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Abstract. Probabilistic programming aims to help users make deci-
sions under uncertainty. The user writes code representing a probabilistic
model, and receives outcomes as distributions or summary statistics. We
consider probabilistic programming for end-users, in particular spread-
sheet users, estimated to number in tens to hundreds of millions. We
examine the sources of uncertainty actually encountered by spreadsheet
users, and their coping mechanisms, via an interview study. We examine
spreadsheet-based interfaces and technology to help reason under uncer-
tainty, via probabilistic and other means. We show how uncertain values
can propagate uncertainty through spreadsheets, and how sheet-defined
functions can be applied to handle uncertainty. Hence, we draw conclu-
sions about the promise and limitations of probabilistic programming for
end-users.

1 Introduction

The1 purpose of this paper is to bring together two rather distinct approaches to
decision making under uncertainty: spreadsheets and probabilistic programming.
We start by introducing these two approaches.

1.1 Background: Spreadsheets and End-User Programming

The spreadsheet is the first “killer app” of the personal computer era, starting
in 1979 with Dan Bricklin and Bob Frankston’s VisiCalc for the Apple II [15].
The primary interface of a spreadsheet—then and now, four decades later—is
the grid, a two-dimensional array of cells. Each cell may hold a literal data
value, or a formula that computes a data value (and may depend on the data
in other cells, which may themselves be computed by formulas). Spreadsheets
help democratise computing by allowing computer users to create their own
customised calculations based on their own data. They are highly flexible and
general-purpose, capable of performing a huge variety of jobs for a great many
users in their working or personal lives.

Spreadsheet formulas comprise calls to a wide collection of built-in algo-
rithms, encapsulated in functions known as worksheet functions. Formulas typi-
cally act on strings, numbers, two-dimensional arrays, and can treat fragments of
the grid as arrays. Formulas may consist of complex, nested expressions, includ-
ing conditionals and other forms of control flow. For these and other reasons,

1 Draft of June 17, 2019. Please send comments to adg@microsoft.com.
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spreadsheets can be viewed as code [16], and spreadsheet users are canonical
examples of end-user programmers [18]: people who write code primarily for
their own use. Even though they write code, end-user programmers are usually
not professional developers. An end-user programmer often has little intrinsic
interest or education in computing but instead wishes to get some job done with
the spreadsheet. They are “business professionals or scientists or other kinds of
domain specialists whose jobs involve computational tasks” [24].

Spreadsheets often contain uncertain data: for example, academics may deal
with noise and missing data in their data sets, managers may have to make
business decisions based on projected sales data, and project leaders have to
adapt schedules based on estimated workload. Some of the core affordances of
spreadsheets are mechanisms to deal with uncertainty: for instance, uncertainty
about future events can be modelled simply by trying out different parameters
and immediately seeing an updated model. Due to their flexibility, ubiquity, and
low knowledge barriers, spreadsheets are acknowledged to be a “breakthrough
technology for practical modeling” [28]. Still, this paper considers some proposed
additions to spreadsheets to propagate uncertain values through calculations and
models.

1.2 Background: Probabilistic Programming

Let’s turn to another approach to decision making under uncertainty: statistical
models. The purpose of a statistical model is to infer insights from observed
data. Much expertise is needed to write, and interpret the results of, statistical
inference algorithms, such as randomised Monte Carlo methods or deterministic
message-passing. The aim of probabilistic programming [12] is to empower do-
main experts and expert statisticians to get the benefits of statistical modelling
and machine learning, without needing expertise in writing inference algorithms.
The idea is that the user specifies a statistical model by writing a piece of code,
and delegates the difficulty of statistical inference to an automatic compiler.

Probabilistic programming languages typically comprise a deterministic core
language, plus (1) operations to sample from probability distributions, (2) op-
erations to condition on observations, and (3) operations to infer properties of
the resulting probability distributions. BUGS [9] is the first probabilistic pro-
gramming language, first developed in 1989 [14], and used extensively in several
textbooks for statisticians and social scientists [8,25,20]. Infer.NET [23], devel-
oped since 2004, is used at scale in Microsoft. Probabilistic programming en-
vironments with graphical representations have also been developed, to aid the
understanding of programmers new to the paradigm [13]. More recently, Stan [6]
and PyMC3 [21] have also gained wide popularity, and there is a wide range of
research languages, including Church [10], Figaro [27], Anglican [37], and many
others.
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programming in spreadsheets
(tens to hundreds of millions of users)

>>>
probabilistic programming (without conditioning) in spreadsheets

(hundreds of thousands of users)
>

probabilistic programming in probabilistic programming languages
(tens of thousands of users)

(Published estimates of spreadsheet users range from tens [32] to hundreds
of millions https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-

by-half-a-billion-people-worldwide/. Palisade, the maker of @Risk, claims use
by over 150,000 decision makers. See https://www.palisade.com/about/about.

asp. RStan has about 20K downloads per month and the Stan website has
about 15K unique visitors per month (personal communication, Matthijs Vákár,
May 2019). See also https://discourse.mc-stan.org/t/estimating-popularity-

of-stan-and-related-packages/8768.)

Table 1: Estimated users of probabilistic programming and of spreadsheets.

1.3 Bringing Probabilistic Programming to the Spreadsheet

Why might we want to enable probabilistic programming in spreadsheets? As
we have already discussed, a substantial amount of decision making around the
world is supported by data in spreadsheets. Many models of uncertain situations
such as financial plans, events, scientific experiments, and so on, are built using
spreadsheet formulas by end-user programmers.

Thus, the direction seems inevitable: let’s take probabilistic programming
to the data, to the spreadsheet! These observations have led researchers on
probabilistic programming languages (including one of the authors) to design
probabilistic programming systems aimed towards spreadsheet users. Examples
include Tabular [11] and Invrea’s Scenarios [39].

In fact, probabilistic programming has existed in spreadsheets from early on,
long before the interest in probabilistic programming for statistics and machine
learning. The formula RAND() draws at random from the uniform distribution
on the unit interval. The formula NORM.INV(RAND(),0,1) draws at random from
the standard normal distribution. Writing Monte Carlo simulations using such
randomized spreadsheet formulas is a simple form of probabilistic programming.
Monte Carlo simulations can be implemented, for example, by arranging a ran-
domised computation in a row of a sheet, and then replicating the row many
times.2 Books on spreadsheet modelling devote whole chapters to this idiom
[28,38]. Savage [31] advocates probabilistic modelling using features such as Ex-
cel’s data tables.3 Spreadsheet add-ins such as @Risk (pronounced ‘at risk’, first
released in 1987) or Crystal Ball support probabilistic programming without

2 See https://www.youtube.com/watch?v=BQv2Uyea8i4&t=27s, for example.
3 See https://www.probabilitymanagement.org/.

https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://www.palisade.com/about/about.asp
https://www.palisade.com/about/about.asp
https://discourse.mc-stan.org/t/estimating-popularity-of-stan-and-related-packages/8768
https://discourse.mc-stan.org/t/estimating-popularity-of-stan-and-related-packages/8768
https://www.youtube.com/watch?v=BQv2Uyea8i4&t=27s
https://www.probabilitymanagement.org/
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tedious replication by the user. Across all these techniques, conditioning of un-
known variables appears to be uncommon, but can be achieved (inefficiently) via
rejection sampling. (Probabilistic programming languages support conditioning,
and use inference techniques that are far more efficient than rejection sampling.)

Intriguingly, we can reason that there are more users of probabilistic pro-
gramming in spreadsheets than in actual probabilistic programming languages
such as BUGS or Stan. Table 1 shows rough estimates of orders of magnitude
of users today. We cannot be certain, of course, because we have only rough
estimates of usage numbers. And, end-user probabilistic programming does ap-
pear to be a relatively miniscule subset of all end-user programming: the use
of formulas for probabilistic modelling is probably a tiny fraction of the use of
formulas in general.

1.4 How Would Probabilistic Programming Help Spreadsheet
Users?

To understand how better support for probabilistic programming might help
end users, we conducted an interview study of how spreadsheet users manage
uncertainty. The study used thematic analysis [5], a qualitative method, common
in psychology, in which transcripts of the interviews are coded (that is, labelled
by researchers) to mark significant phenomena, and the results aggregated.

This paper reports some technical background, the interview study itself, and
the design implications of the study.

We begin in Section 2 by describing two different existing proposals for
spreadsheet extensions that can deal with uncertainty. First, we describe un-
certain values, that can be used like ordinary certain values, and that propagate
uncertainty through calculations. We describe three formalisms for uncertain
values, including a form of probabilistic programming for spreadsheets. Second,
we describe sheet-defined functions, and how they can be applied to model un-
certainty.

Section 3 describes our interview study and its findings, including a categori-
sation of the types of uncertainty encountered by spreadsheet users in spread-
sheets they had constructed, and also a categorisation of the coping strategies
adopted by the spreadsheet users.

Section 4 describes design implications of the interview study, and explores
how the formalisms of Section 2 apply to the categorisations of uncertainty faced
by users in Section 3.

To the best of our knowledge, this work is the first study of how end-users
deal with uncertain values in spreadsheets, and the first to discuss how various
candidate spreadsheet extensions might match the potential needs of end-users.
We are the first to suggest using arrays of samples as a representation of uncertain
values in Streit’s framework, and to suggest probabilistic programming using
sheet-defined functions.
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2 Spreadsheet Extensions for Uncertainty

We consider how spreadsheets can be extended to better handle different types
of uncertainty. We consider two extensions. First, Streit [35] proposed to store
different sorts of uncertain value in cells, and have these uncertain values prop-
agate through calculations. Second, Peyton Jones, Blackwell, and Burnett [26]
proposed sheet-defined functions as a general-purpose mechanism for end-users
to define new worksheet functions by an example calculation in a sheet. We ex-
plain how both these mechanisms can help users manage uncertainty. We do so
with a running example, which we present next.

2.1 Example: Clara’s Budget

Let us consider Clara,4 a fictitious character who represents a common category
of spreadsheet end-user. She is a confident computer user. She does not identify
as a programmer, but does use spreadsheets in her work and personal life.

We join Clara as she is preparing a spreadsheet to help decide whether she
should purchase a sofa, given her budget for this month. The equations below
show her assignments of data and formulas to cells.

E1 = "Budget for Jan 2018"

E3 = "Income"; F4 = 2000
E5 = "Expenses"

E6 = "Rent"; F6 = 1100 // A certain cost
E7 = "Commute"; F7 = 85 // Another certain cost
E8 = "Sofa!"; F8 = 700 // Clara is deciding whether to buy this item
E9 = "Utilities"; F9 = 100 // But she is uncertain about her utilities bill
E10 = "Total expenses"; F10 = SUM(F6:F9) // value: 1985
E12 = "Balance"; F12 = F4−F10 // value: 15

(Instead of the standard view of the spreadsheet, which shows the values of for-
mulas but not the formulas themselves, we use a textual notation for spreadsheets
known as Calculation View [29], and show values of formulas in comments.)

Clara lists out her certain costs, rent and commute, the cost of the sofa, and
puts in her estimate of the utilities bill. She calculates in F12 the balance of her
income given her total expenses, calculated by the formula in F10.

Clara wants the sofa but doesn’t want her total expenses to exceed her in-
come. She is uncertain about her utilities bill. How can the spreadsheet help her
decide what to do?

2.2 Managing Uncertainty with Uncertain Values

In this section, we turn to a technical approach to handling uncertainty in spread-
sheets based on storing uncertain values in cells. Most spreadsheet systems allow

4 To be clear, Clara is a fictional character, contrived to illustrate these technical
solutions to representing uncertainty. Our interview study looked at how existing
users deal with uncertainty in today’s spreadsheets. It would be interesting in future
to get the reactions of real people to the technical solutions presented in this section.
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a cell to hold only an individual value, such as a text or a number. Streit [35]
proposed and implemented a spreadsheet where a cell can hold an value of an
uncertainty type, such as a number explicitly tagged as an estimate, or a numeric
interval like 7 ± 2, or a probability distribution such as a normal distribution
with parameters for mean and standard deviation.

Other researchers have proposed aggregate values in cells, such as arrays
[2], which could in principle represent uncertain values, but to the best of our
knowledge Streit was the first to consider uncertain values explicitly.

Streit proposed to enrich the spreadsheet interface in several ways:

1. The user can input uncertainty information into cells. Input can be via a tex-
tual notation, such as a numeric range. Input could also be assisted by some
interface that gathers parameters of a probability distribution, for instance.

2. Uncertainty information propagates through formula evaluation.
3. The presence of uncertainty information is indicated within cells. A most

likely value might be displayed, for example, together with an indication
that the value is uncertain.

Unlike Streit, in the following classification we do not consider visualization
techniques. Visualization of uncertainty [36] is an important subject, but out-
side the scope of this paper. In terms of semantics, uncertain values and their
propagation through formula evaluation are a kind of computational effect [1].
To the best of our knowledge, there has been no formal semantics for Streit’s
uncertain values. That would be an interesting challenge for future research.

Next, we discuss three kinds of uncertain value—Qualitative, Possibilistic,
and Probabilistic—that could be implemented in spreadsheet systems.

Qualitative The simplest form of uncertain value is an estimate, a qualitative
indication that the value is approximate.

– The function ESTIMATE(V) returns the value V tagged as uncertain.

Clara can indicate that she is uncertain about her utilities bill as follows:

E9 = "Utilities"; F9 = ESTIMATE(100)

Estimates propagate through calculation, so that the formulas depending on
cell F9 also return estimates.

F10 = SUM(F6:F9) // value: ESTIMATE(1985)
F12 = F4−F10 // value: ESTIMATE(15)

Clara’s simple spreadsheet gains little from this qualitative tracking of un-
certainty. Still, larger spreadsheets with many values, some uncertain, some not,
may benefit more as there would be a clear indication of which results are certain,
in spite of the presence of uncertain values.

The implementation of qualitative uncertainty as the function ESTIMATE(V)

is merely one possibility. One might also imagine an alternative implementation,
invoked through buttons/menus, where the ‘tag’ is applied as cell metadata,
much like cell formatting.
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Possibilistic There are several possibilistic approaches to uncertainty, where an
uncertain value represents a set of possible values. In one, the multiple scenarios
approach, the uncertain value consists of a tuple of values, each corresponding
to one of N scenarios. For example, N = 3 could represent best case, most-likely
case, and worst case.

– The function SCENARIOS(V1,...,VN) returns an uncertain value representing
N scenarios.

Suppose Clara considers the best case cost of her utilities to be 50, the most-
likely 100, and the worst case to be 150. She can write this as follows:

E9 = "Utilities"; F9 = SCENARIOS(50,100,150)

These scenarios propagate through her calculations like this:

F10 = SUM(F6:F9) // value: SCENARIOS(1935,1985,2035)
F12 = F4−F10 // value: SCENARIOS(65,15,−35)

The spreadsheet tells Clara that, given her assumptions, her best case balance
is 65, most-likely 15, and worst case -15.

Having a multiple-scenario value propagate through the sheet is equivalent to
Clara trying out the three input values one at a time: the classic ‘what-if’ analysis
afforded by spreadsheets. Still, the advantage over one at a time entry is that
the spreadsheet can display the three possibilities side-by-side in the cell. Also,
if the other costs are uncertain, Clara can enter those too as multiple-scenarios.
Propagation automatically combines all the best-cases, all the most-likely cases,
and all the worst-cases, which is easier than for Clara to manually manage the
correspondences.5

Another form of possibilistic uncertainty, considered by Streit and others, is
a numeric interval, where propagation consists of interval arithmetic [17].

Probabilistic A possibilistic uncertain value consists of a set of possible values
(such as a finite set of scenarios or an infinite set of real numbers in a numeric in-
terval). Additionally, a probabilistic uncertain value is a probability distribution:
roughly a possibilistic value, a set, together with a weight for each value.

A simple way to introduce weighted estimates is the triangular distribution:

– The function DIST.TRIANG(a, b, c) constructs a value distributed according
to a triangular distribution, with lower bound a, upper bound b, and mode
c, where a < b and a ≤ c ≤ b.

The triangular distribution is a simple way to capture subjective judgments
of probabilities, where c is someone such as Clara’s best guess, and a and b are

5 Some versions of Microsoft Excel provide a specialist tool, the Scenario Manager,
that evaluates multiple copies of a template sheet, one copy for each scenario, and
produces a report. The Scenario Manager is a wizard, outside the formula language.
Its results are not subject to automatic recalculation. See https://www.youtube.

com/watch?v=c0tdVlPvFZ4.

https://www.youtube.com/watch?v=c0tdVlPvFZ4
https://www.youtube.com/watch?v=c0tdVlPvFZ4
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subjectively the intuitive minimum and maximum. The shape of the density of
this continuous distribution is a triangle that peaks at c and falls to zero at a
and b.

If Clara enters a probabilistic approximate value using this function it prop-
agates as follows.

E9 = "Utilities"; F9 = DIST.TRIANG(50,150,100)
F10 = SUM(F6:F9) // value: DIST.TRIANG(1935,2035,1985)
E12 = "Balance"; F12 = F4−F10 // value: DIST.TRIANG(−35,65,15)

In the case above, the distribution can be propagated exactly. Streit only
considered propagation of parametric probability distributions (such as the fam-
ilies of normal distributions or triangular distributions) that can be calculated
exactly. We cannot always compute propagated distributions exactly, but in-
stead approximate representations based on Monte Carlo sampling can be used.
A general but approximate representation of a probabilistic uncertain value is
an array of samples from the distribution. Such an array is known as a stochastic
information packet (SIP) [30].6

How does the spreadsheet represent a probabilistic uncertain value in a cell?
A simple option is to show “∼15”, that is, the mean 15 together with the sign “∼”
to indicate the uncertainty. A more sophisticated representation is to visualize
the density, perhaps as a histogram, although it takes practice for end users to
make sense of a density.

In Clara’s case, she may be most interested in the chance that her balance
goes below zero. If she writes the Boolean formula F12<0 to test this event,
propagation of the triangular distribution in F12 yields the probability that the
formula is true.

E13="Chance of overdraft"; F13=F12<0 // value: 25%

So with probabilistic assumptions, the spreadsheet can tell Clara the probability
of modelled events such as her overdraft. In this case, she really wants that sofa,
and will take the risk!

2.3 Managing Uncertainty with Sheet-Defined Functions

Observe that when considering multiple chosen scenarios in the possibilistic case,
or when considering many randomly drawn scenarios in the probabilistic case,
we are replaying the original spreadsheet model with different parameters.

A user can replay a calculation by copying part of a sheet, and changing
parameter values. Still, this practice is prone to error as the model gets larger,
or if it and its copies need to be updated.

Peyton Jones, Blackwell, and Burnett [26] proposed sheet-defined functions
as an automatic general alternative to manual replication. It is simply the per-
vasive idea of procedural abstraction from programming languages, but applied

6 Use of SIPs to represent probabilistic values is equivalent to the mechanisms used
by @Risk and Crystal Ball. Guesstimate is a spreadsheet-like system that uses SIPs
to represent uncertain values. See https://www.getguesstimate.com/.

https://www.getguesstimate.com/
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to spreadsheets. A sheet-defined function f is specified by a body, a piece of
grid, and has a number of input parameters identified by ranges in the body,
and an output, also identified by a range in the body. A formula f(V1, . . . , Vn)
is computed by making a copy of the body, pasting the values V1, . . . , Vn into
the parameter ranges, evaluating the body, and then returning the value in the
result range.

For example, we can turn Clara’s budget into a sheet-defined function as
follows. The function Budget has a single parameter, the uncertain utilities bill,
held in range F9, and it returns the balance together with a numeric indicator
of whether the balance is overdrawn in the range F12:H12.

function BUDGET( F9 ) returns F12:G12 {
E1 = "Budget for Jan 2018"

E3 = "Income"; F4 = 2000
E5 = "Expenses"

E6 = "Rent"; F6 = 1100 // A certain cost
E7 = "Commute"; F7 = 85 // Another certain cost
E8 = "Sofa!"; F8 = 700 // Clara is deciding whether to buy this item
E9 = "Utilities"; F9 = 100 // This cell is the parameter to the SDF
E10 = "Total expenses"; F10 = SUM(F6:F9)
E12 = "Balance"; F12 = F4−F10; G12 = IF(F12<0,1,0) // Result cells
}

We are relying on an extension [22] of Calculation View [29] for a textual notation
for sheet-defined functions. Instead, an implementation of sheet-defined functions
would provide a graphical interface for the user to specify the function name,
parameters, and other metadata.

Clara can calculate her three scenarios of possibilistic reasoning with the
formulas below. She can write the formula first in C54, and then drag fill to C55

and C56.

B54=50; C54 = BUDGET(B54) // value: {65,0}
B55=100; C55 = BUDGET(B55) // value: {15,0}
B56=150; C56 = BUDGET(B56) // value: {35,1}

In recent spreadsheet systems, an array held in a cell such as C54 spills for
display into adjacent cells.7 In this case, the formula in cell C54 returns the array
{65, 0}, and therefore the cell C54 displays the number 65, and cell D54 displays
the number 0 (that is, second item in the array spilled into the adjacent cell D54.
Similarly, the arrays returned into C55 and C56 spill into the corresponding cells
in column D.

Clara can make changes to her budget just once in the sheet-defined function,
and they automatically propagate to the three scenarios.

Turning to probabilistic reasoning, we start with the observation that a SIP,
the underlying representation for a probabilistic uncertain value, is simply an

7 https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-

array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.office.com/en-us/article/Dynamic-arrays-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
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array. We can achieve the effect of Monte Carlo modelling by mapping the sheet-
defined function for our budget over a SIP array. The array is drawn from the
distribution modelling our probabilistic uncertainty about the parameter.

Here is how Clara can do this in her situation:

B58 = SIP.TRIANGULAR(B54,B56,B55,1000) // column vector of samples
C58 = VMAP(B58,Budget) // returns: SIPs with means {15.51, 25%}

The column vector in B58 has 1000 samples from a triangular distribution.
The function call VMAP(B58,Budget) calculates {bi, oi} = Budget(si) for each
sample si with i ∈ 1..1000, and returns a [1000 × 2] array {bi, oi | i ∈ 1..1000}.
In this example, there is only a single uncertain parameter. To handle N param-
eters, the sheet-defined function would take N arguments, and the input would
be an N -column array of random samples.

We are simply using the advanced encapsulation afforded by sheet-defined
functions to more robustly implement the Monte Carlo simulation idiom de-
scribed earlier in Section 1.3! This is a more robust implementation as the logic
for each trial is defined exactly once and can be easily modified.

Sheet-defined functions and arrays are general-purpose tools, and so there is
no inbuilt interface for viewing the resulting array as a probability distribution.
Still, it is possible to write formulas, or even sheet-defined functions, to calculate
summary statistics of the resulting array.

Clara has learnt probabilistic programming with sheet-defined functions.

3 End-user Behaviour with Uncertainty

We can tell a nice story about Clara, with a tidy punchline, but what is the
reality? We interviewed people who use spreadsheets to start to find out.

We aimed to investigate the following questions:

1. What types of uncertainty do spreadsheet users deal with?
2. How do they manage these various types of uncertainty?

We conducted semi-structured interviews of 11 participants, who walked us
through their spreadsheets. We analysed the audio transcripts of these inter-
views, identifying six qualitatively different types of uncertainty, as well as six
categories of strategies participants used to cope with the uncertainty. A sum-
mary of our study protocol, and the results, follows. These results are presented
in greater detail in our paper “Somewhere Around That Number”[3].

3.1 Interview Study

Participants We interviewed 11 participants who worked in finance, construc-
tion, IT consulting, the oil and gas industry, business administration, and aca-
demic research. The size of participants’ spreadsheets ranged from 40 rows to
thousands of rows. Participants were recruited using convenience sampling via
email invitation and were eligible to participate if they used spreadsheets that
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contained uncertain data. We did not filter participants based on whether they
used spreadsheets for work or personal use, but all participants we recruited
dealt with uncertainty in spreadsheets for work purposes. To elicit participation,
the invitation gave several examples of spreadsheet tasks which could involve
uncertainty, such as budgeting, planning, business forecasting, data collection
and analysis, scientific modelling, and making predictions. Interviews lasted on
average 60 minutes, and participants were reimbursed with a £30 voucher for
an online store.

Procedure We asked participants to bring one or more of their own spread-
sheets which contained uncertain data to the interview session. They were in-
structed to remove any sensitive information that they did not want to share.

In the first part of the session, participants were asked to talk about their
work, and how uncertainty and spreadsheets are a part of this work. In the second
part of the session, we discussed if participants gain insights from uncertainty,
what tools or strategies they use to gain this insight, and what challenges they
perceive in doing so. In the final part, we asked participants to walk us through
their spreadsheets, and explain how these spreadsheets were constructed, and
what they were used for. The session was audio recorded, and participants’
walk-through of their spreadsheets was screen recorded.

Data analysis The audio recordings were transcribed verbatim and analysed
using iterative coding based on an inductive approach of thematic analysis [5].
There was no pre-existing coding scheme, but we did approach the data with
a specific focus to uncover uncertainty types, and user strategies for managing
uncertainty. Through a detailed analysis of the transcripts, we identified key fea-
tures of the spreadsheets and work practices that related to participant concerns
with uncertainty.

3.2 Findings

Types of uncertainty Based on participants’ descriptions of their spread-
sheets during the interviews, we identified six types of uncertainty in spread-
sheets:8estimates, dynamic data, errors, missing data, unfindable data, and un-
traceable data.
8 Our claim is that these six categories are useful distinctions between different kinds

of unknowns arising in our sample of spreadsheets, and by inference in the whole
population of spreadsheets. Estimates, Errors and Missing data are common types
of uncertainty found in earlier work [4,33]. In addition to these uncertainty types,
we found the additional types of uncertainty Dynamic data, Unfindable data, and
Untraceable data.

A common distinction from the literature on uncertainty is between aleatoric
uncertainty, due to some random process, and epistemic uncertainty, due to lack of
knowledge. Our classes of estimates and dynamic data are aleatoric uncertainties,
while our classes of errors, missing data, unfindable data, and untraceable data are
epistemic uncertainties.
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1. Estimates were the most common type of uncertainty among participants,
and refer to approximated values of which the precise value is not known,
such as the expected profit of a project: ‘We’re talking about the future.
We don’t know exactly what’s going to happen. All we can do is make best
estimates’ (P8).

2. Dynamic data refers to data of which the values changed dependent on time,
for instance stock market information.

3. Errors were either (1) data that users believed to be incorrect based on their
prior knowledge and expectations (these could be caused, for example, by
measurement errors, transcription errors), or (2) a spreadsheet error value,
such as those created by mis-typed formulas, or formulas receiving arguments
of incorrect types, or broken links to external sources. Spreadsheet errors
and their sources are an important area of research in their own right, with
sophisticated existing taxonomies [19] that we shall not replicate here.

4. Missing data were values that were not recorded in the dataset, such as gaps
in measured sensor data.

5. Unfindable data is information which in principle could be computed from
data contained within the spreadsheet, but was hard to extract, and was
thus experienced by the user as uncertain. If users were unable to find the
information, they regularly used their own estimate instead. For example,
P7 dealt with timesheets which gave an overview of hours that all employees
of his department had worked per day. He wanted to know how many of
these hours were worked on the weekend, but did not know the correct
spreadsheet formula to retrieve this data from the timesheet: ‘There’s a
second unknown, which is the weekends [...] Well for me it’s difficult, I’m
sure there’s probably people that can extract it out there’ (P7). This type of
uncertainty is particularly interesting, because its presence depends on the
circumstances of the spreadsheet user; it is not merely a static property of
the data itself.

6. Untraceable data refers to data for which the source could not be traced. For
instance, participants described situations where it was unclear whether data
they received from other people was derived from a computational model,
or whether it was ‘completely based on their [colleagues’] intuition’ (P11).

Participants’ strategies to cope with uncertainty Participants described
various strategies to cope with uncertainty in their spreadsheets. Through our
analysis we identified 35 different strategies, which were categorised into six high-
level categories: Minimise, Understand, Communicate, Ignore, Exploit, and Add
uncertainty. This is an extension of the categories observed by Boukhelifa et al.
[4], with a specific focus on spreadsheets (the original categorisation was tool-
agnostic).

1. Minimising uncertainty was the most common strategy. Examples of Min-
imise strategies were to acquire more data, or compare the data with historic
data from past situations to try and come to more accurate estimates.
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Type of un-
certainty

Definition Example quote

Estimates Data approximated by the
user of which the precise
value is not known, such as
the expected number of at-
tendees to an event.

‘The final value will be some-
where around that figure. However,
I haven’t gotten to the point yet
where I’m able to say: it’s in this
range, it’s in the +/- 3% range’
(P8).

Dynamic data Data which is not static and
changes over time, such as
stock market information.

‘When you go to open that [spread-
sheet] next month, the information
has changed’ (P9).

Errors Data that contains errors,
such as formula or transcrip-
tion errors.

‘You also get a few very unusual
values, I seem to get negative infini-
ties quite a lot. Which clearly is not
possible (...) So there’s a whole load
of error values in there’ (P11).

Missing data Data that is missing from
the data set, such as gaps in
measured sensor data.

‘The weather file that’s used to gen-
erate the data there in the other
program is missing large chunks of
wind data (...) That was one of
those kind of reports that was fairly
heavily caveated as being ’We’ve
had to make quite a lot of num-
bers up here, to get any idea of what
might happen with this’ (P6).

Unfindable
data

Data which technically is
contained within a spread-
sheet, but which cannot eas-
ily be found by the user,
such as the total amount
of hours worked on the
weekend in an employee
timesheet. Usually, being
unable to find it, the user
uses an estimate instead.

‘There’s a second unknown [in the
spreadsheet], which is the weekends.
(...) I think that kind of formula
that we’re trying Excel to do is prob-
ably difficult. Well for me it’s diffi-
cult, I’m sure there’s probably peo-
ple that can extract it out there’
(P7).

Untraceable
data

Data from which the user
cannot trace its original
source, and whether or how
it is calculated, such as sub-
jective estimates made by
other people, or complex
and inaccessible formulas.

‘Sometimes it would just be num-
bers in a spreadsheet, and you
couldn’t really identify what the hell
was going on (...) And half the time,
to actually check it, the easiest way
is almost to make a new spreadsheet
doing it your own way, and see if
you get the same number’ (P6).

Table 2: An overview of each of the six types of uncertainty, showing the defi-
nition of each, and an example quote where a participant described the type of
uncertainty.
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Coping
strategy

Definition Example quote

Add The user adds additional uncer-
tainty to a spreadsheet. For exam-
ple, the user is unable to find data
in a sheet, and uses an estimate or
interval instead. In this situation,
data is contained within a spread-
sheet, but cannot easily be found by
the user, and uncertainty is added
by using an approximated value.

Alternatively, a collection of data
points is reduced to one data point,
such as the average value, to make a
large spreadsheet easier to view and
digest.

‘A lot of the time, there are those
things which just aren’t [worth the
effort to figure out the right formula
to extract data]. So they either get
done quite slowly, the manual way,
or they don’t get done at all. And
you get people putting like fudge fig-
ures (...) and say, ‘Oh well it’s any-
where between here and here. That’s
the best we can do’ (P6).

‘It gets very confusing when I start
having dozen sheets, with 1,000
columns, and 10,000 rows in each.
(...) I have a range of values, but the
algorithms only give me an average,
across say 100 points’ (P11).

Communicate The user communicates uncertainty
to others verbally, and through re-
ports and presentations.

Users also communicate uncer-
tainty to themselves, by highlight-
ing cells in their spreadsheets that
contain uncertain data.

‘Although we provide estimates, I
do provide an estimate which is a
hard figure. But what I tell them
[clients] is: it’s around that figure’
(P8).

‘Quite a lot of colouring. Just to
highlight particular aspects. So I’d
do green for a particular area of
what I think ‘These are definites’.
And light-blue or something for un-
knowns’ (P4).

Exploit The user uses the amount of uncer-
tainty in a spreadsheet as a valuable
piece of information about the data.

‘Sometimes it [uncertainty] con-
tributes to the forecast, because you
want to know sometimes if there’s a
specific reason for the missing data’
(P10).

Ignore The user ignores uncertainty, by re-
moving it from the spreadsheet or
replacing it with other values.

‘I use a filter on Excel to filter the
values (...) So I try to identify them
and then find and replace with NAs,
most of the time’ (P11).

Minimise The user minimises uncertainty, by
acquiring more data, or discussing
it with colleagues.

‘We will liaise with our front of-
fice to say, ’Does this look correct?
Have things like this happened in
the past?’ If it’s chartered territory,
the stuff that we’ve seen something
like this before, we can get more of
a better estimate’ (P3).

Understand The user tries to understand un-
certainty by reading literature, dis-
cussing it with colleagues, plotting
data, evaluating the data source,
and analysing a subset of possible
scenarios.

‘I would read as much around the
literature as I possibly can, I will get
in different views that people have
(...). And then I’ll work from all
that to try and inform myself ’ (P2).

Table 3: An overview of the six categories of coping strategies, its definition and
an example quote where a participant gave an example of the strategy.
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2. The second most common strategy was to Understand uncertainty. Partic-
ipants discussed uncertain data with colleagues, read literature on the sub-
ject, researched why the dataset was uncertain, and compared a subset of
alternative scenarios.

3. Participants also tried to Communicate uncertainty to both themselves and
to others. This type of strategy did not necessarily improve people’s un-
derstanding of why data was uncertain, but its aim was to highlight that
there was uncertainty present in the data. To communicate uncertainty to
themselves, participants gave spreadsheet cells different colours, or added
comments. Participants communicated uncertainty to others through pre-
sentations, reports or by providing a verbal narrative.

4. Three participants said they also Ignored uncertainty at times. P6, P10
and P11 explained it could be difficult to conduct analysis on a dataset
that contained errors or missing values, and these were removed during the
analysis process.

5. Sometimes however, it was valuable to know there was uncertainty in a
dataset. In this case, an Exploit strategy was used, and the uncertainty was
extracted or quantified. For example, P11 exploited missing values by adding
weights to them in model building, based on how often they occurred. The
amount of missing values in a dataset could provide valuable information
about what caused the uncertainty, and how important they were to consider.

6. Interestingly, one coping strategy to deal with uncertainty was to minimise
one type of uncertainty, by Adding another type of uncertainty. For example,
if participants dealt with unfindable data that they could not extract from a
spreadsheet, they used an estimate instead. Uncertainty was also added by
only considering a summary or a subset of the data. P11 dealt with datasets
of measured sensor data, which could be tens of thousands of rows. To be
able to view and easily digest this data, he would replace multiple data points
with one data point, such as the average value of those data points.

4 Design Implications of the Interview Study

We began this paper with a set of premises leading to the conclusion: introducing
probabilistic programming to spreadsheets is a Good Idea. Through our user
research, we refined our conclusion from focusing on probabilistic programming,
to ways of representing and managing uncertainty more generally.

So if the makers of spreadsheet software wished to implement user-facing
tools for the representation and management of uncertainty, what should they
focus on? What features would solve the most common use cases we observed?
In other words, what should we build to get the most bang for our buck? In this
section we present some implications for design (notwithstanding the criticism
of that phrase [34,7]).

In the previous section we have been introduced to a broad categorisation
of uncertainty formalisms into Qualitative, Possibilistic, and Probabilistic, and
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Dynamic
data
(15%)

Estimates
(50%)

Errors
(13%)

Missing
data
(12%)

Unfindable
data (7%)

Untraceable
data (3%)

Qualitative Some Good* Good* Weak None None

Possibilistic Some* Good* None Some None None

Probabilistic Good* Weak Some* Some* None None

Table 4: An overview of the six types of uncertainty (the percentages indicate
the relative frequency of that uncertainty type we observed in our dataset) and
the three formalisms. The table indicates how well we think a type of uncer-
tainty could have been supported by a particular formalism, on the scale: none,
weak support, some support, good support. An asterisk (*) indicates that we
observed at least one participant directly state that type of uncertainty would
be supported by that formalism.

how the formalism determines the family of features that can be implemented
to support them – tags for Qualitative uncertainty, the scenario manager or
intervals for Possibilistic uncertainty, and so on. At the same time, our research
has identified six types of uncertainty in spreadsheets. We therefore examine
how each formalism can support the management of each type of uncertainty,
on a case by case basis, by considering how the user might use the various
implementations of each formalism in those cases.

1. Dynamic data changes over time, either refreshing automatically or need-
ing manual re-entry. A Qualitative tag may help to indicate the presence
of uncertainty. A Possibilistic or Probabilistic representation may help to
keep a record of historic values for a cell, with a Probabilistic representation
capturing additional information, helpful for statistical inference.

2. Estimates can be supported by Qualitative tags, which can propagate through
the calculation dependency chain so that it is made apparent which calcu-
lations depend on estimated data. In entering estimates, users may also be
able to provide upper and lower bounds, or a set of possible values, which are
well-supported by the Possibilistic formalism. Finally, if possible, it would
be ideal to elicit a formal probability distribution, but our experience with
users suggests that non-expert end-users find it challenging to understand
and confidently assign parameters to a probability distribution. Consider
the difference between a non-expert having to produce “upper and lower
bounds” for a cost in a budget, and having to produce a “mean and stan-
dard deviation for a Gaussian distribution”. This makes the Probabilistic
scenario a weak overall fit for estimates, although we recognise that it might
fit the needs of some experts very well.

3. Errors benefit most from Qualitative tagging, as a way of annotating their
presence and communicating them to others. It is unclear whether Possibilis-
tic or Probabilistic uncertainty can help in error cases, although some cases
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Formalism -
Type of un-
certainty

How the formalism
would be used

Example quote

Qualitative -
Estimates

The user can input their own
values of what they think an
estimate is.

‘We have to convert that qualitative sce-
nario into some quantitative numbers, to
say ‘OK, if X wins, it’s likely that the mar-
ket’s going to react a little bit better, just
because of her economic policies, therefore
we would expect GBP to strengthen.’ And
then we would revise our forecast based on
that, going forward. But then again, those
are unknown numbers, we’re just using, we
would use estimates to try and say, ‘This
is where we’d end up’ (P3).

Possibilistic -
Dynamic data

The user can input intervals
to indicate the range that
dynamic data can fluctuate
in, and/or can compare a
subset of outcomes of dy-
namic data.

‘You’d have a day rate, and multiply it in
terms of days. And then you add a certain
percentage on afterwards, just so you have
some space’ (P4).

Possibilistic -
Estimates

The user can compare a sub-
set of possible estimates.

‘You get a huge extra benefit from looking
at one policy to looking at two policies. It’s
a bit more time-consuming, it takes twice
as long to run, but it’s worth doing. But
to go from two to three policies, it’s not so
clear that you get enough extra benefit from
that, from the extra complexity’ (P2).

Probabilistic -
Dynamic data

Based on historic values, the
user can quantify the likeli-
hood of future values.

‘Once you get the data, then it becomes a
modelling exercise. Like what is my chance
of selling something next month? Well that
depends on how much of that thing has been
selling this month’ (P9).

Probabilistic -
Errors

If the data errors in a
spreadsheet are quantifiable,
probabilistic measures can
be used to track and quan-
tify uncertainty as it prop-
agates through the calcula-
tions of a spreadsheet.

‘At every stage, a lot of the time we have:
if we know we’ve got however many un-
known values in spreadsheet 1, by the time
we get to spreadsheet 10, there’s a debate
about whether the data’s of any use at all,
because the errors propagate, and multiply.
Now I don’t have a measure of how that af-
fects it. I’d love to be able to measure that,
but I have no idea how to do that within
the tools’ (P11).

Probabilistic -
Missing data

The user can make estimates
regarding missing data by
analysing the distributions
of the data that does exist
in the spreadsheet.

‘If we get certain data, and we want to
make sure: does that follow a certain distri-
bution, or something like that? Or is that
data based on a certain distribution? There
are tests that give you a p value, very likely
that this data point’s origins are the same
as the other data points. (...) So that gives
you some confidence data in how well you
can rely on this model, on that model, and
stuff like that’ (P10).

Table 5: Participant quotes exemplifying how types of uncertainty could have
been supported by a particular formalism.
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of data entry errors can be detected using the insight that an erroneous data
value is often very unlikely given the distribution of the rest of the data.

4. Missing data can be supported by Qualitative tagging, if calculations are
done on ranges with missing values. Missing values can be inferred and rep-
resented either in a Possibilistic manner (for instance, if the missing value
is known to be a member of a finite set) or in a Probabilistic manner (for
instance, if the missing value is part of a dataset with a known or calculable
distribution).

5. Unfindable data – that is, answers that are prohibitively difficult to extract
from the data in the spreadsheet, even if it is possible in principle. This
type of uncertainty cannot be solved by implementing better tools for rep-
resenting and manipulating uncertainty; the solutions here depend more on
enabling users to store and retrieve data in different ways, from enabling the
pivoting and refactoring of existing spreadsheet layouts, to better assistance
in formula authoring.

6. Untraceable data might be supported using a Qualitative tag, to indicate
and communicate its presence. However, better tracking of data provenance
would help deal with the issue more holistically. Users should be able to
inspect the history of edits to a spreadsheet cell, and answer the questions:
who edited this cell and when? Was the data manually typed in, copied in
from a document, or written by a macro or other script? The implementation
of some of these ideas (such as tracking and linking to documents from which
data is copied) might go beyond the scope of the spreadsheet software, and
require the participation of other tools and the operating system to track
provenance.

In summary, solutions focused around enabling users to formally represent
uncertainty offer varying levels of support dynamic data, errors, estimates and
missing data, but are unlikely to help with unfindable data and untraceable data.
Table 4 shows a matrix of the three categories and the six types of uncertainty,
summarising the discussion above. For many pairings where we claim that the
formalism would support the user, we provide a participant quote in Table 5 –
these entries are indicated with an asterisk (*).

Bearing this in mind, let us return to the question of what designers of
spreadsheet systems can take away from this. One clear conclusion is that no
single formalism can solve most user problems. Of Qualitative, Possibilistic, and
Probabilistic formalisms, Qualitative tagging appears to be the most widely ap-
plicable, but what the user can do with it is limited. Our recommendation is
therefore to offer features from multiple formalisms. Furthermore, if we were to
pick one to exclude, it would be Possibilistic, as the technique of managing differ-
ent scenarios across different columns (or rows, or cells, or sheets, or even whole
workbooks), as well as tinkering with values in cells, are both already effective
coping strategies in many use cases for Possibilistic data. This recommendation
comes despite the fact that Possibilistic data is likely to be easier to input and
reason about than Probabilistic data, for most end-users. Finally, solutions fo-
cused around representing uncertainty are unlikely to help with unfindable and
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untraceable data—for those cases, we need tools offering education, assistance
with authoring, layout and refactoring, and provenance tracking.

5 Conclusions

In this paper, we formally acknowledge the human activity of end-user probabilis-
tic programming, in which a computer user, likely not a statistical expert, creates
models to support their own decision making. While probabilistic programming
is a powerful tool, its widespread adoption is limited by the high statistical and
programming expertise required. Spreadsheets, on the other hand, enjoy the
status of being the premier end-user programming tool, and are arguably the
venue of much of the world’s data and decision making. What if we were to bring
probabilistic programming to spreadsheets?

As a stepping stone, we consider the simpler question of bringing native
support for uncertain values to spreadsheets. The choice of whether we sup-
port qualitative (such as simple tags), possibilistic (such as sets or intervals) or
probabilistic (such as distributions) uncertainty will have profound implications
for the user experience, which we illustrated through the fictitious case study
of Clara’s budget. To study these implications empirically, we interviewed 11
spreadsheet users, focusing on their current use cases and coping strategies for
uncertainty.

We produced a taxonomy of uncertain data as experienced by end-users, and
analysed how each uncertainty formalism could support the different categories.
No single formalism emerges the clear winner, and though Possibilistic uncer-
tainty is well-understood by end-users, the data suggests that it would add the
least benefits, since end-users already have several effective strategies for coping
with it. We also identified that users experience types of uncertainty, such as
unfindable and untraceable data, that cannot be solved by representations of
uncertainty alone.

As well as considering special-purpose uncertain values, we showed a new
application of the general-purpose concept of sheet-defined functions. Sheet-
defined functions are a convenient mechanism for Monte Carlo simulations in
spreadsheets.

The idea of probabilistic programming in spreadsheets is certainly alluring.
But for full effect, we must ensure that the idea works for the tens (or even
hundreds) of millions of spreadsheet users facing uncertainty in their decision
making. At present, neither uncertain values nor sheet-defined functions are
available in mainstream spreadsheets. Will one or both revolutionise probabilistic
programming in spreadsheets? Time will tell.
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