Implementing the Operator Formulation

Operator formulation of algorithms

Active node/edge:

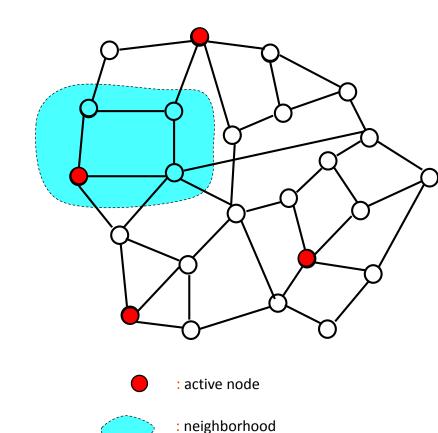
site where computation is needed

Operator:

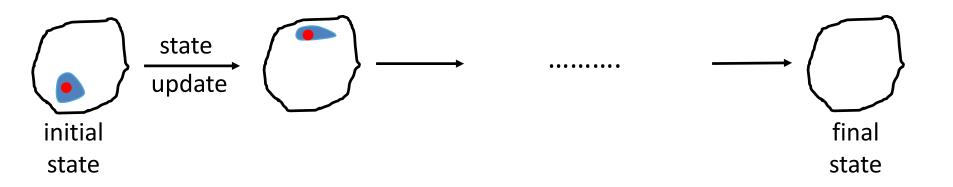
- local view of algorithm
- computation at active node/edge
- neighborhood: data structure elements read and written by operator

• Schedule:

- global view of algorithm
- unordered algorithms:
 - active nodes can be processed in any order
 - all schedules produce the same answer but performance may vary
- ordered algorithms:
 - problem-dependent order on active nodes



von Neumann programming model



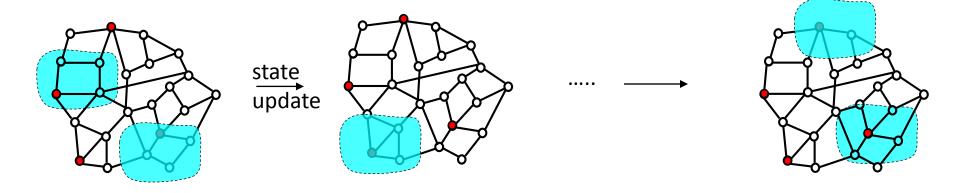
Program counter

State update: assignment statement (local view)

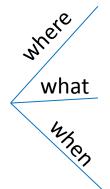
Schedule: control-flow constructs (global view)

von Neumann bottleneck [Backus 79]

Data-centric programming model



Program Execution

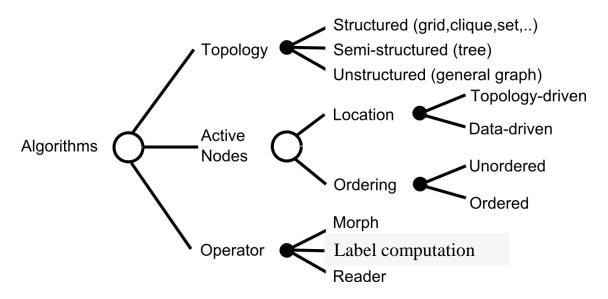


Active nodes

State update: operator (local view)

Schedule: ordering between active nodes (global view)

TAO terminology for algorithms



Active nodes

- Topology-driven algorithms
 - Algorithm is executed in rounds
 - In each round, all nodes/edges are initially active
 - Iterate till convergence
- Data-driven algorithms
 - Some nodes/edges initially active
 - Applying operator to active node may create new active nodes
 - Terminate when no more active nodes/edges in graph

Operator

- Morph: may change the graph structure by adding/removing nodes/edges
- Label computation: updates labels on nodes/edges w/o changing graph structure
- Reader: makes no modification to graph

Algorithms we have studied

Mesh generation

Delaunay mesh refinement: data-driven, unordered

SSSP

- Chaotic relaxation: data-driven, unordered
- Dijkstra: data-driven, ordered
- Delta-stepping: data-driven, ordered
- Bellman-Ford: topology-driven, unordered

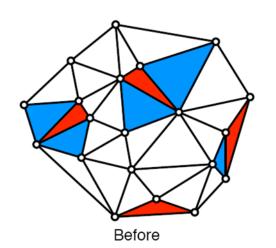
Machine learning

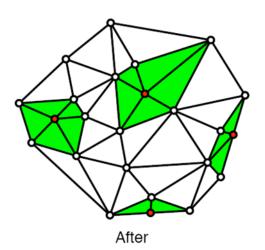
- Page-rank: topology-driven, unordered
- Matrix completion using SGD: topology-driven, unordered

Computational science

Stencil computations: topology-driven, unordered

Parallelization of Delaunay mesh refinement

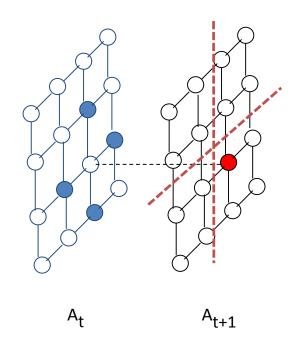




- Each mutable data structure element (node, triangle,..) has an ID and a mark
- What threads do:
 - nhoodElements ← {}
 - Get active element from worklist, acquire its mark and add element nhoodElements
 - Iteratively expand neighborhood, and for each data structure element in neighborhood, acquire its mark and add element to nHoodElement
 - When neighborhood expansion is complete, apply operator
 - If there are newly created active elements, add them to the worklist
 - Release marks of elements in nhoodElements set
 - If any mark acquisition fails, release marks of all elements in nhoodElements and put active element back on worklist
- Optimistic (speculative) parallelization

Parallelization of stencil computation

- What threads do:
 - there are no conflicts so each thread just applies operator to its active nodes
- Good policy for assigning active nodes to threads:
 - divide grid into 2D blocks and assign one block to each thread
 - this promotes locality
- Static parallelization: no need for speculation



Jacobi iteration, 5-point stencil

```
//Jacobi iteration with 5-point stencil

//initialize array A

for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]

temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:

A(i,j) = temp(i,j)
```

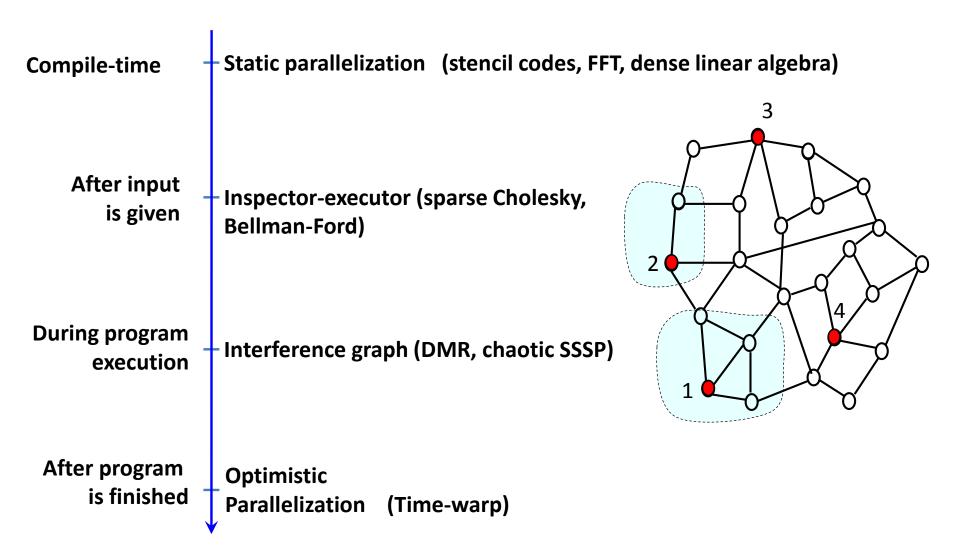
Questions

- Why can we parallelize some algorithms statically while other algorithms have to parallelized at run time using optimistic parallelization?
- Are there parallelization strategies other than static and optimistic parallelization?
- What is the big picture?

Binding time

- Useful concept in programming languages
 - When do you have the information you need to make some decision?
- Example: type-checking
 - Static type-checking: Java, ML
 - type information is available in the program
 - type correctness can be checked at compile-time
 - Dynamic type-checking: Python, Matlab
 - types of objects are known only during execution
 - type correctness must be checked at runtime
- Binding time for parallelization
 - When do we know the active nodes and neighborhoods?

Parallelization strategies: Binding Time

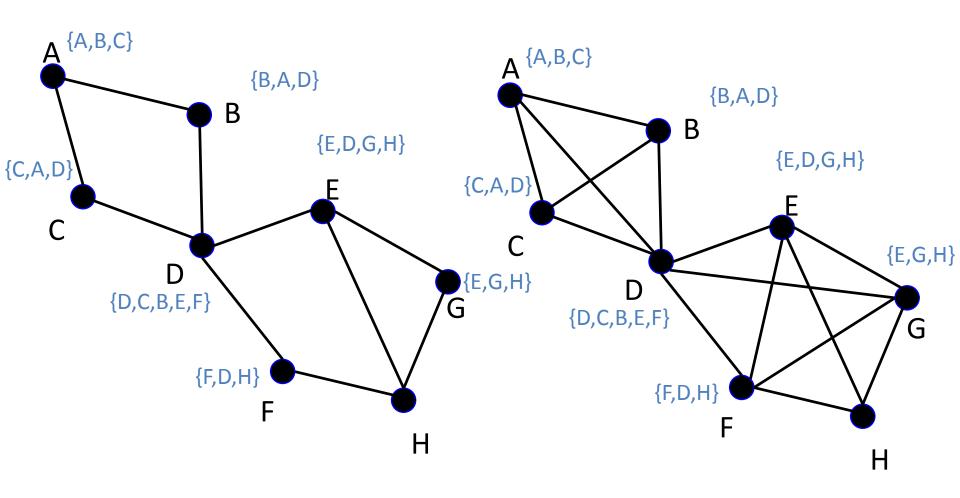


"The TAO of parallelism in algorithms" Pingali et al, PLDI 2011

Inspector-Executor

- Figure out what can be done in parallel
 - after input has been given, but
 - before executing the actual algorithm
- Useful for topology-driven algorithms on graphs
 - algorithm is executed in many rounds
 - overhead of preprocessing can be amortized over many rounds
- Basic idea:
 - determine neighborhoods at each node
 - build interference graph
 - use graph coloring to find sets of nodes that can be processed in parallel without synchronization
- Example:
 - sparse Cholesky factorization
 - we will use Bellman-Ford (in practice Bellman-Ford is implemented differently)

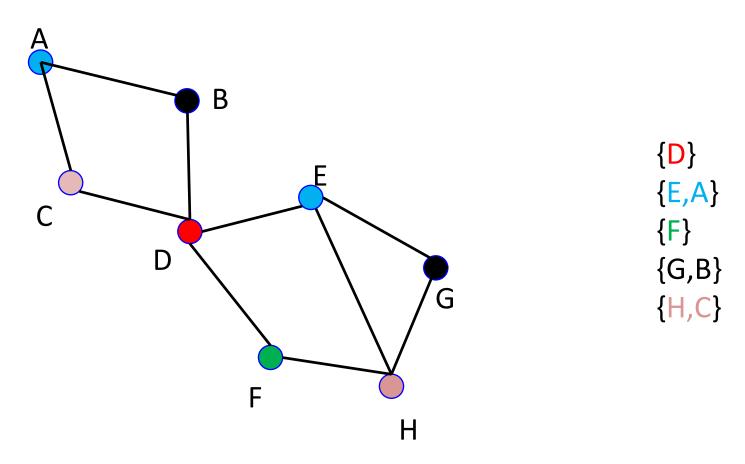
Inspector-Executor



Neighborhoods of activities

Interference graph

Inspector-Executor



Neighborhoods of activities

- Nodes in a set can be done in parallel
- Use barrier synchronization between sets

Graph representations: how to store graphs in memory

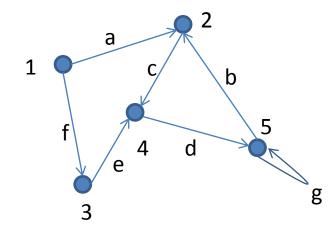
Graph-matrix duality

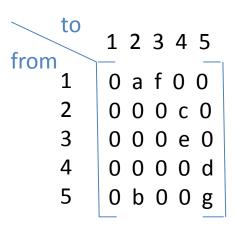
Graph (V,E) as a matrix

- Choose an ordering of vertices
- Number them sequentially
- Fill in |V|x|V| matrix
 - A(i,j) is w if graph has edge from node i to node j with label w
- Called adjacency matrix of graph
- Edge (u \rightarrow v):
 - v is *out-neighbor* of u
 - u is in-neighbor of v

Observations:

- Diagonal entries: weights on self-loops
- Symmetric matrix ←→ undirected graph
- Lower triangular matrix ←→ no edges from lower numbered nodes to higher numbered nodes
- Dense matrix ←→ clique (edge between every pair of nodes)





Sparse graphs

Terminology:

- Degree of node: number of edges connected to it
- (Average) diameter of graph: average number of hops between two nodes

Power-law graphs

- small number of very high degree nodes (see next slide for example)
- low diameter
 - "six degrees of separation" (Karinthy 1929, Milgram 1967), on Facebook, it is 4.74
- typical of social network graphs like the Internet graph or the Facebook graph

Uniform-degree graphs

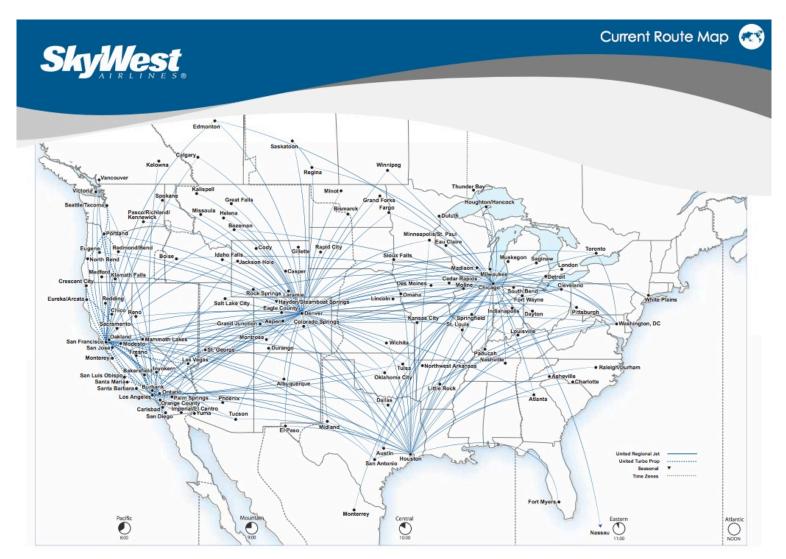
- nodes have roughly same degree
- high diameter
- road networks, IC circuits, finite-element meshes

Random (Erdös-Rènyi) graphs

- constructed by random insertion of edges
- mathematically interesting but few real-life examples

Node degree distribution of power-law graphs

Airline route map: power-law graph

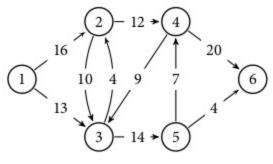


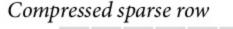
Road map: uniform-degree graph

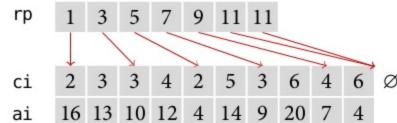
Three storage formats: CSR, CSC, COO

Coordinate storage

1	2	4	5	3	1	2	3	4	5
2	4	6	6	5	3	3	2	3	4
16	12	20	4	15	13	10	4	9	7

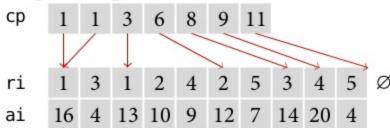






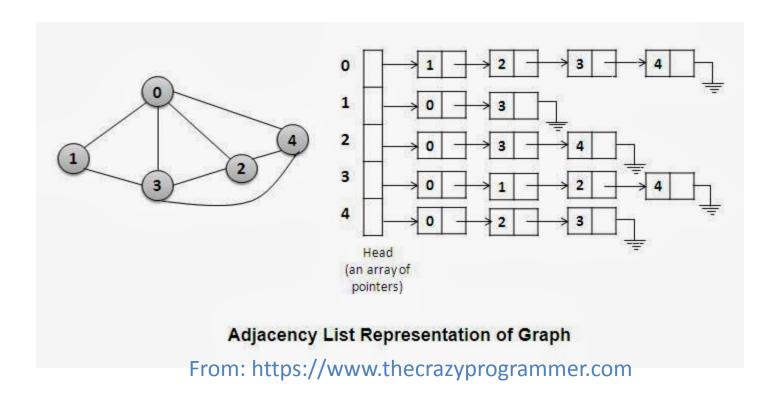
I	0	16 0 4 0 0	13	0	0	0]
	0	0	13 10	12	0	0
	0 0 0 0 0	4	0 9	0	0 14	0 0 0 20 4 0
	0	0	9	0	0	20
	0	0	0	7	0	4
	0	0	0	0	0	0

Compressed sparse column



Labels on nodes are stored in a separate vector (not shown)

Adjacency list representation



Permits you to add and remove edges from graph

Deleting edges: often it is more efficient to just to mark an edge as deleted rather than delete it physically from the list

Graph sizes

Inputs	rmat28	kron30	clueweb12	wdc12
V	268M	1073M	978M	3,563M
E	4B	11B	42B	129B
E / V	16	16	44	36
Size (CSR)	35GB	136GB	325GB	986GB

Shared-memory Galois System

Galois system

Parallel program = Operator + Schedule + Parallel data structures

Ubiquitous parallelism:

- small number of expert programmers (Stephanies) must support large number of application programmers (Joes)
- cf. SQL

Galois system:

- Stephanie: library of concurrent data structures and runtime system
- Joe: application code in sequential C++
 - Galois set iterator for highlighting opportunities for exploiting ADP

Stephanie: Parallel data structures and runtime system

Hello graph Galois Program

```
#include "Galois/Galois.h"
#include "Galois/Graphs/LCGraph.h"
struct Data { int value; float f; };
typedef Galois::Graph::LC CSR Graph<Data,void> Graph;
                                                                                           Data structure
typedef Galois::Graph::GraphNode Node;
                                                                                            Declarations
Graph graph;
struct P {
void operator()(Node n, Galois::UserContext<Node>& ctx) {
                                                                                              Operator
  graph.getData(n).value += 1;
int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
 Galois::for each(graph.begin(), graph.end(), P());
                                                                                           Galois Iterator
return 0;
```

Parallel execution of Galois programs

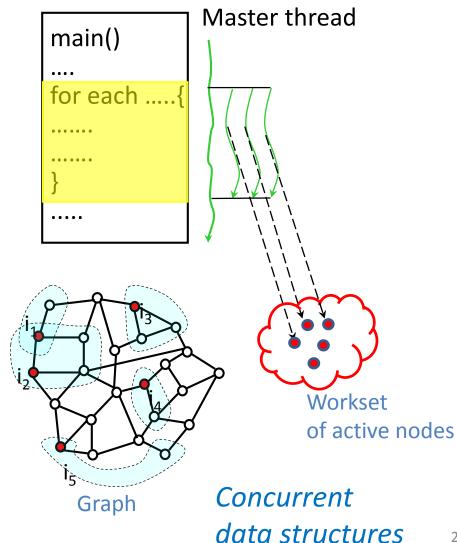
Application (Joe) program

- Sequential C++
- Galois set iterator: for each
 - New elements can be added to set during iteration
 - Optional scheduling specification (cf. OpenMP)
 - Highlights opportunities in program for exploiting amorphous data-parallelism

Runtime system

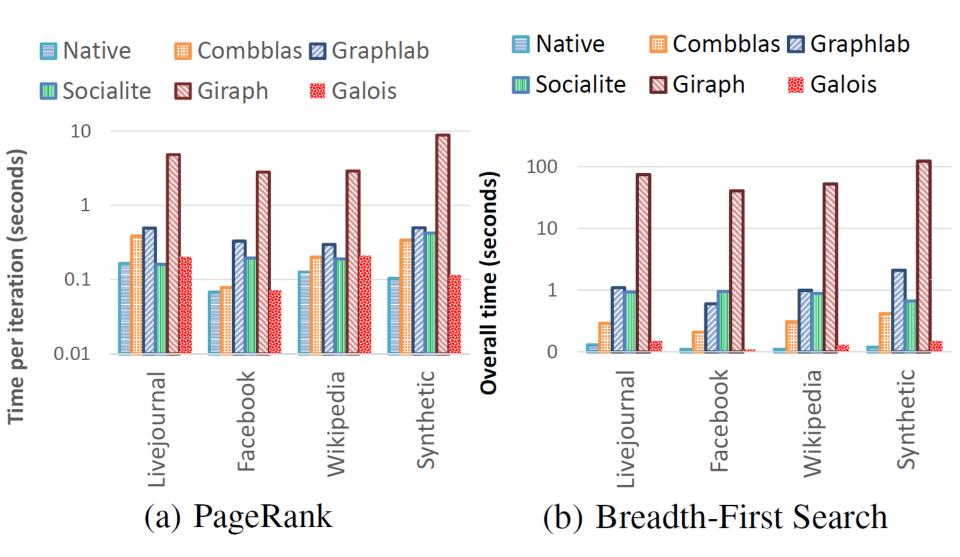
- Ensures serializability of iterations
- Execution strategies
 - Optimistic parallelization
 - Interference graphs

Application Program



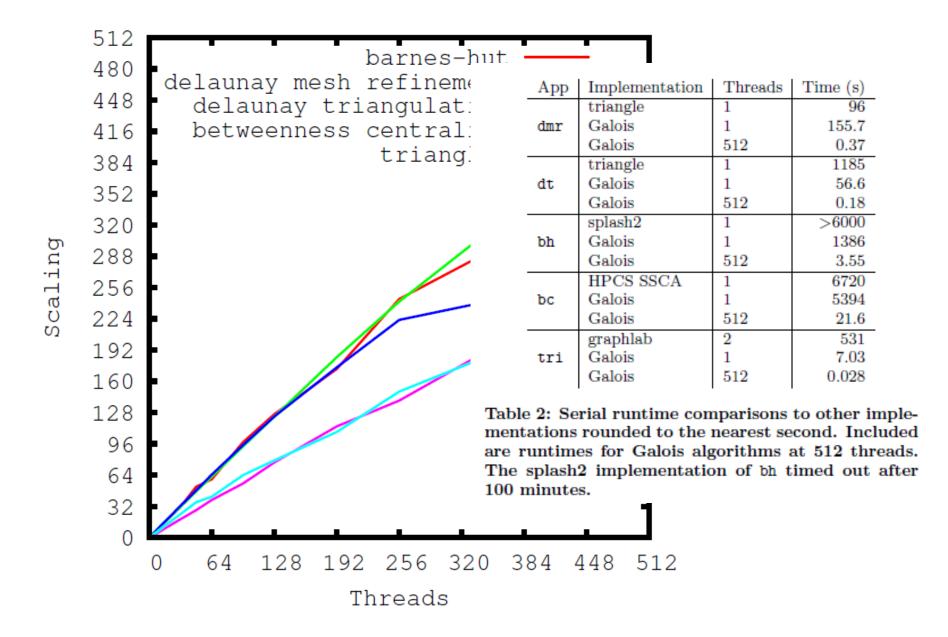
PERFORMANCE STUDIES

Intel Study: Galois vs. Graph Frameworks



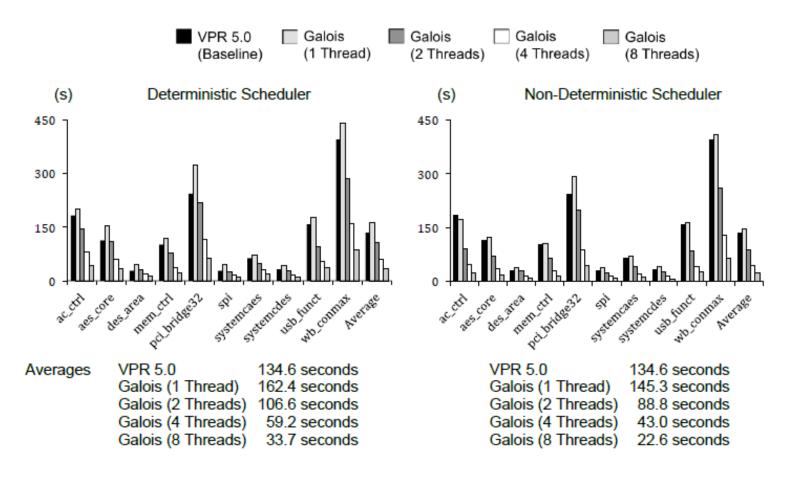
"Navigating the maze of graph analytics frameworks" Nadathur et al SIGMOD 2014

Galois: Performance on SGI Ultraviolet



FPGA Tools

Maze Router Execution Time



Moctar & Brisk, "Parallel FPGA Routing based on the Operator Formulation"
DAC 2014

<u>Summary</u>

- Finding parallelism in programs
 - binding time: when do you know the active nodes and neighborhoods
 - range of possibilities from static to optimistic
 - optimistic parallelization can be used for all algorithms but in general, early binding is better
- Shared-memory Galois implements some of these parallelization strategies
 - focus: irregular programs