
Coalgebraic Semantics Lecture 1

Farzaneh Derakhshan, Tao Gu, Aditya Oak

17 June, 2019

This lecture is a first introduction to coalgebra. We first recall the induc-
tive data types and the principle of induction. Then we introduce some basic
coinductive data types and the principle of coinduction.

1 Finite and infinite data types

Throughout this note we fix an arbitrary alphabet set A. The elements in A
are called letters.

Example 1. Our first example is the inductive data structure A∗ consisting of
all finite words on A. There are several ways of describing A∗:

• In OCaml, one can write:

type list a = nil | cons a l

• By derivation rules:

ε ∈ A∗
a ∈ A u ∈ A∗

a · u ∈ A∗

Given a letter in A and a word in A∗, we can construct a new word in A∗ by
appending the letter to the word. The above definition does not only define A∗

using its constructors, but also provides a way to inductively define functions
operating on A∗. In the following Example ?? we use constructors of A∗ to
define the function len.

Example 2. We define function len : A → N inductively using the constructors
of A∗:

len(ε) = 0, len(a · u) = 1 + len(u).

Intuitively len simply counts the length of a finite word. By the inductive
construction of finite words, it is enough to explain the behaviour of the function
(i) on the empty word, and (ii) on a · u assuming its behaviour on u.

1



Example 3. Concatenation function ; : A∗×A∗ → A∗ is defined by structural
induction on its first argument as:

ε;u = u, (a · u); v = a · (u; v).

Similar to the previous example, we used recursive call to define concatenation.

We can also prove properties of functions defined on inductive types using
their constructors:

Example 4. We want to prove len(u; v) = len(u) + len(v) given the definitions
of len and ; functions in examples ?? and ??. The proof goes by induction on
the first argument:

Base case. len(ε; v) = len(v) = 0 + len(v) = len(ε) + len(v)

Inductive case. len(a ·u; v) = len(a · (u; v)) = 1 + len(u; v) by definitions of len
and concatenation. By inductive hypothesis, len(u; v) = len(u) + len(v).
Thus len(a · u; v) = 1 + len(u; v) = 1 + len(u) + len(v) = len(a · u) + len(v).

Inductive datatypes come with an inductive principle that works on their
constructors. For the coinductive infinite data types we have a similar situation.
But instead of defining the values of constructors, for coinductive types we define
the value of deconstructors in a dual manner.

2 Infinite Sequences over A
The set Aω of all infinite sequences over A is defined as {σ | σ : N → A}. We
use the notation σ = (σ0, σ1, . . . ). We define deconstructing functions

head(σ) := σ(0)

tail(σ)(n) := σ(n+ 1)

Coalgebraic semantics: It can be considered as a way to reason about
the programs that operate on infinite data structures. More details on this will
be provided in the following lectures.

2.1 Functions over Aω

We can define some basic operations on Aω:

• even : Aω → Aω,

even : (σ0, σ1, . . . ) 7→ (σ0, σ2, σ4, . . . )

• odd : Aω → Aω

odd : (σ0, σ1, . . . ) 7→ (σ1, σ3, σ5, . . . )

2



• merge : Aω ×Aω → Aω

merge : (σ0, σ1, . . . ), (τ0, τ1, . . . ) 7→ (σ0, τ0, σ1, τ1, . . . )

Recursive definitions of the above given functions:

•

{
head(merge(σ, τ)) = head(σ)

tail(merge(σ, τ)) = merge(τ, tail(σ)))

•

{
head(even(σ)) = head(σ)

tail(even(σ)) = even(tail(tail(σ))) = odd(tail(σ))

•

{
head(odd(σ)) = head(tail(σ))

tail(odd(σ)) = tail(even(tail(σ)))

Proposition 5. merge(even(σ), odd(σ)) = σ

Proof. Let ρ = merge(even(σ), odd(σ)). Now we show that ∀n ∈ N, ρ(n) = σ(n):

Base case.

ρ(0) = head(merge(even(σ), odd(σ)))

= head(even(σ))

= head(σ)

= σ(0)

Inductive case.

ρ(n+ 1) = merge(odd(σ), tail(even(σ)))(n)

= merge(odd(σ), odd(tail(σ)))(n)

= merge(even(tail(σ)), odd(tail(σ)))(n) (IH)

= tail(σ)(n)

= σ(n+ 1)

Proposition 6. even(merge(σ, τ)) = σ

Proof. Let ρ = even(merge(σ, τ)).

Base case.

ρ(0) = merge(σ, τ)(0)

= σ(0)

3



Inductive case.

ρ(n+ 1) = merge(σ, τ)(2(n+ 1))

= σ(n+ 1)

Similarly we can show odd(merge(σ, τ)) = τ .

3 Bisimulation and Coinduction

Proof by induction is common and useful on inductive data structures. Simi-
larly, one would expect coinductive proof on coinductive data structures. One
convenient way for this is to find a bisimulation, and then apply the coinductive
principle. To get the feeling of coinduction, we will focus on infinite streams A∗

here.

Definition 7. A relation R ⊆ A∗ ×A∗ is a bisimulation if ∀(σ, τ) ∈ R,

1. head(σ) = head(τ)

2. (tail(σ), tail(σ)) ∈ R

We say that two infinite sequences σ and τ are bisimilar, denoted as σ ∼ τ ,
if there exists some bisimulation between them. Bisimulation provides a way of
proving by coinduction:

Lemma 8 (Coinductive Principle for A∗). For all σ, τ ∈ A∗,

σ ∼ τ ⇒ σ = τ

Proof. Suppose R ⊆ A∗ ×A∗ is a bisimulation such that (σ, τ) ∈ R. It suffices
to show that σ(n) = τ(n), for all n ∈ N. We prove by induction on n.

• For n = 0, this is exactly (1) in definition ??.

• For n + 1, note that by (2) in definition ?? we have tail(σ) ∼ tail(τ). So
we have:

σ(n+ 1) = tail(σ)(n)

= tail(τ)(n) (IH)

= τ(n+ 1)

Therefore σ = τ .

In some cases, we may not have a bisimulation at first sight. It is common
that we start from the conclusion we want to proof, and construct a bisimulation
by adding the necessary pairs.

4



Example 9. Consider the equation

merge(even(σ), odd(σ)) = σ (1)

To derive (??) using the coinduction principle, we would like to construct some
bisimulation R which contains the pair consisting of the streams on both sides
of (??). Consider the relation

R0 = {(merge(even(σ), odd(σ)), σ) | σ ∈ Aω}

To ensure condition (2) in definition ??, we need to add the following pairs to
the relation:

R1 = {(tail(merge(even(σ), odd(σ))), tail(σ)) | σ ∈ Aω}

Proceeding like this, we get a sequence of relations, and the union of all these
relations should give a bisimulation. Fortunately we do not need to add a lot,
since R1 is already included in R0:

tail(merge(even(σ), odd(σ))) = merge(odd(σ), tail(even(σ)))

= merge(even(tail(σ)), odd(tail(σ)))

For any σ, consider τ = tail(σ), and we know that (merge(even(τ), odd(τ)), τ) ∈
R0.

Example 10. Consider the equation

even(merge(σ, τ)) = σ (2)

Following the above strategy, we construct a sequence of relations:

R0 = {(even(merge(σ, τ)), σ) | σ, τ ∈ Aω}
R1 = {(tail(even(merge(σ, τ))), tail(σ)) | σ, τ ∈ Aω}
R2 = {(tail(tail(even(merge(σ, τ)))), tail(tail(σ))) | σ, τ ∈ Aω}
· · ·

Note that

tail(even(merge(σ, τ))) = odd(tail(merge(σ, τ)))

= odd(merge(τ, tail(σ)))

tail(odd(merge(σ, τ))) = even(tail(merge(σ, τ)))

= even(merge(τ, tail(σ)))

Then it is easy to see that R0 ⊇ R2 ⊇ · · · and R1 ⊇ R3 ⊇ · · · . So the union
of the whole sequence terminates as R := R0 ∪ R1. R is then a bisimulation
containing all (even(merge(σ, τ)), σ).

5



Homework

Suppose R,S ⊆ Aω ×Aω are bisimulations.

1. R;S is bisimulation, where (x, z) ∈ R;S iff ∃y such that (x, y) ∈ R and
(y, z) ∈ S.

2. Ro is bisimulation, where (x, y) ∈ Ro iff (y, x) ∈ R.

6


