
Coalgebraic Semantics
Lecture 4: CoCaml is a programming language. We live in a society.

Hakan Dingenc
hakan@u.northwestern.edu

Pedro Amorim
pamorim@cs.cornell.edu

Siva Somayyajula
ssomayya@cs.cmu.edu

June 20, 2019

Remark. If we have a final coalgebra (Z, α) and any other coalgebra (X, β) over a functor F, which intuitively
provides an operational semantics for sets X, Y, etc. and functions α, β, etc., then the induced map h : X → Z
computes the denotation of syntactic objects in X. Furthermore, F(h) is the denotational semantics viewed
operationally. The following diagram summarizes the setup:

X Z

F(X) F(Z)

β

h

α

F(h)

Definition 1 (Regular expression). Reg 3 r := 0 | 1 | r + r | r; r | r∗.

Theorem 1. The final coalgebra of X 7→ 2× XA is carried by 2A∗ i.e. the set of acceptors on A∗.

Proof. Let 2A∗ 〈ε?,δ〉−−−→ 2×
(

2A∗
)A

be given by ε?(L) = [ε ∈ L] and δ(L)(a)(u) = [au ∈ L] where [·] is the

Iverson bracket. For any Y
〈o,t〉−−→ 2 × YA, let h(x)(ε) = o(x) and h(x)(au) = h(t(x)(a))(u). Uniqueness

follows by induction on the input, whose principle can be established in a similar fashion to that of the
natural numbers.

Example 1. The above definition allows us to give functorial semantics to regular expressions. By defining

the Brzozowski derivatives Reg
〈E,D〉−−−→ 2× RegA, the induced map Reg

J·K−→ 2A∗ is the standard interpretation
of regular expressions by their corresponding acceptors. Intuitively, E determines whether its input accepts
the empty string i.e. E(r) ⇔ ε ∈ JrK. Then, D calculates the “residual” regular expression of its input after
observing the character a i.e. JrK = {au | u ∈ JDa(r)K}. From this specification, their definitions follow.

E Da
0 0 0
1 1 0
b 0 [a = b]

r + s E(r) ∨ E(s) Da(r) + Da(s)
r; s E(r) ∧ E(s) Da(r); s + E(r); Da(s)
r∗ 1 Da(r); r∗

As expected, one can show the following, where ; lifts concatenation to sets of strings and ∗ denotes

1

Kleene closure. Note that we identify acceptors with the set of strings they accept.

J0K = ∅
J1K = A∗

JbK = {b}
Jr; sK = JrK; JsK

Jr + sK = JrK∪ JsK
Jr∗K = JrK∗

Example 2. By negating E, we yield the interpretation of regular expressions as the complement languages
they denote.

Example 3. (Reg, [0, 1, a, ; ,+]) (which is an isomorphism) is the initial algebra on X 7→ 1 + 1 + A + X ×
X + X × X. For any algebra 1 + 1 + A + Y× Y + Y× Y

[o,i,b,·,⊕]−−−−−→ Y, the induced map h : Reg→ Y is given
by h(0) = o, h(1) = i, h(a) = b, h(r; s) = h(r) · h(s), h(r⊕ s) = h(r)⊕ h(s), and h(r∗) = h(r) · h(r∗). Now,
define an algebra on 2A∗ over S mirroring the definition of J·K above component-wise. One can show that
the induced map of type Reg→ 2A∗ is once again the standard interpretation.

Remark. There is a natural transformation of type F ◦ S∗ ⇒ S∗ ◦ F1 that determines the distributive laws on
regular expressions.

Theorem 2. Given a general definition of coalgebraic bisimulation, for a large class of functors F, X ∼F X′ ⇐⇒
JXK = JX′K, allowing the question of program equivalence to be reduced to constructing a bisimulation.

Remark. With bialgebras, which have algebraic and coalgebraic structure, one may use bisimulation and the
equational reasoning afforded by algebraicity to execute brutal power moves. For example, it is common
to define the automaton corresponding to a particular regular expression where states are residual regular
expressions, the transitions are computed by D, and the output function is given by E. One may use
bisimulation to show language equivalence but algebraicity to perform equational identification on states.

Remark. In bialgebraic semantics with functors S and F the syntax of the language is defined as the initial
S-algebra (remember how inductively defined ASTs can be seen as initial algebras). Then by defining an
F-coalgebra α : AST → F(AST) we’re fixing a specific operational semantics over the syntax. Assuming
that Z is the final F, the denotational semantics J·K : AST→ Z is defined as the unique morphism given by
finality. Theorem 2 states that the semantics is fully abstract and contextually equivalent.

Remark. Depending on the context we may need different base categories to define our semantics. Some
examples are using nominal sets for languages with name binding and convex sets for probabilistic lan-
guages. See “Enhanced Coinduction” by Jurriaan Rot.

CoCaml

In OCaml it’s possible to define coinductive objects. The infinite list (1, 2, 1, 2...) is defined in OCaml by
code below:

However, due to how OCaml computes fixpoints, valid recursive programs on codata diverges. To
mitigate this, CoCaml offers alternative fixpoint computations.

1To deal with the Kleene star we need a different functor S∗, instead of S. Since there are some order-theoretic questions that need
to be addressed in order to show that the algebra structure is well-defined, we allude S∗’s full definition and leave it to an interested
reader.

2

Figure 1: Infinite list

For instance, a program that computes the elements of infinite lists should converge for the list above.
In this particular case, such a function is trying to compute the following fixpoint equation:

elements alt = insert 1 (elements(2 :: alt))
elements (2 :: alt) = insert 2 (elements(alt))

In OCaml, such a fixpoint would be computed by unfolding elements alt until it converges. Since alt is infi-
nite, this unfolding diverges. However, there are other methods to compute fixpoints. CoCaml implements
a few of them and let’s you choose which one to use. See the original paper for more details2.

2http://www.cs.cornell.edu/~kozen/Papers/CoCaml.pdf

3

http://www.cs.cornell.edu/~kozen/Papers/CoCaml.pdf

