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Nondeterministic languages

For nondeterminstic languages, the semantics does not just give one final state. We can define JsK to be a set of final
states, or a distribution of states, or more exotically, a mixture of distributions of states. The problem is then how to define
noninterference s1 ∼L s2 =⇒ Js1K ≈L Js2K. The question is how to define ≈L for sets.

[Sutherland ’87] defined nondeducibility. The adversary sees a particular final state of the s1 run, and we ask ourselves
whether the result could have been produced by s2. So we define

Js1K ≈ Js2K = (∀t1 ∈ Js1K∃t2 ∈ Js2K.t1 ∼L t2) ∧ (∀t2 ∈ Js2K∃t1 ∈ Js1K.t2 ∼L t1)

The following diagram illustrates this relationship.
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This property can be enforced with the same type system as we saw last time. We can model nondeterminism with a
nondeterministic choice construct c1�c2. We can typecheck this language with the same rules. For integrity this is good
enough but for confidentiality it is not. We give an example.

pub := secret�put := rand(100)

This is secure according to the previous definition of ≈L if secret ∈ 0 . . . 100, because for any one run we can’t tell
that secret has a particular value. Any number that is assigned to pub could have been produced by the random number
generator. However, if the adversary runs the program many times, it will be able to infer the value of secret because the
probability that that value is produced is higher than the probability of the other numbers. Even if the adversary can only
run the program once, the adversary still learns something in the information theoretic sense. Note that this is true even if
the adversary does not control �.

The program has an insecure refinement pub := secret. This is called a refinement attack. Possibilistic security is not
preserved under refinement.

Low-security observational determinism (LSOD)

Roscoe [1] proposed LSOD as a solution. Adversary-observable nondeterminism is subject to refinement attacks. We will
require that execution looks deterministic from the point of view of the adversary:

Js1K ≈L Js2K = ∀t1 ∈ Js1K, t2 ∈ Js2K.t1 ∼L t2

One might think that this property is too restrictive for the programs that we want to write, because the following
program is considered insecure:

put := true�put := false

This parallel program is also considered insecure:

put := true ‖ pub := false

We argue that these programs should be considered insecure. A secret could correlate with the nondeterminism, as in
Meltdown and Spectre.

Did we just lose the ability to write parallel programs at all? Consider the following program:
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(x := 1 ‖ y := 2); . . .

This pattern is called fork-join parallelism. Two independent computations are done in parallel. Such harmless scheduling
choices should be allowed. However, consider the following program:

(x := true; if h then delay(100) else skip;x := false) ‖ (delay(50); l := x)

This program is insecure, because the race between x := false and l := x allows an adversary to read the value of the
secret h using appropriate timing. This is called an internal timing channel. The program above converts the timing channel
into a storage channel.

Assume that we have a trace t = s, s′, s′′, . . . , and assume that locations m are a subset of the locations state. Let
t[m] = s[m], s′[m], s′′[m], . . . be the projection of the state on the subset of the locations. We define t1 ∼L t2 if the subtraces
t1[m], t2[m] are indistinguishable at m modulo stuttering (collapse adjacent identical states of the subtraces to a single state).
For termination insensitivity, if one trace is finite and the other trace is infinite, we only require them to agree up to the
common prefix.

Downgrading

Requiring all information flow to obey the lattice order v is too restrictive. Real applications need to be able to release secret
information. The real security goal is not noninterference.

We have two dual operations: (1) downgrading confidentiality: declassify(), and (2) downgrading integrity: endorse().
The justification for downgrading depends on the application, so we can’t expect a type system to check this. We demonstrate
this with a few examples.

Example 1: Password Checker

A password check will tell the user whether the password is correct, so the adversary learns something about the secret
password:

if (declassify(guess == password),H to L)) login = true;

Example 2: Battleship

If player A makes a move, we check whether the move was legal, and then B applies the move to their copy of the board:

if(legal(mx,my)) endorse(mx,my)(A(<-) to B(<-))

The justification for the endorse lies in the rules of the game: A may choose any legal move, and then B must accept that
move.

Example 3: average of a set of confidential salaries

We can compute the average of a set of secret salaries and add random noise to make sure that we do not provide too much
information about anys individual salary.

float arg = declassify(mean(salaries) + noise , Hˆ-> to L)

The justification for the declassify comes from differential privacy.
With downgrading we no longer have noninterference:

string{H}
bool{L} check(string {H} guess) {

return declassify(guess == pwd , ...)
}

The label H represents confidentiality. The adversary can overwrite the password with a secret, and then test that secret
against a guess, thus leaking secret information. This is called laundering secrets via declassify.

This example shows that we need sufficient integrity to securely declassify - we need to ensure that the adversary can’t
affect what is declassified or whether something is declassified.

Implementations of this are a message passing concurrent language based on the join calculus [1], Chong et al. [2], JOANA
[3]. [2]
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Robust declassification

Robust declassification (Zdancewic [3]) is a solution to the problem of secure declassifcation. We define the view operator,
which defines the confidentiality level such that the integrity of pc, l are both trusted to declassify.

l2 v Γ(x) Γ(y) v l1 l1 v l2 t
a

(l1 t pc)

pc ` x := declassify(y, l1 to l2)

Robust declassification thus implies that the adversary cannot increase leakage. Leakage will exist, but the adversary
cannot increase the amount of information leaked. We define s[a] is defined as the state with an attack a applied to it. a must
be a fair attack, it cannot just violate noninterference randomly. Furthermore, it must typecheck within the pc corresponding
to L The formal definition of robust declassification semantics is as follows:

∀s, s′, a, a′. relevant attack (a) ∧ s[a] ≈L s′[a] =⇒ s[a′] ≈L s′[a′]

We summarize the number of traces we have to compare to establish each corresponding property in a table.

Correctness 1 trace
Noninterference, LSOD 2 traces
Robust declassification 4 traces

For those interested in learning more check out the following references:
For a message passing concurrent language see [2]
The X10 programming language implemented some of these ideas... [4]
Java Object-sensitive ANAlysis (JOANA) [5]
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