
Resource Analysis
Lecture 4

Renate Robin Eilers Cristina Matache Baber Rehman

June 22, 2019

This is the fourth talk presented by Jan Hoffmann in OPLSS 2019, University
of Oregon, USA.

1 Recap: Soundness

This talk is mainly about soundness proof, type inference, and examples in
RAML. Talk started by a recap of progress and preservation which were formu-
lated in last talk.

Theorem 1.1 (Progress). If `qq′ e : τ and p ≥ q then either e is a value or ∃e′, p′
s.t. 〈e, p〉 7→ 〈e′, p′〉.

Theorem 1.2 (Preservation). If `qq′ e : τ , p ≥ q and 〈e, p〉 7→ 〈e′, p′〉 then

`p
′

q′ e
′ : τ .

Proof notes. Preservation is difficult to prove. It is proved by nested induction
on `qq′ e : τ and 〈e, p〉 7→ 〈e′, p′〉. There are some tricky lemmas to prove like
substitution which only holds on values.

Alternative soundness theorem: Recall the judgement V ` e ⇓ v | (q, q′)

Definition 1.2.1. φ(V : Γ) =
∑

x∈dom(Γ) φ(V (x) : Γ(x))

where Γ assigns types to variables.

Theorem 1.3. Let V : Γ and Γ `qq′ e : τ and V ` e ⇓ v | (p, p′) then φ(V :
Γ) + q ≥ p and φ(V : Γ) + q − φ(v : τ)− q′ ≥ p− p′

This theorem shows that the type derivation is a certificate for bound cor-
rectness.

2 Type inference

Example 1. We want to find a derivation for:

`00 fix
(
id. λ(x : L(unit)) matL(x; nil; y, ys.cons(y; tick{2}(id(ys)))

)
: L2(unit)→0/0 L0(unit)

1

See figure 1 for the deriviation tree, where eid = fix
(
id. λ(x : L(unit))matL(x; nil; y, ys.cons(y; tick{2}(id(ys)))

)
and τid = L2(unit)→0/0 L0(unit).

For type inference we need algorithmic (or syntax-directed) rules. We change
all the typing rules to incorporate the structural rules:

Example 2.
q ≥ q′ τ <: τ ′

Γ, x : τ `qq′ x : τ ′

Algorithm for type inference:

1. Infer usual types (without annotations), which results in a type derivation
(like example in figure 1 with all annotations removed);

2. Add potential variables where a potential annotation is required, both in
τid and in the derivation. See figure 2. Note the this step is only partially
done in the figure;

τid becomes Lp(unit)→q/q′ Lp′
(unit)

3. Derive from the typing rules linear constraints on potential variables;

Example 3. For the fix example, some of the constraints are:

r0 ≥ r′0 r2 ≤ q p1 ≤ p r3 ≥ r′3 p2 ≤ p1

r1 = 0 r′2 ≥ q′ p′1 ≥ p′ r3 ≤ r2 p′2 ≥ p2

r′1 = 0

r4 ≤ r′3 + p1 r′4 < r′2

s1 ≥ s2 + 2 s′1 = s′2

4. Solve constraints with LP solver;

5. Objective is the sum of initial potential annotations.

Example 4. For the fix example the objective is to minimize p+ q.

3 Implementation in RAML and examples

Live RAML (Resource aware ML) demo showing binary counter, using the
source code displayed in figure 3. Second example with queue.

2

x
:
L

2
(1

)
`0 0
x

:
L

2
(1

)
id

:
τ i

d
`0 0
n
il

:
L

0
(1

)

re
la

x
y

:
1
`2 2
y

:
1

a
p

p
id

:
τ i

d
,y
s

:
L

2
(1

)
`0 0
id

(y
s)

:
L

0
(1

)

id
:
τ i

d
,y
s

:
L

2
(1

)
`2 0
ti
ck
{2
}(
id

(y
s)

)
:
L

0
(1

)

id
:
τ i

d
,y

:
1,
y
s

::
L

2
(1

)
`2 0
co
n
s(
y
,t
ic
k
{2
}(
id

(y
s)

)
:
L

0
(1

)

id
:
τ i

d
,x

:
L

2
(1

)
`
e i

d
:
L

0
(1

)

id
:
τ i

d
`0 0
λ

(x
)e

id
:
τ i

d

`0 0
f
ix

(i
d
λ

(x
)e

id
:
τ i

d

F
ig

u
re

1
:

E
x
a
m

p
le

o
f

ty
p

e
in

fe
re

n
ce

3

x
:
L
p
2
(1

)
`r 3 r

′ 3
x

:
L
p
′ 2
(1

)
id

:
τ i

d
`
n
il

:
L

(1
)

re
la

x
y

:
1
`
y

:
1

a
p

p
id

:
τ i

d
,y
s

:
L

(1
)
`s 2 s

′ 2
id

(y
s)

:
L

(1
)

id
:
τ i

d
,y
s

:
L

(1
)
`s 1 s

′ 1
ti
ck
{2
}(
id

(y
s)

)
:
L

(1
)

id
:
τ i

d
,y

:
1,
y
s

::
L

2
(1

)
`r 4 r

′ 4
co
n
s(
y
,t
ic
k
{2
}(
id

(y
s)

)
:
L

(1
)

id
:
τ i

d
,x

:
L
p
1
(1

)
`r 3 r

′ 3
e i

d
:
L
p
′ 1
(1

)

id
:
τ i

d
`r 1 r

′ 1
λ

(x
)e

id
:
τ i

d

`r 0 r
′ 0
f
ix

(i
d
λ

(x
)e

id
:
τ i

d

F
ig

u
re

2:
T

y
p

e
in

fe
re

n
ce

,
st

ep
2

o
f

th
e

a
lg

o
ri

th
m

4

let rec id x =
match x with
| [] −> []
| y : : ys −> y : : (let = Raml . t i c k 2 .0 in ys)

type b i t = Zero | One

let rec i n c counter =
match counter with
| [] −> [One]
| Zero : : bs −> One : : bs
| One : : bs −> Zero : : (inc bs)

let rec in many n =
match n with
| Z −> []
| S n’−> i n c (inc many n ’)

Figure 3: Code for binary counter example

5

	Recap: Soundness
	Type inference
	Implementation in RAML and examples

