Coalgebraic Semantics Lecture 3: You fool, this isn't even my final coalgebra!

Hakan Dingenc	Pedro Amorim	Siva Somayyajula
hakan@u.northwestern.edu	pamorim@cs.cornell.edu	ssomayya@cs.cmu.edu

June 19, 2019

Remark. Please see the last few examples from the notes on Lecture 2 for the definition of the (co)natural numbers as the initial/final (co)algebras of the functor $X \mapsto \mathbf{1} + X$ and likewise for streams. It behooves us to define what initiality and finality are.

Definition 1 (Initial algebra). An algebra (X, α) over *F* is *initial* iff, for any algebra (Y, β) over *F*, there is a unique map, called an *F*-algebra homomorphism, $h : X \to Y$ such that $\beta \circ F(h) = h \circ \alpha$, i.e. the following square commutes:

Example 1. The algebra $\mathbf{1} + \mathbb{N} \xrightarrow{[0, \text{succ}]} \mathbb{N}$ over $X \mapsto \mathbf{1} + X$ is initial because, for any algebra $\mathbf{1} + Y \xrightarrow{\beta} Y$, let:

$$h: \mathbb{N} \to Y$$
$$h(0) \triangleq \beta(*)$$
$$h(n+1) \triangleq \beta(h(n))$$

Then, coherence and uniqueness follow from induction on the input to *h*. To prove uniqueness, assume that there is another *F*-homomorphism $g : \mathbb{N} \to X$. By induction, we can prove that for all n, g(n) = h(n).

Example 2. The extant *h* above is an *induction principle* for \mathbb{N} , i.e. allows us to define maps out of \mathbb{N} by induction. For example, let (\mathbb{N}, β) be an algebra over $X \mapsto \mathbf{1} + X$ where $\beta(*) = 1$ and $\beta(n) = 2n$. Thus, the induced $h : \mathbb{N} \to \mathbb{N}$ is given by h(0) = 1 and h(n+1) = 2h(n). That is, $h(n) = 2^n$ —the "action" of induction is encoded by *h* and the function-specific behavior by β . Furthermore, the uniqueness condition can be used to carry out *proofs* by induction; see "An introduction to (co)algebra and (co)induction" by Jacobs and Rutten for more details.

Question 1. Let $(\mathbb{N}^{\mathbb{N}}, \beta)$ where $\beta(*)(n) = n$ and $\beta(\phi)(n) = \phi(n+1)$. What's the function $h : \mathbb{N} \to (\mathbb{N}^{\mathbb{N}})$ defined by initiality?

Solution. Let $h(n) = \lambda x : \mathbb{N}$. x + n. It follows by an easy inspection that h is an F-homomorphism: $\beta(*) = \lambda n$. n = h(0) and $h(n + 1) = \lambda x$. $x + n + 1 = \beta(h) = \lambda n$. $h(n + 1) = \lambda x$. x + n + 1.

Definition 2 (Terminal/Final coalgebra). A coalgebra (X, α) over *F* is *final* iff, for any coalgebra (Y, β) over *F*, there is a unique map $h : Y \to X$ such that $\alpha \circ h = F(h) \circ \beta$, i.e. the following diagram commutes:

$$\begin{array}{ccc} Y & \xrightarrow{\exists !h} & X \\ \beta \downarrow & & \downarrow \alpha \\ F(Y) & \xrightarrow{F(h)} & F(X) \end{array}$$

Example 3. The coalgebra $A^{\omega} \xrightarrow{(\text{head}, \text{tail})} A \times A^{\omega}$ over $X \mapsto A \times X$ is final because, for any other coalgebra $Y \xrightarrow{\langle o, t \rangle} A \times Y$, let $h : Y \to A$ be given by $h(y)(n) = o(t^n(y))$. Coherence and uniqueness follow by induction on n.

Example 4. Dually, *h* defined above is a *coinduction principle* for streams, i.e. allows us to define maps *into* streams by coinduction. For example, let $A = \{a\}$, $Y = \{y\}$, o(y) = a, and t(y) = y. Then, the induced *h* from above is h(y) = (a, a, a, ...). Furthermore, let $Y = \{y, z\}$, o(y) = a, and o(z) = b. Then, head(h(y)) = a and tail(h(y)) = h(z) whereas head(h(z)) = b and tail(h(z)) = h(y). That is, h(y) = (a, b, a, b, a, b, ...). Lastly, uniqueness can be used to carry out proofs by coinduction.

Question 2. Use finality to define merge from two lectures ago.

Solution. We need to define a coalgebra with the carrier $A^{\omega} \times A^{\omega}$. Let $\beta : A^{\omega} \times A^{\omega} \to A \times A^{\omega} \times A^{\omega}$ be given by $\beta(s_1, s_2) = (\text{head}(s_1), s_2, \text{tail}(s_1))$ such that merge is induced by finality.

Theorem 1. If the functor F has any initial/final (co)algebras, then they are all unique up to isomorphism, i.e. for any pair of initial/final F-(co)algebras (U, α) and (U', α') , there exists an isomorphism $U \to U'$.

Proof. By initiality, there are unique functions $f : U \to U'$ and $g : U' \to U$ such that the following diagrams commute:

$$\begin{array}{cccc} F(U) & \xrightarrow{F(f)} & F(U') & & F(U') & \xrightarrow{F(g)} & F(U) \\ \alpha & & & & \downarrow \alpha' & & \alpha' \downarrow & & \downarrow \alpha \\ U & \xrightarrow{f} & U' & & U' & \xrightarrow{g} & U \end{array}$$

From this, it follows easily that the following diagram commutes as well:

Therefore, there is an *F*-algebra homomorphism between (U, α) and (U, α) , namely $g \circ f$. Furthermore, observe that id_U is also an *F*-algebra homomorphism between (U, α) and (U, α) . Since initiality says that such homomorphisms are unique, we can conclude that $g \circ f = id_U$. Similarly, we can prove that $f \circ g = id_{U'}$ and, therefore, *U* is isomorphic to *U'*. We then conclude the case for final coalgebras by duality.

Theorem 2 (Lambek). *Given a functor F with initial/final (co)algebra* (U, α) , α *is an isomorphism.*

Proof. We show the case for initial algebras. By initiality, there is a function α^{-1} making the following diagram commute:

By using a similar reasoning as in Theorem 1, we can prove that $\alpha \circ \alpha^{-1} = id_U$. From the left subdiagram, we have $\alpha^{-1} \circ \alpha = F(\alpha) \circ F(\alpha^{-1}) = F(\alpha \circ \alpha^{-1}) = F(id_U) = id_{F(U)}$. The second and last equations follow by the fact that *F* is a functor (see the last lecture's notes). We then conclude the case for final coalgebra by duality. **Example 6.** The reader may verify that the initial and final (co)algebras over $X \mapsto \mathbf{1} + A \times X$ are $\mathbf{1} + A \times A^* \xrightarrow{[nil,cons]} A^*$ and $A^{\infty} \xrightarrow{\text{uncons}} \mathbf{1} + A \times A^{\infty}$, respectively. Furthermore, the greatest fixpoint of $X \mapsto A \times X \times X$ is the set of infinite binary trees (spreads).