a series PR₀, PR₁, PR₂, ... of node labels
- Iterative formula:

-
$$\forall v \in V. PR_0(v) = 1/N$$

-
$$\forall v \in V. PR_{i+1}(v) = \sum_{u \in in-neighbors(v)} \frac{PR_i(u)}{out-degree(u)}$$

• Implement with two fields PR_{current} and PR_{next} in each node

Page Rank (contd.)

- Small twist needed to handle nodes with no outgoing edges
- Damping factor: d
 - small constant: 0.85
 - assume each node may also contribute its pageRank to a randomly selected node with probability (1-d)
- Iterative formula

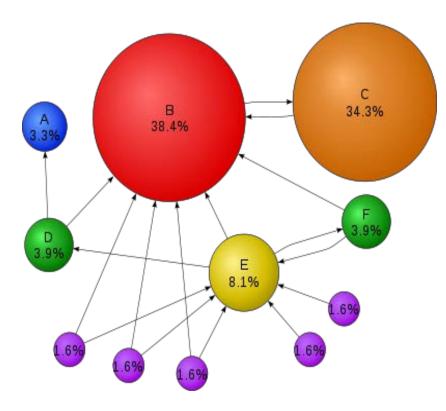
$$- \forall v \in V. PR_0(v) = \frac{1}{N}$$

- $\forall v \in V. PR_{i+1}(v) = \frac{1-d}{N} + d * \sum_{u \in in-neighbors(v)} \frac{PR_i(u)}{out-degree(u)}$
- Convergence

-
$$\forall v \in V. PR(v) = \frac{1-d}{N} + d * \sum_{u \in in-neighbors(v)} \frac{PR(u)}{out-degree(u)}$$

PageRank example

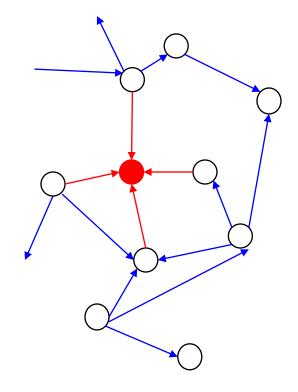
- Nice example from Wikipedia
- Note
 - B and E have many in-edges but pageRank of B is much greater
 - C has only one in-edge but high pageRank because its in-edge is very valuable
- Caveat:
 - search engines use many criteria in addition to pageRank to rank webpages



PageRank discussion

• TAO:

- Topology: unstructured graph
- Active nodes
 - Topology-driven
 - Unordered
- Operator
 - Label computation operator
 - Pull-style
- Interesting application of TAO
 - Can you think of a data-driven version of pageRank?



What we have learned

- Operator formulation:
 - data-centric view of algorithms
- TAO classification
- Location of active nodes
 - Topology-driven algorithms
 - Data-driven algorithms
 - Data-driven algorithm may be more work-efficient than topology-driven one
- Ordering of active nodes
 - Unordered algorithms
 - Ordered algorithms
- Some problems
 - have both ordered and unordered algorithms (e.g. SSSP)
 - have both topology-driven and datadriven algorithms (e.g. SSSP, pageRank)

