
Session-Typed Concurrent Programming

Frank Pfenning

OPLSS 2019

Date Performed: June 17th 2019
Students: J.W.N. Paulus

R. Gurdeep Singh
H. C. A. Tavante

Motivation and intro

There are two ways to look at a program. From an operational standpoint and
form a logical standpoint. Let us look at an example program the presumably
gets the smallest element form presumably a list.
Operational reasoning: How a program works.

sort(A)

x = A[0]

Here sort presumably sorts the list A inplace. We assume here that A is a list
because we use the [] operator on it to presumably fetch the first element of
the sorted list.
Logical reasoning: What does the program do?

hd ◦ sort

Here we use function composition ◦ to capture that we sort the list and then
take the first element. Here, hd is a function that takes the first element of
something, and sort is a function that sorts its input and returns it. Note
that we do not specify how sort or hd is implemented. And it from a logical
reasoning point of view, we don’t care.
Designing abstractions
When we design abstractions we aim to capture some computational phenomenon
such that:

a. We can reason about it operationally

b. We can reason about it logically

c. (1) and (2) are coherent

1



1 Lecture 1: Sequent Calculus for Singleton logic

Logic is:

• The process of deduction

• About what you can infer from some axioms rather then what you know
as truth.

• Wikipedia: the systematic study of the form of valid inference, and the
most general laws of truth

• A rapper according to Wikipedia

1.1 Form and inference rules

A sequent has following form:

A︸︷︷︸
Antecedent or Assumption

` B︸︷︷︸
succedent

Where the antecedent contains the assumption, and succedent contains the “con-
clusion”. In the case of the singleton logic, both A and B must be a singleton,
i.e. exactly one antecedent and one succedent (and they should both be propo-
sitions). The ` symbol should be read as “entails”.

1.1.1 Connectors

We use the “&” for conjunction (and) and the “⊕” for disjunction (simple logical
or, not to be confused with exclusive or).

1.1.2 Base inference rules

The fist rule we introduce is the states that we can derive that A entails A
without needing anything.

A ` A
idA

The second rule we introduce is the cut rule. It encodes the transitivity of
entailment. To derive C from A (that is A ` C) we first derive A ` B and
B ` C and then we conclude A ` C. One could informally say that “B is a
lemma”.

A ` B B ` C

A ` C
cutB

1.1.3 Connectors.

So far the propositions in our . Let’s introduce some connectors. Each

2

https://en.wikipedia.org/wiki/Logical_form
https://en.wikipedia.org/wiki/Validity_(logic)
https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Truth
https://en.wikipedia.org/wiki/Logic_(musician)


Disjunction / or operator ⊕ One of the most basic connectors is the “or”
connector. We will write it as ⊕ here1. Its rules are:

A ` C B ` C

A⊕B ` C
⊕l

A ` B

A ` B ⊕ C
⊕r1

A ` C

A ` B ⊕ C
⊕r2

Assume that we made a mistake when defining ⊕, and we used the following for
⊕L instead:

A ` C

A⊕B ` C
⊕l?

Our slight oversight allows us to make following derivation:

B ` B
idB

B ` A⊕B
⊕R2

A ` A
idA

A⊕B ` A
⊕L

B ` A
cutA⊕B

It states that anything is able to entail anything, which makes no sense.

With the correct rules we can prove the commutativity of ⊕ like this:

A ` A
IDA

A ` B ⊕A
⊕R2

B ` B
IDB

B ` B ⊕A
⊕R1

A⊕B ` B ⊕A
⊕L

Conjunction / and / with operator & The next connector we tackle is
the and operator, denoted by &. Its rules are defined below.

A ` B A ` C

A&B ` C
&R

A ` C

A&B ` C
&L1

B ` C

A&B ` C
&L2

Things we cannot have

a. Implication
The problem with implication is that to use it, we need to allow more
than one assumption in the proofs. This does not fit in our singleton logic
model.

b. Negation A ` ¬B
1The ⊕ is simple or, and should not be confused with the exclusive or operator

3



Wise words of Pfenning:

I’m not interested in success, only in failure

I once needed to do a proof with 64 cases, you can guess which 63
I did first. The last one did not work out and I had to switch
topics.

1.2 Examples of Proofs

It is typical to expect some form of distribution law between & and ⊕. Our goal
is to prove the following

(A&B)⊕ (A&C) `a A&(B ⊕ C) and (A&B)⊕ (A&C) `a A&(B ⊕ C)

We are only able to prove in one direction of the entailment at a time as we have
no concept that A ` B ⇒ B ` A. So we will first start with (A&B)⊕ (A&C) `
A&(B⊕C). It is sufficient to show that all branches deviation consist of axioms
in order to prove this.

A ` A
IDA

A&B ` A
&L1

A ` A
IDA

A&C ` A
&L1

(A&B)⊕ (A&C) ` A
⊕L

B ` B
IDB

B ` B ⊕ C
⊕R1

A&B ` B ⊕ C
&L2

C ` C
IDC

C ` B ⊕ C
⊕R2

A&C ` B ⊕ C
&L2

(A&B)⊕ (A&C) ` B ⊕ C
⊕L

(A&B)⊕ (A&C) ` A&(B ⊕ C)
&R

Next we will attempt to prove (A&B) ⊕ (A&C) a A&(B ⊕ C). Using the
inference rules yields the following

A ` A
IDA

A&(B ⊕ C) ` A
&L1

B ` B
IDB

(1)

C ` B

B ⊕ C ` B
⊕L

A&(B ⊕ C) ` B
&L2

A&(B ⊕ C) ` A&B
&R

A&(B ⊕ C) `a (A&B)⊕ (A&C)
⊕R1

Notice however we have that for some (1) we can infer C ` B. This may lead
you to believe that no inference rule can be made however that is not the case
as you are always able to create some new M and perform the CUT rule.

C `M M ` B

C ` B
CUTM

4



now let us consider three cases. M = C,M = B,M 6= B or C. In the first
case we get IDC on the left branch and exactly what we started with on the
right so we are able to recursively call cut. In the second case we have the same
situation however we IDB is on the right branch. In the finally case we are able
to generate a new M1 and M2 and call CUT on both the left and the right.
Similarly for (A&B)⊕ (A&C) `a A&(B ⊕ C)
We are first able to prove (A&B)⊕ (A&C) ` A&(B ⊕ C) by :

A ` A
IDA

A&B ` A
&L1

B ` B
IDB

B ` B ⊕ C
⊕R1

A&B ` B ⊕ C
&L2

A&B ` A&(B ⊕ C)
&R

A ` A
IDA

A&C ` A
&L1

C ` C
IDC

C ` B ⊕ C
&L2

A&C ` B ⊕ C
⊕L2

A&C ` A&(B ⊕ C)
&R

(A&B)⊕ (A&C) ` A&(B ⊕ C)
⊕L

However we run into the same problem when we try to entail (A&B)⊕(A&C) a
A&(B ⊕ C) as seen by (2)

A ` A
IDA

(2)

A ` B

A ` A&B
&R

B&C ` A&B

A⊕ (B&C) ` A&B
⊕L

A⊕ (B&C) ` (A&B)⊕ (A&C)
⊕R1

So what is it that we can conclude from this? We are easily able to prove what
is true by applying the correct sequence of derivation rules and reaching axioms
however for something that we suspect to be false we are always able to perform
the cut inference rule upon it. We need some form of notation saying that if
there is a derivation proving truth then we are able to write that derivation
omitting the CUT rule entirely.

2 Cut-Elimination

The cut rule is not absolutely necessary. It is possible to write proof without
using it. Cut-elimination helps us to show that our logic is consistent (our logic
is decidable and we can test all the possibilities).
How can we eliminate a cut? For example:

A ` A
ID

A ` A⊕B
⊕R1

A ` A
ID

A ` B ⊕A
⊕R2

B ` B
ID

B ` B ⊕A
⊕R1

A⊕B ` B ⊕A
⊕L

A ` B ⊕A
cut

5



It is possible to ”push up the cut”. We focus on A and split the proof in two
steps:
Step 1:

A ` A
ID

A ` A
ID

A ` B ⊕A
⊕R2

A ` B ⊕A

Step 2:

A ` A
ID

A ` B ⊕A
⊕R2

We then introduce a new judgement to indicate that A entails B without cut:

A . B

We will then have similar left and right rules:

A . C B . C

A⊕B . C
⊕L.

A . B

A . B ⊕ C
⊕R.

1

A . C

A . B ⊕ C
⊕R.

2

2.0.1 Proofs by induction

We shall assume all the possible cases. [TODO - complete all the possible cases;
showing two]
Case 1

A⊕B ` C

A ` C B ` C

By inductive hypothesis (I.H.) :

A . C B . C

A⊕B . C
⊕L.

Case 2
A ` B B ` C

A ` C
cut

By inductive hypothesis (I.H.) :

A . B B . C

A . C

6



2.0.2 Lemma: Admissibility of Cut

If
A . B

and
B . C

then
A . C

Using constructive proofs, we shall come up with the proof. We shall assume
all possible cases: [TODO - complete all the possible cases; showing three; 4
missing]
Case 1:

ID
A ` A

E
A . C

cut
A . C

Case 2:

D
A . B ⊕R1A . B ⊕ C

E
B . D

F
C . D ⊕L.

B ⊕ C . D
cut

A . D

Constructing:

D
A . B

E
B . D

I.H.
A . D

In the cases above, either the cut disappear or we get smaller pieces in the proof.
Case 3:

D
A . D

&L.

A&B . D
E

C . D
A&B . D

Constructing:

D
A . C

E
C . D

A . D
&L.

A&B . D

The case above is slightly trickier and may be referred as “simultaneous induc-
tion”.

7



2.1 Example 1.2 revisited

With this new cut elimination theorem we are now able to disprove A&(B⊕C) `
(A&B) ⊕ (A&C) by showing A&(B ⊕ C) . (A&B) ⊕ (A&C) is not possible.
Applying inference rule gives us:

A . A
IDA

A&(B ⊕ C) . A
&L1

B . B
IDB

C . B

B ⊕ C . B
⊕L

A&(B ⊕ C) . B
&L2

A&(B ⊕ C) . A&B
&R

A&(B ⊕ C). a (A&B)⊕ (A&C)
⊕R1

But by looking at the shape of the rules available we can see that the only rule
applicable is ID and this is only the case when C = B but we are considering a
general C and B hence we are stuck, meaning that this isn’t provable and hence
not true.

8


