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Overview

• Shared-memory
– Architecture: chip has some number of cores (e.g., Intel Skylake has up to 

18 cores depending on the model) with common memory
– Application program is decomposed into a number of threads, which run 

on these cores; data structures are in common memory
– Threads communicate by reading and writing memory locations
– Programming systems: pThreads, OpenMP, Intel TBB

• Distributed-memory 
– Architecture: network of machines (Stampede II: 4,200 KNL hosts) with no 

common memory
– Application program and data structures are partitioned into processes, 

which run on machines
– Processes communicate by sending and receiving messages 
– Programming: MPI communication library
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Shared-memory Architectures
for 

Programmers



Moore’s Law
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Intel Skylake chip

Chip

Block diagram of each core5



Shared-memory m/c: 
cartoon picture

• Several multi-core chips connected by bus or 
network

• Single-address space for all cores but non-
uniform memory access times



Typical latency numbers

L1 cache reference/hit                       1.5 ns                                4 cycles
Floating-point add/mult/FMA operation        1.5 ns                                4 cycles

L2 cache reference/hit                       5   ns                       12 ~ 17 cycles

L3 cache hit 16-40   ns                        40-300 cycles

256MB main memory reference     75-120   ns               TinyMemBench on 
"Broadwell" E5-2690v4

Send 4KB message between hosts                                 1-10 µs MPICH on 10-100Gbps

Read 1MB sequentially from disk      5,000,000   ns       5 ms
~200MB/sec hard disk (seek time would be additional latency)
Random Disk Access (seek+rotation)  10,000,000   ns   10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

From: 

Locality is important. 7

https://gist.github.com/understeer/4d8ea07c18752989f6989deeb769b778


Architecture/software boundary

• Cache coherence
– interaction between caching and program 

semantics

• Atomic instructions
– interaction between threads: synchronization

• Memory consistency model
– interaction between instruction reordering and 

program semantics
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Cache coherence problem

core
Cache

core
Cache

core
Cache

Shared Bus

Shared
Memory

X:  24

• Core 1 loads X: obtains 24 from memory and caches it
• Core 2 loads X: obtains 24 from memory and caches it
• Core 1 stores 32 to X: its locally cached copy is updated
• Core 3 loads X: what value should it get?  

– memory and core 2 think it is 24
– core 1 thinks it is 32

• Illusion that there is a single variable X is broken

1 2 3X:  24 X:  24X:  32



One solution

• Exclusive caching: ensure that at most one 
cache can have a given line at any time

• Implementation: snoopy caches
– cache on each core ‘snoops’ (i.e. watches) for 

activity concerned with lines it has cached
– load/store cache hit: perform operation just as in 

sequential machines
– load/store cache miss: 

• perform bus cycle to obtain line
• if some other cache has line, line is transferred to this 

cache and marked invalid in other cache
• otherwise line is obtained from memory
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Better solution: 
write-invalidate protocol 

• Exclusive caching is too draconian
– even read-only data cannot be in multiple caches
– data written in one round that is read-only in next 

round cannot be in multiple caches
• Write-invalidate protocol

– line can reside in several caches if all cores are 
reading from it

– if a core wants to write to that line, line is 
invalidated from all other caches 

• One implementation: MESI protocol
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False-sharing

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

X Y

X Y X Y

0 1

• Core 0 reads and writes X
• Core 1 reads and writes Y
• No true sharing, but if X and Y are on the same line, there will

be a lot of invalidation misses



Summary

• Solution to cache-coherence: 
– snoopy caches and write-invalidate protocol

• True-sharing
– a variable or array element is read and written by two or 

more cores repeatedly
• False-sharing

– two or more cores read and write distinct variables or array 
elements that happen to be in the same cache line

• Sharing results in “ping-ponging” of cache lines between 
cores due to invalidations
– reduces performance
– to improve performance, try to reduce sharing of cache lines 

between cores
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Atomic instructions

• Example: sum all the elements of an array
– core 0 adds up first half, core 1 adds up second half
– each core adds its contribution to variable sum 

• Problem: unless cores are synchronized, you get a 
data-race

• result of read/modify/write may not be what you expect
• final value can depend on how code is compiled and on 

scheduling of instructions from threads

• General problem: 
– read/modify/write must be performed atomically on a 

collection of variables or data structure elements



Data-race illustration

• Final value can be 4 or 5 depending on scheduling of 
instructions

Cache Cache

Shared Bus

x = x+1 3xx = x+1

Shared-memory
load r1,[x]
inc r1
store [x],r1

P0 P1

load r1,[x]
inc r1
store [x],r1

load r1,[x]
inc r1
store [x],r1

x will have value 5

load r1,[x]
inc r1

store [x],r1
load r1,[x]

inc r1
store [x],r1

x will have value 4

time



Solution

• Architecture provides atomic instructions
– small collection of read/modify/write instructions operating 

on ints, doubles, etc. 
– execute as though all other threads were suspended during 

execution of atomic instruction
– examples: 

• swap(addr, reg) 
– swap value in memory at address addr with value in register reg

• atomic add(reg,addr)

• Easy to modify MESI protocol to implement atomic 
instructions
– like write but line is pinned in cache until instruction 

completes
– no other core can steal line until instruction completes



Limitations of atomic instructions

• Atomic instructions give you atomicity for 
read/modify/write on data types like ints, floats, 
doubles (fit in cache line)

• Do not solve atomicity problem for updates to 
large amounts of data like arrays or structs

• Hardware solution: transactional memory
– jury is still out about whether this is useful

• Software solution: locks
– pThreads library: mutex-locks and spin-locks
– implementation of locks uses atomic instructions



pThreads library:
low-level shared-memory 

programming



Threads
• Software analog of cores

– Each thread has its own PC, SP, registers, and stack
– All threads share heap and globals

• Runtime system handles mapping of threads to cores 
– if there are more threads than cores, runtime system will 

time-slice threads on cores
– HPC applications: usually #threads = #cores

• portability: number of threads is usually a runtime parameter
• Threads have two kinds of names 

– pThread name: opaque handle used by pThreads library (like 
social security number for people)

– short name: usually an integer 0,1,2…(like first names for 
people) and used in application program to tell threads what 
to do or where to write their results 
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Thread Basics: Creation and Termination 

• Program begins execution with main thread
• Creating threads:

int pthread_create ( 
pthread_t *thread_handle, 
const pthread_attr_t *attribute, 
void * (*thread_function)(void *), 
void *arg); 

• Type (void *) is C notation for “raw address” (can point 
to anything)

• Thread is created and starts to execute thread_function
with parameter arg, which specifies short name and 
other data to be passed to thread

• Thread handle: opaque handle for thread



Terminating threads
• Thread terminated when:

o it returns from its starting routine, or
o it makes a call to pthread_exit()

• Main thread
– exits with pthread_exit(): other threads will continue to 

execute
– otherwise other threads automatically terminated 

• Cleanup: 
– pthread_exit() routine does not close files
– any files opened inside the thread will remain open after 

the thread is terminated.



#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5
int threadArg[NUM_THREADS];//parameters for threads
pthread_t handles[NUM_THREADS]; //store opaque handles for threads

void *PrintHello(void *threadIdPtr) { 
int shortId = * (int *)threadIdPtr;
printf("\n%d: Hello World!\n", shortId);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
for(int t=0;t<NUM_THREADS;t++){

printf("Creating thread %d\n", t);
threadArg[t] = t;
pthread_create(&handles[t], NULL, PrintHello, &threadArg[t]);

}
pthread_exit(NULL);

}

Example



Output
Creating thread 0 
Creating thread 1 

0: Hello World! 

1: Hello World!
Creating thread 2 
Creating thread 3 

2: Hello World! 

3: Hello World! 
Creating thread 4 

4: Hello World!



Synchronization

• Join: 
– block thread until some other thread 

terminates

• Lock: 
– used to ensure mutual exclusion: only 

one thread at a time can 
• access some data
• execute some piece of code (critical section)

– two kinds: mutexes and spin-locks

• Barrier:
– all threads must reach barrier before any 

thread can move ahead

main

barrier

barrier

lock

unlock

critical section



Join
pthread_join (threadid,status)

•The pthread_join() function blocks the calling thread
until the specified thread terminates. 

•The programmer can obtain the target thread's termination return 
status if it was specified in the target thread's call to pthread_exit().



Critical section in code

• Portion of code that should be 
executed by only thread at a 
time

• Implementation: bracket critical 
section with lock/unlock

• Can be used to implement 
atomic updates to anything

• Coarse-grain locking
– not the right solution for 

parallelism but it is a start

lock

unlock

critical section



Mutex-locks

• Lock is implemented by 
– variable with two states: available or not_available
– queue that can hold ids of threads waiting for the lock

• Lock acquire:
– If lock is available, it is changed to not_available, and control returns to 

application program
– If lock is not_available, thread is queued up at the lock, and control 

returns to application program only when lock is acquired by that 
thread

– Key invariant: once a thread tries to acquire lock, control returns to 
thread only after lock has been awarded to that thread

• Lock release: 
– next thread in queue is informed it has acquired lock

• Fairness: thread that wants lock gets it even if other threads 
want to acquire lock unbounded number of times



Pthreads API
• Type

pthread_mutex_t

• Lock initialization
int pthread_mutex_init( 

pthread_mutex_t *mutex_lock, 
const pthread_mutexattr_t *lock_attr); 

• Acquiring lock
int pthread_mutex_lock( 

pthread_mutex_t *mutex_lock);

• Releasing lock
int pthread_mutex_unlock (

pthread_mutex_t *mutex_lock); 



Spin-locks/trylocks

• Another kind of lock: spin-lock, trylock
• Lock acquire is different from mutex: if lock is 

available, acquire it; otherwise return a “busy” error 
code (EBUSY)

int pthread_mutex_trylock( 
pthread_mutex_t *mutex_lock); 

• Faster than pthread_mutex_lock on typical 
systems when there is no contention since it does not 
have to deal with queues associated with locks



Implementing locks using swap

• Recall: swap(addr,reg)
– swap contents of address and register atomically

• Spin-lock using swap (test-and-set spin-lock)
– variable L has 0/1 for unlocked/locked
– lock code:

rx ← 1;
swap(L,rx);
return rx; //if returned value = 0 you have lock else not

– unlock
L ← 0;

• More efficient implementation
– test-and-test-set spin-lock



Application: numerical integration 

• Estimate value of π using numerical integration

• Divide interval [0,1/2) into steps of equal size h and compute 

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

𝑓𝑓 𝑥𝑥 =
6

1 − 𝑥𝑥2

�
0

1/2
𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝜋𝜋



Abstraction

• Parallelism:
– map: function evaluations f(i) can be done in parallel
– reduce: if addition is associative, f(i) values can be 

summed in parallel in O(log(n)) steps
• we will not worry about exploiting this parallelism

• We will write several pThreads programs to 
illustrate the concepts we have studied
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Solution (I)

• Distribution of work
– round-robin with p threads
– thread t computes values 

for i = t,t+p,t+2p..

• Single global variable 
globalSum

• Whenever thread 
computes a value, it adds 
it to global variable

• Preventing data races
– use a mutex-lock

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

globalSum
0 1 2  …..



Code 
#include <pthread.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#define MAX_THREADS 512

pthread_t handles[MAX_THREADS];
int threadArg[MAX_THREADS];
double globalSum = 0.0;
pthread_mutex_t globalSum_lock;

void *compute_pi (void *);

int numPoints; 
int numThreads;
double step;

double f(double x) {
return (6.0/sqrt(1-x*x));

}



int main(int argc, char *argv[]) {

pthread_attr_t attr;
pthread_attr_init (&attr);

numPoints = 100000000;
step = 0.5/numPoints;
numThreads = atoi(argv[1]); //number of threads is an input

//create threads and initialize sum array
for (int i=0; i< numThreads; i++) {

threadArg[i] = i;
pthread_create(& handles[i],&attr,compute_pi,& threadArg[i]);

}

//join with threads and add their contributions from sum array
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
}
printf("%f\n", globalSum);
return 0;

}



void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

for (int i = myId; i < numPoints; i+=numThreads) {
double x = step * ((double) i);  // next x
double value = step*f(x);
pthread_mutex_lock(&globalSum_lock);

globalSum = globalSum + value;  // Add to globalSum
pthread_mutex_unlock(&globalSum_lock);

}



Performance

• Computation of each value added to 
globalSum takes little time
– lock/add/unlock will be serial bottleneck

• We can replace critical section by atomic add 
– but atomic adds must be done serially, so serial 

bottleneck is still there

• In both solutions, you will also have a lot of 
cache line ping-ponging



Solution (II) 

• To avoid synchronization, 
create a global array sum

• Thread t 
– adds each value into sum[i] 

where sum is a global array
• Main thread joins with each 

worker thread and reads its 
contribution from sum array

• Main thread prints answer 
after joining with all worker 
threads 

………
sum

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

0 1



void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i);  // next x
sum[myId] = sum[myId] + step*f(x);  // Add to local sum

}
} 0  1  2  

sum

Global 

Code for main thread must add up values in sum array.
………
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
pi += sum[i];

}
……..



Problem: false-sharing

0  1  2  

sum

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory



Solution (III) 

• Thread t 
– computes values for  i = t, 

t+P,t+2P,…
– adds each value into a local 

variable of thread
– when it is done, it writes the 

final value into sum[i]
• Main thread joins with each 

worker thread and reads its 
contribution from sum array

• Main thread prints answer 
after joining with all worker 
threads 

………
sum

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

0 1



void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

double mySum =0.0;
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i);  // next x
mySum = mySum + step*f(x);  // Add to local sum

}
sum[myId] = mySum; //write to global sum array

}

0  1  2  

sum

Global 



Numerical Integration Versions

• We saw three versions of program to compute 
pi
– Version 1: summation in global variable 
– Version 2: summation in sum array
– Version 3: local summation + update sum array 

• Which version will perform best?
– Version 1: true-sharing leads to many coherence 

misses + serialization in global variable updates
– Version 2: false-sharing leads to many coherence 

misses



Performance



Performance



Summary 

• Architecture
– cache coherence
– atomic instructions
– memory consistency model

• The POSIX Thread API 
– creating and destroying threads
– synchronization 

• join
• mutual exclusion: locks and spin-locks
• intrinsics for atomic instructions
• barrier

• Performance: 
– minimize false and true sharing
– keep critical sections small



Distributed-memory 
programming



Clusters and data-centers

• 4,200 Intel Knights Landing nodes, each with 68 
cores

• 1,736 Intel Xeon Skylake nodes, each with 48 cores
• 100 Gb/sec Intel Omni-Path network with a fat tree 

topology employing six core switches

TACC Stampede 2 cluster
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Cartoon picture of cluster



Typical latency numbers

L1 cache reference/hit                       1.5 ns                                4 cycles
Floating-point add/mult/FMA operation        1.5 ns                                4 cycles

L2 cache reference/hit                       5   ns                       12 ~ 17 cycles

L3 cache hit 16-40   ns                        40-300 cycles

256MB main memory reference     75-120   ns               TinyMemBench on 
"Broadwell" E5-2690v4

Send 4KB message between hosts                                 1-10 µs MPICH on 10-100Gbps

Read 1MB sequentially from disk      5,000,000   ns       5 ms
~200MB/sec hard disk (seek time would be additional latency)
Random Disk Access (seek+rotation)  10,000,000   ns   10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

From: 

Locality is important. 50
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Basic MPI constructs

• MPI_COMM_SIZE 
– how many processes are there in the world?

• MPI_COMM_RANK
– what is my logical number (rank) in this world?

• MPI_SEND (var, receiverRank)
– specify data to be sent in message and who will receive it
– data can be an entire array (with stride)

• MPI_RECV (var, senderRank)
– whom to receive from and where to store received data

0 1

Flat name space of processes
Rank:process ID

Master

………..Rank



Programming Model

• Single Program Multiple Data (SPMD) model
• Program is executed by all processes
• Use conditionals to specify that only some 

processes should execute a statement
– to execute only on master:

if (rank == 0) then …;



/*The Parallel Hello World Program*/
#include <stdio.h>
#include <mpi.h>

main(int argc, char **argv)
{

int myRank;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

printf("Hello World from Node %d\n", myRank);

MPI_Finalize();
}

Hello World



Collective communication
• Broadcast

– some process (usually root) wants to send value 
to all other processes

• One solution: 
– use a loop with MPI_SEND
– O(P) time but P is very big in clusters

• Better solution: 
– tree of processes
– O(log(P)) time

• MPI_BCAST(var, rootRank)
• Similar collective for reductions

– MPI_Reduce(var,result,MPI_SUM,rootRank)
– result: variable on process rootRank that will 

contain the final result
– var: contribution from this process
– MPI_SUM: reduction operation is addition

root



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[]) {

double mypi = 0.0;
[...snip...]

MPI_Bcast(&num_segs, 1, MPI_INT, 0, MPI_COMM_WORLD);

double width = 1.0 / (double) num_segs;
for (int i = rank + 1; i <= n; i += size)

mypi += width * sqrt(1 – (((double) i / num_segs) * ((double) i / num_segs));

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

4 * pi, fabs((4 * pi) - PI25DT));
[...snip...]

}

55Introduction to MPI, Argonne (06/26/2017)

Tell all processes how many 
rectangles there are

Calculate my 
share of pi

Send the result to 
rank 0 and calculate 
the total at the same 

time

Example:  Pi in C 



Data structures

• Since there is no global 
memory, data structures 
have to partitioned 
between processes

• No MPI support:  entirely 
under the control of 
application program

• Common partitioning 
strategies for dense 
arrays
– block row, block column, 

2D blocks, etc.



Summary

• Low-level shared-memory and distributed-
memory programming in pThreads and MPI can 
be very tedious

• Higher-level abstractions are essential for 
productivity

• Major problems
– efficient implementation
– performance modeling: changing a few lines in the 

code can change performance dramatically
• Lots of work left for Stephanies
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