
Session-Typed Concurrent Programming

Communication

Frank Pfenning

June 18, 2019

Introduction

We continue by reiterating the definition of Cut, and the definition of Identity.

A ` B B ` C
A ` C CutB

A ` A IDA

There are two things that can go wrong with a logic, and to capture this formally, we introduce
dual notions of soundness and completeness. If the elimination rules are too strong, if we can extract
information we didn’t put in, we call it unsound. Conversely, if we cannot extract all the information
we put in, we say that our our system lacks completeness. We say our logic is in Harmony if it is
both sound and complete. To characterize completeness and soundness we provide the following two
informal definitions:

• (local) Completeness We say that the logic is complete if we can, given an arbitrary proof
of a proposition, apply elimination rules to reintroduce the proposition. For instance, we may
prove identities on connectives, such as A&C ` A&C by using the rules of those connectives
and the identity rule on the variables.

• (local) Soundndess We say that the logic is sound if an introduction followed by an elim-
ination can be reduced to a simpler proof. The logic is unsound if we can prove entailments
which don’t follow from the premises. Cut elimination shows that this cannot happen. For
any proof of A ` C we also have a cut-free proof, and there are no rules other than cut that
apply to A ` C, so such a proof does not exist.

An example of incompleteness

The rules for the & connective are as follows.

A ` B A ` C
A ` B&C

&R

B ` D
B&C ` D &L1

1

C ` D
B&C ` D &L2

The logic becomes incomplete if we remove the &L1 rule. If we remove this rule, we can no
longer prove B&C ` C&B. We show this with the following example:

B ` C
B&C ` C &L1

B ` BIDB

B&C ` B &L1

B&C ` C&B
&R

We cannot prove B&C ` C&B without the &L1 rule. The proof gets stuck because B ` C
cannot be proven.

Without the &L1 rule we also can no longer prove the identity on connectives by using identity
on variables:

A&B ` A&B
ID

In the full logic we can prove this holds as follows.

A ` AIDA

A&B ` A &L1
B ` BIDB

A&B ` B &L2

A&B ` A&B
&R

This proof uses both the &L1 and &L2 rules. Without the &L1 rule the proof no longer works.
Using cut elimination we can show that there is no proof of A&B ` A&B.

Proofs as programs

An integral relationship between logic and computation is summarized in the Curry Howard Cor-
respondence, which details the mutual interpretations between proofs and programs. We describe
several examples in the following table.

Curry Howard Correspondence
Proposition Type
Proof Program
Proof Reduction Computation

We now cover this correspondence for our logic, and show that the logic corresponds to a language
with concurrency, or the ability to have multiple computations occurring at the same time. To do
so, we define A ` P : B where A is a type prescribing communication on the left, P is a concurrent
program and B is a type prescribing communication on the right.

2

The cut rule in this system does parallel composition.

A ` P : B B ` Q : C

A ` (P |Q) : C
Cut

Given processes P and Q, the cut rule produces a process P |Q, which is the parallel composition of
P and Q. The process P communicates with Q via the type B.

We can also show that identity allows for forwarding, according to this model.

A ` (⇐⇒) : A
ID

This rule produces a process that simply forwards messages of type A.
We now show how our proof of cut elimination corresponds to reduction on these processes.

A ` A A ` C
A ` C Cut⇒ A ` C

This rule can compose with P as follows.

A ` A A ` P : C
A ` (⇐⇒ |P) : C

Cut⇒ A ` P : C

Our system reduces (⇐⇒ |P)⇒ P and (P | ⇐⇒)⇒ P . These are of left type A and of right type
C, which does not change: (A ⇐⇒ |AP)C ⇒ APC and (AP |B ⇐⇒)B ⇒ APB . This is therefore
defining a reduction relation, and reduction does not change the outside interface.

The ⊕-connective corresponds to the left side communicating one of two possibilities, and the
right side doing case analysis on that message. We show how the reduction rule follows from the
cut elimination proof:

A ` P : B
A ` R.π1;P : B ⊕ C ⊕R1

B ` Q : D C ` R : D

B ⊕ C ` D ⊕L

A ` (R.π1;P)|CaseL(π1 ⇒ Q, π2 ⇒ R)
Cut

By cut elimination this reduces to:

A ` P : B B ` Q : D

A ` P |Q : D
Cut

We therefore have these reductions:

(R.π1;P)|CaseL(π1 ⇒ Q, π2 ⇒ R) =⇒ P |Q

(R.π2;P)|CaseL(π1 ⇒ Q, π2 ⇒ R) =⇒ P |R

Note that the R in R.π1 and R.π2 is not the variable R, but part of the syntax to indicate that
the π1 and π2 are being sent to the right. We now show the types remain correct when we add
processes to our original cut elimination proof.

The original logical rules for & without processes:

A ` B A ` C
A ` B&C

&R
B ` D

B&C ` D &L1
C ` D

B&C ` D &L2

3

With processes:
A ` P1 : B A ` P2 : C

A ` caseR(π1 ⇒ P1|π2 ⇒ P2) : B&C
&R

B ` Q : D

B&C ` L.π1;Q : D
&L1

C ` Q : D

B&C ` L.π2;Q : D
&L2

Our cut elimination proof gives the following reduction rules:

(caseR(π1 ⇒ P1|π2 ⇒ P2)|L.π1;Q)⇒ P1|Q

(caseR(π1 ⇒ P1|π2 ⇒ P2)|L.π2;Q)⇒ P2|Q

Programming with processes

We now write a few programs in this language. To do so we need to add recursive types. The first
program takes a bitstream as input and produces the same bitstream with all bits flipped as output.
The type of bitstreams is given by the recursive equation bits = bits⊕ bits.

We define a process bits ` flip : bits that flips the bits in an infinite bit stream. Flip needs to
be defined with a CaseL. If we receive a 1 then we emit a 0 and if we receive a 0 then we emit a 1.
In both cases we continue with flip.

flip = CaseL(π1 ⇒ R.π2; flip|π2 ⇒ R.π1; flip)

Dually, we can define lits = lits&lits, and we define a lits-flipping process lits ` flop : lits. This
process sends on the left and receives on the right.

We define the process bits ` comp1 : bits that compresses runs of 1’s in the bit stream to a single
1.

comp1 = CaseL(π1 ⇒ R.π1; ignore1|π2 ⇒ R.π2; comp1)

ignore1 = CaseL(π1 ⇒ ignore1|π2 ⇒ R.π2; comp1)

The language has forwarding, case left, case right, and parallel composition. These rules are
limited; we have no memory in our language. We’re limited to writing Finite State Automata
(FSA) / Finite State Transducers (FST). These is an automata/transducers that allows parallel
computation, but only computations that can be done on automata/transducers.

We can compose flip and comp1 to write a program that compresses 0 bits:

comp0 = flip|comp1|flip

This language allows us to compose programs in parallel, but only in a linear chain. Communica-
tion could be asynchronous for even more concurrency, but in our current language we can actually
implement asynchronous sending. We do this by creating a queue using the forwarding process.

comp1 = CaseL(π1 ⇒ ignore1|(R.π1; ⇐⇒)|π2 ⇒ comp1|(R.π2; ⇐⇒))

4

To create a general finite state automata that accepts any finite bitstream, we generalize to from
binary to n-ary ⊕.

fitsα = ⊕{π1 : fitsα, π2 : fitsα, e : α}

This has three cases, pi1 and pi2 for a bit in the bit stream, and e for indicating that the stream
has ended.

fits ` even⊕ {accept : α, reject : α}

even = CaseL(π1 ⇒ odd|π2 ⇒ R.reject; consume|e⇒ R.accept; ⇐⇒)

odd = CaseL(π1 ⇒ R.reject; consume|π2 ⇒ even; |e⇒ R.accept; ⇐⇒)

In order for the above program to work, we must define a consume function.

consume = CaseL(π1 ⇒ consume|π2 ⇒ consume|e⇒ ⇐⇒)

Conclusion

In summary what we introduced was a singleton logic with few connectors, and we interpreted
propositions as types and proofs as programs. Once we have this we can write interesting things
like FSAs and FSTs.

Turing Machine cells are lined up nicely, in a row, just like our chain of processes. We are almost
at the computational power of Turing Machines, as we will see next time.

5

