Lecture Notes on Practical Foundations for Programming Languages

Part 4: Dynamic Classification
JIAWEN LIU, JEREMY THIBAULT, and SHAOWEI ZHU

These are lecture notes taken during Robert Harper’s course on foundations of programming languages at the Oregon Pro-
gramming Language Summer School 2019. See also a PFPL supplement on exceptions at http://www.cs.cmu.edu/ rwh/pf-

pl/supplements/exceptions.pdf.

1 MOTIVATION
In this lecture, the goal is to build an exception control mechanism that:

e does not rely on any convention about the kind of data that is associated with an exception
o that ensures integrity and confidentiality of data: no third party should be able to intercept an exception intended

for a particular handler

This is implemented by using dynamically created classes of data, and associating capabilities to them capabilities

representing integrity and confidentiality of the associated data.

2 STATIC CLASSIFICATION

Dynamic classifications is to oppose to static classification, i.e., types built in the form of finite sums. Indeed, in a

programming language equipped with static classification, a type is computed by solving a type equation:
U = [num = w,nil & 1,cons = U XU, fun > U > U, ...

where each summand is a class of values.
Dynamic dispatch can be seen as a way to work with the data typed as above. When we want to manipulate a value

of this data type, we need to unfold it and then pattern-match on the type.
case(u,num < .. .;...;cons < (x1,x2))

The case analysis reveals further information about the type of the data that makes downstream manipulations possible.
Datatypes are abstract (statically "new": even you write the same implementation twice, they are two different types)

recursive sums (static). Hence, this is an issue of using generative datatypes vs concrete datatypes.

3 DYNAMIC CLASSIFICATION

Now, we want a dynamically extensible sum: 71 + 73 + . . ., generating new datatypes at runtime.

This idea of dynamically “new” connects closely to the notions of information-flow or knowledge-flow: a dynamic
new class corresponds to an unguessable secret (or perfect encryption, by a-conversion), and one could control the
flow of information by choosing who knows the secret.

We obtain abstract datatypes, with induced capabilities that express integrity and confidentiality, where

o the implementer is responsible for the integrity of data;

Authors’ address: Jiawen Liu, jliu223@buffalo.edu; Jérémy Thibault, jeremy.thibault@inria.fr; Shaowei Zhu, shaoweiz@cs.princeton.edu.

http://www.cs.cmu.edu/~rwh/pfpl/supplements/exceptions.pdf
http://www.cs.cmu.edu/~rwh/pfpl/supplements/exceptions.pdf

2 Jiawen Liu, Jérémy Thibault, and Shaowei Zhu

e the client is responsible for confidentiality.

In particular, this may be used to implement exceptions: “shared secrets” between a raiser and a particular handler.

In this case,

o the raiser is the implementer responsible for the integrity of the exception
o handlers other than the designated handler cannot decode the secret, thus are unable to handle the exception

while being well-typed

Let us assume that there already exists an exception control-flow mechanism in our language. We will not focus on

implementing the exception data itself.

4 IMPLEMENTATION OF THE EXCEPTION DATATYPE

Idea. We are going to associate with each exception a new class. An exception is raised by specifying its class; and

an exception is handled by dispatching on the class.

4.1 Statics
<Type>t == --- | clsfd
<Value>v == --- | in[c] (v) : clsfd
<Comp>m == --- | isin|[c] (v, x.my, my) T

| new [7] (c.m)

Here, ¢ represents a class, used as an indexing scheme to distinguish between different exceptions. The computation
isin[c] (v, x.m1, mp) type checks as 7 if both my %+ 7 and my + 7, and v : c1sfd. Its semantics is that it checks if v is in
¢, and performs [x/v]m; in that case, or my otherwise. Finally, new [r] (c.m) declares a new class ¢ in m.

We also update our typing judgments to include an environment ¥ of class binders associated with types.
Tbtsv:t
Frkymat
This environment ¥ declares the active classes in the current scope. Note that, in our formalism, ¢ is a class binder that
is not a variable. In particular, the order in ¥ does not matter, it is allowed to weaken 3, and we can perform injective

renaming, but not substitute (the renaming must be injective to preserve disequality).

The typing rule for “new” follows:

Ty gor ms T’

Tty new[r](a.m) 5+ 1’

4.2 Dynamics
We consider the following:

e states vX{m}: classes v that could be used in computation m;
e transitions vX{m} — vX’{m’}: where the invariant 3 C 3’ holds;

o final states vX{ret (v)}

Lecture Notes on Practical Foundations for Programming Languages

We introduce a static judgment, meaning that a state is well-formed:

vE{m}OK £ - +x m + 7 for any
The semantics of new is:
vE{new[r](c.m)} > vZ,c ~ t{m}.

It allocates new classes of data, for “encryption” purposes.

The semantics of in and isin are:

[v'/x]myifc = ¢’
v3,c~t,¢’ ~t'{isin[c](in [c'] '), x.mq, my)
my otherwise

The first case corresponds to the case where one learns the equality, and is able to perform the computation. In the
second case, nothing at all is learnt.

4.3 Class references

Finally, we introduce the idea of class references.

Tu=---|rcls the type of class references

v == cls|c] written as &c
m == reveal(v;c.m)

The additional typing rules are:

'ty v:7cls I‘I—z,CNTm+f'

Tbyer & :Tcls T+ reveal(v;c.m) + 7’

Reveal has the following semantics:
vE,c ~ t{reveal(&c;c.m)} — v, c ~ t{m}
This corresponds to guessing by a-conversion.
We may now define two shortcuts, that behaves like “in” and “isin”, but for class references:
inref(v;v') reveal(v;c.in[c] () + clsfd
isinref(v;v’;x.my;my) 2

reveal(v;c.isin[c] (v/, x.mq, m2)).

4.4 Possession of a class reference

Possession of a class reference affords full rights to create and analyze classified values. One may associate to a type

7 cls the following tuple:
mk : T — clsfd
rcls~ -
mk~1: clsfd — 7 opt

4 Jiawen Liu, Jérémy Thibault, and Shaowei Zhu

and to the corresponding value &a the pair:
mk < A[r](x : in[a] (x))
&a —
mk~! < A[clsfd](x.isin[a] (x,y.ret (1.y), ret (2. <>)))
The following properties hold:

o the possessor of mk is held responsible for the integrity of the underlying value, and can enforce the value respects

an invariant

o the possessor of mk™! can compromise the confidentiality, and confirm that the invariant holds

5 AN APPLICATION IN ML
Let us introduce some concepts from the ML language.

e exception X of 7 declares an exception X carrying values of type 7
e raise e where e : exn (that is, c1sfd) raises an exception
e ¢ handle X(x) declares an handler. However, one might as well write z instead of X(x), because one doesn’t

need to have access to the name of the exception to handle it.

So what does exception X of 7 actually mean?

val X =
- handle[r] <— 7 —o(clsfd—>1)—> 1

{ raise(r] — clsfd — 7 }
The handler takes two parameters: the expression to evaluate, and a function to call if an exception is raised.
In ML, raise has the following meaning, where X : 7 — clsfd and x : :
raise X(v) < bnd(comp(X.mk(v)), y.RAISE(y), z.RAISE(z))

This computes the content of the exception, classify it, and then calls the system implementation for raising an exception.
The second RAISE is used if the inner computation raises an exception itself.

Similarly, handle has the following meaning:
m handle X(x) = m’ < bnd(comp(m), x.ret (x), y.bnd(comp(x.mk (1)), x.m’, z.RAISE(2)))

If the execution of m succeeds, the value is immediately returned. Otherwise, the exception is decoded (mk_l), then
handled by m’. Again, one need to handle the case of an inner exception.

Finally, it is now possible to see exceptions as dynamically allocating a new class:

exception X of 7 < new|[r] (c.{mk — okl es oY)

	1 Motivation
	2 Static Classification
	3 Dynamic Classification
	4 Implementation of the exception datatype
	4.1 Statics
	4.2 Dynamics
	4.3 Class references
	4.4 Possession of a class reference

	5 An application in ML

