
A Programmer’s View
of

Shared and Distributed Memory
Architectures

Overview

• Shared-memory
– Architecture: chip has some number of cores (e.g., Intel Skylake has up to

18 cores depending on the model) with common memory
– Application program is decomposed into a number of threads, which run

on these cores; data structures are in common memory
– Threads communicate by reading and writing memory locations
– Programming systems: pThreads, OpenMP, Intel TBB

• Distributed-memory
– Architecture: network of machines (Stampede II: 4,200 KNL hosts) with no

common memory
– Application program and data structures are partitioned into processes,

which run on machines
– Processes communicate by sending and receiving messages
– Programming: MPI communication library

2

Shared-memory Architectures
for

Programmers

Moore’s Law

4

Intel Skylake chip

Chip

Block diagram of each core5

Shared-memory m/c:
cartoon picture

• Several multi-core chips connected by bus or
network

• Single-address space for all cores but non-
uniform memory access times

Typical latency numbers

L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA operation 1.5 ns 4 cycles

L2 cache reference/hit 5 ns 12 ~ 17 cycles

L3 cache hit 16-40 ns 40-300 cycles

256MB main memory reference 75-120 ns TinyMemBench on
"Broadwell" E5-2690v4

Send 4KB message between hosts 1-10 µs MPICH on 10-100Gbps

Read 1MB sequentially from disk 5,000,000 ns 5 ms
~200MB/sec hard disk (seek time would be additional latency)
Random Disk Access (seek+rotation) 10,000,000 ns 10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

From:

Locality is important. 7

https://gist.github.com/understeer/4d8ea07c18752989f6989deeb769b778

Architecture/software boundary

• Cache coherence
– interaction between caching and program

semantics

• Atomic instructions
– interaction between threads: synchronization

• Memory consistency model
– interaction between instruction reordering and

program semantics

9

Cache coherence problem

core
Cache

core
Cache

core
Cache

Shared Bus

Shared
Memory

X: 24

• Core 1 loads X: obtains 24 from memory and caches it
• Core 2 loads X: obtains 24 from memory and caches it
• Core 1 stores 32 to X: its locally cached copy is updated
• Core 3 loads X: what value should it get?

– memory and core 2 think it is 24
– core 1 thinks it is 32

• Illusion that there is a single variable X is broken

1 2 3X: 24 X: 24X: 32

One solution

• Exclusive caching: ensure that at most one
cache can have a given line at any time

• Implementation: snoopy caches
– cache on each core ‘snoops’ (i.e. watches) for

activity concerned with lines it has cached
– load/store cache hit: perform operation just as in

sequential machines
– load/store cache miss:

• perform bus cycle to obtain line
• if some other cache has line, line is transferred to this

cache and marked invalid in other cache
• otherwise line is obtained from memory

10

Better solution:
write-invalidate protocol

• Exclusive caching is too draconian
– even read-only data cannot be in multiple caches
– data written in one round that is read-only in next

round cannot be in multiple caches
• Write-invalidate protocol

– line can reside in several caches if all cores are
reading from it

– if a core wants to write to that line, line is
invalidated from all other caches

• One implementation: MESI protocol

11

False-sharing

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

X Y

X Y X Y

0 1

• Core 0 reads and writes X
• Core 1 reads and writes Y
• No true sharing, but if X and Y are on the same line, there will

be a lot of invalidation misses

Summary

• Solution to cache-coherence:
– snoopy caches and write-invalidate protocol

• True-sharing
– a variable or array element is read and written by two or

more cores repeatedly
• False-sharing

– two or more cores read and write distinct variables or array
elements that happen to be in the same cache line

• Sharing results in “ping-ponging” of cache lines between
cores due to invalidations
– reduces performance
– to improve performance, try to reduce sharing of cache lines

between cores

13

Atomic instructions

• Example: sum all the elements of an array
– core 0 adds up first half, core 1 adds up second half
– each core adds its contribution to variable sum

• Problem: unless cores are synchronized, you get a
data-race

• result of read/modify/write may not be what you expect
• final value can depend on how code is compiled and on

scheduling of instructions from threads

• General problem:
– read/modify/write must be performed atomically on a

collection of variables or data structure elements

Data-race illustration

• Final value can be 4 or 5 depending on scheduling of
instructions

Cache Cache

Shared Bus

x = x+1 3xx = x+1

Shared-memory
load r1,[x]
inc r1
store [x],r1

P0 P1

load r1,[x]
inc r1
store [x],r1

load r1,[x]
inc r1
store [x],r1

x will have value 5

load r1,[x]
inc r1

store [x],r1
load r1,[x]

inc r1
store [x],r1

x will have value 4

time

Solution

• Architecture provides atomic instructions
– small collection of read/modify/write instructions operating

on ints, doubles, etc.
– execute as though all other threads were suspended during

execution of atomic instruction
– examples:

• swap(addr, reg)
– swap value in memory at address addr with value in register reg

• atomic add(reg,addr)

• Easy to modify MESI protocol to implement atomic
instructions
– like write but line is pinned in cache until instruction

completes
– no other core can steal line until instruction completes

Limitations of atomic instructions

• Atomic instructions give you atomicity for
read/modify/write on data types like ints, floats,
doubles (fit in cache line)

• Do not solve atomicity problem for updates to
large amounts of data like arrays or structs

• Hardware solution: transactional memory
– jury is still out about whether this is useful

• Software solution: locks
– pThreads library: mutex-locks and spin-locks
– implementation of locks uses atomic instructions

pThreads library:
low-level shared-memory

programming

Threads
• Software analog of cores

– Each thread has its own PC, SP, registers, and stack
– All threads share heap and globals

• Runtime system handles mapping of threads to cores
– if there are more threads than cores, runtime system will

time-slice threads on cores
– HPC applications: usually #threads = #cores

• portability: number of threads is usually a runtime parameter
• Threads have two kinds of names

– pThread name: opaque handle used by pThreads library (like
social security number for people)

– short name: usually an integer 0,1,2…(like first names for
people) and used in application program to tell threads what
to do or where to write their results

19

Thread Basics: Creation and Termination

• Program begins execution with main thread
• Creating threads:

int pthread_create (
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void * (*thread_function)(void *),
void *arg);

• Type (void *) is C notation for “raw address” (can point
to anything)

• Thread is created and starts to execute thread_function
with parameter arg, which specifies short name and
other data to be passed to thread

• Thread handle: opaque handle for thread

Terminating threads
• Thread terminated when:

o it returns from its starting routine, or
o it makes a call to pthread_exit()

• Main thread
– exits with pthread_exit(): other threads will continue to

execute
– otherwise other threads automatically terminated

• Cleanup:
– pthread_exit() routine does not close files
– any files opened inside the thread will remain open after

the thread is terminated.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5
int threadArg[NUM_THREADS];//parameters for threads
pthread_t handles[NUM_THREADS]; //store opaque handles for threads

void *PrintHello(void *threadIdPtr) {
int shortId = * (int *)threadIdPtr;
printf("\n%d: Hello World!\n", shortId);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
for(int t=0;t<NUM_THREADS;t++){

printf("Creating thread %d\n", t);
threadArg[t] = t;
pthread_create(&handles[t], NULL, PrintHello, &threadArg[t]);

}
pthread_exit(NULL);

}

Example

Output
Creating thread 0
Creating thread 1

0: Hello World!

1: Hello World!
Creating thread 2
Creating thread 3

2: Hello World!

3: Hello World!
Creating thread 4

4: Hello World!

Synchronization

• Join:
– block thread until some other thread

terminates

• Lock:
– used to ensure mutual exclusion: only

one thread at a time can
• access some data
• execute some piece of code (critical section)

– two kinds: mutexes and spin-locks

• Barrier:
– all threads must reach barrier before any

thread can move ahead

main

barrier

barrier

lock

unlock

critical section

Join
pthread_join (threadid,status)

•The pthread_join() function blocks the calling thread
until the specified thread terminates.

•The programmer can obtain the target thread's termination return
status if it was specified in the target thread's call to pthread_exit().

Critical section in code

• Portion of code that should be
executed by only thread at a
time

• Implementation: bracket critical
section with lock/unlock

• Can be used to implement
atomic updates to anything

• Coarse-grain locking
– not the right solution for

parallelism but it is a start

lock

unlock

critical section

Mutex-locks

• Lock is implemented by
– variable with two states: available or not_available
– queue that can hold ids of threads waiting for the lock

• Lock acquire:
– If lock is available, it is changed to not_available, and control returns to

application program
– If lock is not_available, thread is queued up at the lock, and control

returns to application program only when lock is acquired by that
thread

– Key invariant: once a thread tries to acquire lock, control returns to
thread only after lock has been awarded to that thread

• Lock release:
– next thread in queue is informed it has acquired lock

• Fairness: thread that wants lock gets it even if other threads
want to acquire lock unbounded number of times

Pthreads API
• Type

pthread_mutex_t

• Lock initialization
int pthread_mutex_init(

pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

• Acquiring lock
int pthread_mutex_lock(

pthread_mutex_t *mutex_lock);

• Releasing lock
int pthread_mutex_unlock (

pthread_mutex_t *mutex_lock);

Spin-locks/trylocks

• Another kind of lock: spin-lock, trylock
• Lock acquire is different from mutex: if lock is

available, acquire it; otherwise return a “busy” error
code (EBUSY)

int pthread_mutex_trylock(
pthread_mutex_t *mutex_lock);

• Faster than pthread_mutex_lock on typical
systems when there is no contention since it does not
have to deal with queues associated with locks

Implementing locks using swap

• Recall: swap(addr,reg)
– swap contents of address and register atomically

• Spin-lock using swap (test-and-set spin-lock)
– variable L has 0/1 for unlocked/locked
– lock code:

rx ← 1;
swap(L,rx);
return rx; //if returned value = 0 you have lock else not

– unlock
L ← 0;

• More efficient implementation
– test-and-test-set spin-lock

Application: numerical integration

• Estimate value of π using numerical integration

• Divide interval [0,1/2) into steps of equal size h and compute

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

𝑓𝑓 𝑥𝑥 =
6

1 − 𝑥𝑥2

�
0

1/2
𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝜋𝜋

Abstraction

• Parallelism:
– map: function evaluations f(i) can be done in parallel
– reduce: if addition is associative, f(i) values can be

summed in parallel in O(log(n)) steps
• we will not worry about exploiting this parallelism

• We will write several pThreads programs to
illustrate the concepts we have studied

32

Solution (I)

• Distribution of work
– round-robin with p threads
– thread t computes values

for i = t,t+p,t+2p..

• Single global variable
globalSum

• Whenever thread
computes a value, it adds
it to global variable

• Preventing data races
– use a mutex-lock

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

globalSum
0 1 2 …..

Code
#include <pthread.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#define MAX_THREADS 512

pthread_t handles[MAX_THREADS];
int threadArg[MAX_THREADS];
double globalSum = 0.0;
pthread_mutex_t globalSum_lock;

void *compute_pi (void *);

int numPoints;
int numThreads;
double step;

double f(double x) {
return (6.0/sqrt(1-x*x));

}

int main(int argc, char *argv[]) {

pthread_attr_t attr;
pthread_attr_init (&attr);

numPoints = 100000000;
step = 0.5/numPoints;
numThreads = atoi(argv[1]); //number of threads is an input

//create threads and initialize sum array
for (int i=0; i< numThreads; i++) {

threadArg[i] = i;
pthread_create(& handles[i],&attr,compute_pi,& threadArg[i]);

}

//join with threads and add their contributions from sum array
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
}
printf("%f\n", globalSum);
return 0;

}

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

for (int i = myId; i < numPoints; i+=numThreads) {
double x = step * ((double) i); // next x
double value = step*f(x);
pthread_mutex_lock(&globalSum_lock);

globalSum = globalSum + value; // Add to globalSum
pthread_mutex_unlock(&globalSum_lock);

}

Performance

• Computation of each value added to
globalSum takes little time
– lock/add/unlock will be serial bottleneck

• We can replace critical section by atomic add
– but atomic adds must be done serially, so serial

bottleneck is still there

• In both solutions, you will also have a lot of
cache line ping-ponging

Solution (II)

• To avoid synchronization,
create a global array sum

• Thread t
– adds each value into sum[i]

where sum is a global array
• Main thread joins with each

worker thread and reads its
contribution from sum array

• Main thread prints answer
after joining with all worker
threads

………
sum

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

0 1

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i); // next x
sum[myId] = sum[myId] + step*f(x); // Add to local sum

}
} 0 1 2

sum

Global

Code for main thread must add up values in sum array.
………
for (int i=0; i< numThreads; i++) {

pthread_join(handles[i], NULL);
pi += sum[i];

}
……..

Problem: false-sharing

0 1 2

sum

CPU
Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

Solution (III)

• Thread t
– computes values for i = t,

t+P,t+2P,…
– adds each value into a local

variable of thread
– when it is done, it writes the

final value into sum[i]
• Main thread joins with each

worker thread and reads its
contribution from sum array

• Main thread prints answer
after joining with all worker
threads

………
sum

∑𝑖𝑖=0
1
2ℎ −1 𝑓𝑓 𝑖𝑖 ∗ ℎ ∗ ℎ

0 1

void *compute_pi (void *threadIdPtr) {
int myId = *(int *)threadIdPtr;

double mySum =0.0;
for (int i = myId; i < numPoints; i+=numThreads) {

double x = step * ((double) i); // next x
mySum = mySum + step*f(x); // Add to local sum

}
sum[myId] = mySum; //write to global sum array

}

0 1 2

sum

Global

Numerical Integration Versions

• We saw three versions of program to compute
pi
– Version 1: summation in global variable
– Version 2: summation in sum array
– Version 3: local summation + update sum array

• Which version will perform best?
– Version 1: true-sharing leads to many coherence

misses + serialization in global variable updates
– Version 2: false-sharing leads to many coherence

misses

Performance

Performance

Summary

• Architecture
– cache coherence
– atomic instructions
– memory consistency model

• The POSIX Thread API
– creating and destroying threads
– synchronization

• join
• mutual exclusion: locks and spin-locks
• intrinsics for atomic instructions
• barrier

• Performance:
– minimize false and true sharing
– keep critical sections small

Distributed-memory
programming

Clusters and data-centers

• 4,200 Intel Knights Landing nodes, each with 68
cores

• 1,736 Intel Xeon Skylake nodes, each with 48 cores
• 100 Gb/sec Intel Omni-Path network with a fat tree

topology employing six core switches

TACC Stampede 2 cluster

48

Cartoon picture of cluster

Typical latency numbers

L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA operation 1.5 ns 4 cycles

L2 cache reference/hit 5 ns 12 ~ 17 cycles

L3 cache hit 16-40 ns 40-300 cycles

256MB main memory reference 75-120 ns TinyMemBench on
"Broadwell" E5-2690v4

Send 4KB message between hosts 1-10 µs MPICH on 10-100Gbps

Read 1MB sequentially from disk 5,000,000 ns 5 ms
~200MB/sec hard disk (seek time would be additional latency)
Random Disk Access (seek+rotation) 10,000,000 ns 10 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

From:

Locality is important. 50

https://gist.github.com/understeer/4d8ea07c18752989f6989deeb769b778

Basic MPI constructs

• MPI_COMM_SIZE
– how many processes are there in the world?

• MPI_COMM_RANK
– what is my logical number (rank) in this world?

• MPI_SEND (var, receiverRank)
– specify data to be sent in message and who will receive it
– data can be an entire array (with stride)

• MPI_RECV (var, senderRank)
– whom to receive from and where to store received data

0 1

Flat name space of processes
Rank:process ID

Master

………..Rank

Programming Model

• Single Program Multiple Data (SPMD) model
• Program is executed by all processes
• Use conditionals to specify that only some

processes should execute a statement
– to execute only on master:

if (rank == 0) then …;

/*The Parallel Hello World Program*/
#include <stdio.h>
#include <mpi.h>

main(int argc, char **argv)
{

int myRank;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

printf("Hello World from Node %d\n", myRank);

MPI_Finalize();
}

Hello World

Collective communication
• Broadcast

– some process (usually root) wants to send value
to all other processes

• One solution:
– use a loop with MPI_SEND
– O(P) time but P is very big in clusters

• Better solution:
– tree of processes
– O(log(P)) time

• MPI_BCAST(var, rootRank)
• Similar collective for reductions

– MPI_Reduce(var,result,MPI_SUM,rootRank)
– result: variable on process rootRank that will

contain the final result
– var: contribution from this process
– MPI_SUM: reduction operation is addition

root

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[]) {

double mypi = 0.0;
[...snip...]

MPI_Bcast(&num_segs, 1, MPI_INT, 0, MPI_COMM_WORLD);

double width = 1.0 / (double) num_segs;
for (int i = rank + 1; i <= n; i += size)

mypi += width * sqrt(1 – (((double) i / num_segs) * ((double) i / num_segs));

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

4 * pi, fabs((4 * pi) - PI25DT));
[...snip...]

}

55Introduction to MPI, Argonne (06/26/2017)

Tell all processes how many
rectangles there are

Calculate my
share of pi

Send the result to
rank 0 and calculate
the total at the same

time

Example: Pi in C

Data structures

• Since there is no global
memory, data structures
have to partitioned
between processes

• No MPI support: entirely
under the control of
application program

• Common partitioning
strategies for dense
arrays
– block row, block column,

2D blocks, etc.

Summary

• Low-level shared-memory and distributed-
memory programming in pThreads and MPI can
be very tedious

• Higher-level abstractions are essential for
productivity

• Major problems
– efficient implementation
– performance modeling: changing a few lines in the

code can change performance dramatically
• Lots of work left for Stephanies

	A Programmer’s View �of �Shared and Distributed Memory�Architectures
	Overview
	�Shared-memory Architectures�for �Programmers
	Moore’s Law
	Intel Skylake chip
	Shared-memory m/c: �cartoon picture
	Typical latency numbers
	Architecture/software boundary
	Cache coherence problem
	One solution
	Better solution: �write-invalidate protocol
	False-sharing
	Summary
	Atomic instructions
	Data-race illustration
	Solution
	Limitations of atomic instructions
	pThreads library:�low-level shared-memory programming
	Threads
	Thread Basics: Creation and Termination
	Terminating threads
	Example
	Output
	Synchronization
	Join
	Critical section in code
	Mutex-locks
	Pthreads API
	Spin-locks/trylocks
	Implementing locks using swap
	Application: numerical integration
	Abstraction
	Solution (I)
	Code
	Slide Number 35
	Slide Number 36
	Performance
	Solution (II)
	Slide Number 39
	Problem: false-sharing
	Solution (III)
	Slide Number 42
	Numerical Integration Versions
	Performance
	Performance
	Summary
	Distributed-memory programming
	Clusters and data-centers
	Cartoon picture of cluster
	Typical latency numbers
	Basic MPI constructs
	Programming Model
	Hello World
	Collective communication
	Example: Pi in C
	Data structures
	Summary

