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1 Resource Monoid
We define the resource monoid for the rule described in the previous lecture.

(q, q′).(p, p′) =

(q + p − q′, p′), · · · q′ ≤ p
(q, p′ + q′ − p), · · · q′ ≥ p

2 Language Constructs

2.1 Type System
We consider following type system to bound the resources.

τ F unit
| τ1 → τ2
| L(τ) · · · (List)

2.2 Expressions in the language :
e F nil{τ} [ ]

| cons(e1; e2) e1 :: e2
| matL(e; e1; x1, x2.e2) match e with []↔ e1, x1 :: x2 → e2
| tick{q}(e) tick q in e · · · (q ∈ Q)
| fix{τ}(x.e) fix x : τ as e

User inputs ticks expression to denote the number of resources consumed.

2.3 Values
nil val

e1 val e2 val
cons(e1; e2) val
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2.4 Cost Dynamics
〈e, q〉 7→ 〈e′, q′〉 · · · q, q′ ≥ 0

Reads as “with q available resources, e evaluates to e′ and after evaluation, q′ resources
are available”.

2.5 Dynamic Rules

1.
q − p ≥ 0

〈tick{p}(e), q〉 7→ 〈e, q − p〉

2.
〈e, q〉 7→ 〈e′, q′〉

〈matL(e; e1; x1, x2.e2), q〉 7→ 〈matL(e′; e1; x1, x2.e2), q′〉

3. 〈matL(nil; e1; x1, x2.e2), q〉 7→ 〈e1, q〉

4.
e′1 val e′2 val

〈matL(cons(e′1, e
′
2); e1; x1 · x2·, e2), q〉 7→ 〈[e′1/x1, e′2/x2]e2, q〉

2.6 Static Rules

1.
Γ, x : τ ` e : τ

Γ ` fix{τ}(x.e) : τ

2.
Γ ` e : τ

Γ : tick{q}(e) : τ

2.7 Observations
For the above calculus we can prove the following type safety theorems:

Proposition 1 (Preservation). If e : τ and 〈e, q〉 7→ 〈e′, q′〉, then e′ : τ.

Proposition 2 (Progress). Suppose 〈tick{1}(〈)〉, 0 67→ e〉. If e : τ, then there either e val,
or there exists q such that 〈e, q〉 7→ 〈e′, q′〉 for some e′, q′.

Consider the following example:

Example 3. Define id as

id = f ix id : L(unit)→ L(unit) as λ(x : L(unit)) match x with [] 7→ [] y :: ys 7→ tick 2 in y :: id(ys)

and let vn =<>:: · · · ::<>:: [], where <> is concatanted to itself n times. Then the
question is how many resources q do we need to get 〈id, 〈vn〉, q〉 7→ 〈vn, 0〉. With some
calculations, we can see that for q = 2n:

〈id, 〈vn〉, 2n〉 7→ 〈vn, 0〉

Our next goal is to do analysis in the above example with a type system. The idea
is to have types that carry potentials that has to be used to pay for ticks. We introduce
type-based amortized resource analysis in the next section to acheive this goal.
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3 Type-based Amortized Resource Analysis

3.1 Type System
We define types τ and context Γ as follows:

A, B F pot(τ, q) 〈τ, q〉

τ F arr(A, B) τ
q,q′
−−→ τ′ where A = 〈τ, q〉, B = 〈τ′, q′〉

| L(A) Lq(τ) where A = 〈τ, q〉
| unit 1

Γ F · | x : τ

As illustrated in the following example, we have a set of annotations for each function
in this system.

Example 4. In the expression

λ(x : L(unit))id(id(x)) : L4(unit)
0/0
−−→ L0(unit),

function id has two different types: id : L2(unit)
0/0
−−→ L0(unit) and id : L4(unit)

0/0
−−→

L2(unit).

Definition 5 (Potential). For arbitrary expression v : τ, its potential Φ(v : τ) is defined
as follows:

• Φ(v : unit) = 0

• Φ(lam{τ}(x : e) : A→ B) = 0

• Φ(cons(v1, v2) : L(A)) = Φ(v1 : A)→ Φ(v2 : L(A)).

• Φ(v : 〈τ, q〉) = q + Φ(v, τ)

Example 6. The following hold according to the definition above:

• Φ(<>: 〈unit, 10〉) = 10

• Φ(<>::<>:: [] : L5(unit)) = 10

• Φ(a1 :: · · · :: an :: [] : L1(τ)) = q.n + Σ1≤i≤nΦ(ai : τ)

3.2 Type system
The type judgements are of the form Γ `

q
q′ e : τ meaning that under context Γ with

potential q, expression e has annotated type τ and potential q′. The rules for judgements
are as follows:
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•

x : τ `0
0 x : τ

Note that in this rule the only thing allowed in the context is variable x, i.e. we
need to consume all other things in the context. Also, context and expression
potentials are restricted to 0, instead of an arbitrary q.

•

Γ1 `
q
r e1 : τ

p/q′
−−−→ τ′ Γ2 `

r
p e2 : τ

Γ1Γ2 `
q
q′ e1(e2) : τ′

The potential in Γ1 is q and e1 : τ
p/q′
−−−→ is a function with potential r. This

potential can be used in Γ2 to evaluate e2. The potential we have around after
evaluating e2 : τ is p and we can plug it into the function body e1 with encoded
potential p/q′. Then we are left with potential q′ and e1(e2) : τ′.

•
Γ, x : τ `p

p′ e : τ′ |Γ| = Γ

Γ `0
0 lam{τ}(x · e) : τ→ τ′

We write |τ| for τ in which all annotations q are replaced by 0. And |Γ| is defined
point-wise on the types. We will see by an example in the next lecture that the
extra assumption |Γ| = Γ assures possibility of using a function more than once.

•
Γ, x : τ `0

0 e : τ |τ| = τ |Γ| = Γ

Γ `0
0 fix{τ}(x · e) : τ
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