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Compiler Correctness

s! t =⇒ s ≈ t

compiles to same behavior

=  semantics-preserving compilation



One of the “big problems” of computer science

• since McCarthy and Painter 1967:                         
Correctness of a Compiler for Arithmetic Expressions

Compiler Verification

• see Dave 2003: Compiler Verification:  A Bibliography



Compiler Verification since 2006…

Leroy ’06 : Formal certification of a compiler back-end or:   
   programming a compiler with a proof assistant.

Lochbihler ’10 : Verifying a compiler for Java threads. 

Myreen ’10 : Verified just-in-time compiler on x86.

Sevcik et al.’11: Relaxed-memory concurrency and 
verified compilation. 

Zhao et al.’13 : Formal verification of SSA-based 
optimizations for LLVM

Kumar et al.’14 : CakeML:  A verified implementation 
of ML

…
CompCert
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About
CakeML is a functional programming language and an ecosystem of

proofs and tools built around the language. The ecosystem includes a

proven-correct compiler that can bootstrap itself.

The CakeML project consists of the following components, all of which are free software.

Language definition. The CakeML language is based on a substantial subset of Standard ML. Its formal
semantics is specified in higher-order logic (HOL) in a functional big-step style. The core of the language
(its syntax and semantics) is quite stable, but the standard basis library is still undergoing development.
Contributions are welcome!

Compiler backend. The CakeML compiler has many parts. The most significant part is the verified
compiler backend, which transforms an untyped AST to concrete machine code for one of 5 target
architectures. The compiler backend has been proved to only produce machine code that is compatible
with the behaviours of the source programs. The backend passes through several intermediate
languages (as this diagram illustrates) and performs some optimisations.

Compiler frontend 1. There are two frontends to the compiler. The first one is a proof-producing
synthesis tool (called the translator). It generates CakeML AST from ML-like functions in HOL and proves
that the generated AST has the same behaviour as the HOL function. The original version of this tool
produced only pure CakeML code, but more recent versions can produce code that performs I/O and
uses state, including local state.

Compiler frontend 2. The second compiler frontend consists of a traditional parser followed by a type
inferencer. Both of these have been proved sound and complete with respect to declarative
specifications. For the parser, this means that our PEG parser implementation finds a correct parse tree if
there exists one according to a traditional grammar for CakeML concrete syntax (SML). Soundness and
completeness of the type inferencer means that, if the program is can be typed, then the inferencer will
find a type (which is the most general type).

Compiler bootstrapping. The CakeML compiler has been bootstrapped inside HOL. By bootstrapped
we mean that the compiler has compiled itself. This was achieved by noticing that frontend 2 combined
with the backend is a HOL function which we can feed into the tool-chain consisting of frontend 1 and
the backend. The result is a verified binary that provably implements the compiler itself (with frontend 2).
The latest bootstrapped binary is on our downloads page. The bootstrapping is described here.

Post-hoc verification of CakeML programs. We have adapted Charguéraud's CFML verification
framework to CakeML. Usually, we recommend that verified CakeML code is produced via synthesis
using frontend 1. However, in some cases it is more convenient to do Hoare-style reasoning in the
separation logic of CFML. CakeML's version of CFML supports reasoning about references, arrays,
exceptions and I/O, and is used for verification of parts of the CakeML basis library.

Verified applications built using CakeML. The CakeML tools are geared towards production of verified
applications using proof-producing synthesis (frontend 1) and compilation inside HOL (in-logic evaluation
of the compiler backend). To date, the largest case study is the bootstrapped CakeML compiler. Other
end-to-end verified applications that have been produced using the CakeML tools are:

a word frequency counter (a tutorial example)
Unix-like tools such as grep, sort, cat, diff, and patch
an OpenTheory article checker
a certificate checker for floating-point error bounds

This website provides further details of the CakeML project, links to papers, courseware, auxiliary tools

Code
The code for this project is hosted on GitHub. We
also host pre-built downloads.

Get involved
Join the slack channel cakeml.slack.com or the
connected #cakeml IRC channel on freenode
(webchat). There are also mailing lists.

Starter projects
We maintain a list of starter issues and desired
enhancements. We recommend contacting us
before starting work on one of these.

Latest compiler
The latest verified CakeML compiler passes
through 12 intermediate languages and targets
machine code for 5 architectures.
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Why CompCert had such impact…

The striking thing about our CompCert results is that the 
middle-end bugs we found in all other compilers are 
absent. As of early 2011, the under-development version of 
CompCert is the only compiler we have tested for which 
Csmith cannot find wrong-code errors. This is not for lack 
of trying: we have devoted about six CPU-years to the 
task. The apparent unbreakability of CompCert supports a 
strong argument that developing compiler optimizations 
within a proof framework, where safety checks are explicit 
and machine-checked, has tangible benefits for compiler 
users. (Yang et al. PLDI 2011)

• Demonstrated that realistic verified compilers are both 
feasible and bring tangible benefits

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf


Why CompCert had such impact…
• Demonstrated that realistic verified compilers are both 

feasible and bring tangible benefits 

• Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes
- proof using simulations

[Yang et al. PLDI’11]



[CompCert manual 2015]



Why CompCert had such impact…
• Demonstrated that realistic verified compilers are both 

feasible and bring tangible benefits 

• Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes
- proof using simulations

[Yang et al. PLDI’11]

But the simplicity of the proof architecture
comes at a price…



Problem: Whole-Program Assumption
Correct compilation guarantee only applies to 
whole programs!

Ps

Pt

!

CompCert’s … “formal guarantees of 
semantics preservation apply only to whole 
programs that have been compiled as a 
whole by [the] CompCert C 
[compiler]”  (Leroy 2014)
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Correct compilation guarantee only applies to 
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low-level
libraries



Problem: Whole-Program Assumption
Correct compilation guarantee only applies to 
whole programs!

Ps

Pt

!

et

es

!
from 

different 
compiler &  

source lang.

!



“Compositional” Compiler Verification
This Lecture… 
• why specifying compositional compiler 
correctness theorems is hard 

•  survey recent results

•  generic CCC theorem to guide future 
compiler correctness theorems

•  lessons for formalizing linking & 
verifying multi-pass compilers  et

es

!



Compiler Correctness

s! t =⇒ s ≈ t

expressed how?



CompCert 

Ps ! Pt =⇒ Ps ≈ Pt

Whole-Program Compiler Correctness

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .

R R R

“closed” simulations



Whole-Program Compiler Correctness

Ps ! Pt =⇒ Pt " Ps

behavior refinement

Tt

∀n. Pt "−→n P ′
t =⇒

∃m. Ps "−→m P ′
s ∧ Tt ≃ Ts

Ts



Correct Compilation of Components?

es

et

!

eS ≈ eT

expressed how?
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“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

expressed how?

?

Produced by 
- same compiler, 
- diff compiler for S, 
- compiler for diff lang R, 
- R that’s very diff from S?

Is behavior of     expressible in S?e′t



“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

  Definition should: 

• permit linking with 
target code of arbitrary 
provenance

• support verification of 
multi-pass compilers

If we want to verify realistic compilers…



Next
• Survey of “compositional” compiler correctness results 

- how to express 

• How does the choice affect:
- what we can link with (horizontal compositionality)    
- how we check if some       is okay to link with
- effort required to prove transitivity for multi-pass 

compilers (vertical compositionality)

- effort required to have confidence in theorem 
statement

eS ≈ eT

e′t



What we can link with

nothing

SepCompCert
Kang et al.’16

same
compiler

CompCert

diff compiler, 
same S

Pilsner
Neis et al.’15

compiled from  
diff lang R

Compositional CompCert
Stewart et al.’15

compiled from  
very diff R

Multi-language ST
Perconti-Ahmed’14
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nothing same
compiler

diff compiler, 
same S

compiled from  
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compiled from  
very diff R

CompCert
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Neis et al.’15
Compositional CompCert
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Multi-language ST
Perconti-Ahmed’14



Approach: Separate Compilation
SepCompCert           
[Kang et al. ’16]                 

! ! !



Approach: Separate Compilation
SepCompCert           
[Kang et al. ’16]                 

! ! !

Level A correctness:            
exactly same compiler

Level B correctness:          
can omit some intra-language 
(RTL) optimizations



diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14



Approach: Cross-Language Relations 
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et e′t
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eS ≈ eT

Cross-language relation
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Approach: Cross-Language Relations 

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]   

- [Hur-Dreyer POPL’11]

Cross-language relation

   No transitivity!

Parametric inter-language 
simulations (PILS)
- [Neis et al. ICFP’15]  Prove transitivity, 

  but requires effort!



x : τ ′ ⊢ es : τ ! et =⇒ x : τ ′ ⊢ es ≃ et : τ

Cross-Language Relation  (Pilsner)

        cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t



Cross-Language Relation  (Pilsner)
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x : τ ′ ⊢ es ≃ et : τHave

!



Cross-Language Relation  (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! Does the compiler
correctness theorem 
permit linking with     ?e′t



Cross-Language Relation  (Pilsner)
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et e′t

x : τ ′ ⊢ es ≃ et : τHave

!         cross-language relation
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Cross-Language Relation  (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′



Cross-Language Relation  (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′

• Need to come up with  
   -- not feasible in practice!

• Cannot link with            
   whose behavior cannot 
   be expressed in source.  

e′s

e′t



Horizontal
Compositionality Linking



Horizontal
Compositionality



Horizontal
Compositionality

es

et e′t

e′s!
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Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
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Interoperability: F and C

CF int(n) !−→ n

intFC(n) !−→ n



Interoperability: F and C

(τ → τ ′)C = ∃β.⟨((β, τC) → τ ′C),β⟩

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧ e

E ::= · · · | CF⌧E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi = d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unithCi = unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

inthCi = int h⌧1, . . . , ⌧nihCi = h⌧1hCi, . . . , ⌧nhCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧ e : ⌧hCi

CF
⌧ (v) = v Value Translation

CF
unit(()) = () CF

int(n) = n CF
Lh⌧i(Lh⌧iFCv) = v

CF
8[↵].(⌧)! ⌧ 0

(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵](v [Lh↵i] ⌧ [Lh↵i/↵]FCx)
CF

9↵.⌧ (packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF
⌧ [⌧ 0/↵](v) = v

CF
µ↵.⌧ (foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF
⌧ [µ↵.⌧/↵](v) = v

CF
h⌧1, . . . , ⌧ni(hv1, . . . , vni) = hv1, . . . , vni where CF

⌧i (vi) = vi

⌧
FC(v) = v Value Translation

unit
FC(()) = () int

FC(n) = n Lh⌧i
FC(v) = Lh⌧iFCv

8[↵].(⌧)! ⌧ 0
FC(v) = �[↵](x : ⌧).⌧

0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧ x)
9↵.⌧

FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]

FC(v) = v
µ↵.⌧

FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]

FC(v) = v

h⌧1, . . . , ⌧niFC(hv1, . . . , vni) = hv1, . . . , vni where ⌧iFC(vi) = vi

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF
⌧ (v) = v

E[CF⌧ v] 7�! E[v]

⌧
FC(v) = v ⌧ 6= Lh⌧ i

E[⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧ x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵C = ↵, the translation of this type is

8[↵].(↵)! ↵C = 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵

FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C
]⇡2(y) CF↵x)

Note that the application produced by this translation needs a C

type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧C .

We resolve this by making two changes to our system: first,
we add a type d↵e (which can be read as “the suspension of ↵
into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi = d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧C .

With these two changes, we can correct the example above
by replacing the appearance of ↵C with ↵hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵C .

Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF
8[↵].(↵)! ↵(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v
0 = �[↵](z : unit, x:↵).CF↵(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧ie. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v
0 can be replaced with

Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧ 0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧ 0 appear in the result of translation.

With the additional tools of lumps, suspensions, and the opera-
tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

CFτ→ τ ′
v !−→ pack⟨unit,⟨v, ()⟩⟩ as ∃β.⟨((β, τC) → τ ′C),β⟩

where v = λ(z : unit, x: τC).CFτ ′
(v τFC x)

τ→ τ ′FCv !−→
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central challenge:  interoperability between
high-level (direct-style) language & 

assembly (continuation style) 

FunTAL:  Reasonably Mixing a Functional Language
with Assembly [Patterson et al. PLDI’17]
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T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link( ⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS ) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS )) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS )

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),
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∈ L linking set

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link( ⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS ) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS )) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS )

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

? ∈ Ŝ
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link( ⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS ) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS )) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS )

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link( ⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS ) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS )) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS )

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b
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do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.
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We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
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T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link( ⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS ) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS )) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS )

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),
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1:7

source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

T������ 4.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS 2 S . 8(eT ,�) 2 L. eT TZT CS
T (eS ) T@bS ⇣(eT ,�) bSZS eS (1)

where (úT ,�ú) 2 L (2)

8eS . 9�. (CS
T (eS ),�) 2 L (3)

⇣(úT ,�ú) = úbS (4)
8eS . úbS bSZS eS bS@S eS (5)

8(eT ,�) 2 L. 8eS . (8cT . cT TZT eT T@T cT TZT CS
T (eS )) =)

(8cS . cS SZbS ⇣(eT ,�) bS@S cS SZS eS ) (6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS ) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need
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source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

T������ 4.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS 2 S . 8(eT ,�) 2 L. eT TZT CS
T (eS ) T@bS ⇣(eT ,�) bSZS eS (1)

where (úT ,�ú) 2 L (2)

8eS . 9�. (CS
T (eS ),�) 2 L (3)

⇣(úT ,�ú) = úbS (4)
8eS . úbS bSZS eS bS@S eS (5)

8(eT ,�) 2 L. 8eS . (8cT . cT TZT eT T@T cT TZT CS
T (eS )) =)

(8cS . cS SZbS ⇣(eT ,�) bS@S cS SZS eS ) (6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS ) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need
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source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.
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We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS ) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need
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source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.
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We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS ) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn(e 0T , eT ) =) e 0T TnT eT T@bS ⇣(e 0T ,�) bSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8eS . [·]bS bSnS eS bS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e 0T TvT eT =) ⇣(e 0T ,�) bSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a bSvS b , 8c . c bSnbS a bS@S c SnS b

4 EXISTING APPROACHES
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5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular
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separate compilation correctness
Can be instantiated with different formalisms…
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Benefits of CCC for the Next 700...
• Sheds light on pros & cons of compiler correctness 

formalisms

• Is a compositional compiler correctness theorem right?  
Instantiate CCC with your compiler correctness 
formalism & show that CCC follows as a corollary

• What's needed for better vertical compositionality / 
easier transitivity? ...



i.e., when lift    is a back-translation that maps every 

              to some        

Bonus of vertical comp: can verify different passes using 
different formalisms to instantiate CCC

Fully abstract compilers have such back-translations!

when              =  

Vertical Compositionality for Free
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9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e )) =) eI InI CSI (e ) I@S ⇣SI (eI ) SnS e

where [·]T I 2 LI

8e . CSI (e ) 2 LI

⇣SI ([·]I ) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS ) =) ⇣SI (eI ) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e )) =) eT TnT CIT (e ) T@I ⇣IT (eT ) InI e

where [·]T 2 LT
8e . CIT (e ) 2 LT

⇣IT ([·]T ) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI ) =) ⇣IT (eT ) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e )) =) eT TnT CST (e ) T@S ⇣ST (eT ) SnS e

where [·]T 2 LT
8e . CST (e ) 2 LT

⇣ST ([·]T ) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS ) =) ⇣ST (eT ) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e )) =) eT TnT CST (e ) T@S ⇣ST (eT ) SnS e

First we instantiate (2) with CSI (eS ) and eT to get:

eT TnT CIT (CSI (eS )) T@I ⇣IT (eT ) SnS CSI (eS )
We next instantiate (1) with eS and ⇣IT (eT ) to get:

⇣IT (eT ) InI CSI (eS ) I@S ⇣SI ( ⇣IT (eT )) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS ) =) ⇣ST (eT ) SvS eS
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are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:
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⇣IT (eT ) InI CSI (eS ) I@S ⇣SI ( ⇣IT (eT )) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:
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preserve equivalence
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Fully Abstract Compilers

• ensure a compiled component does not interact with 
any target behavior that is inexpressible in S

   - this guarantees programmer can reason at source level 

• Do we want to link with behavior inexpressible in S?    
Or do we want fully abstract compilers?  

preserve equivalence

We want both!
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The Way Forward…
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Rethink PL Design with Linking Types
RustML Java

C FFI unsafe JNI
escape
hatches

Design linking types extensions that support 
safe interoperability with other languages

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too 

[Patterson-Ahmed SNAPL’17]
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PL Design, Linking Types

RustML
affine

fine-grained
capabilities

Gallina
pure

Richly Typed Target

Type-preserving
fully abstract
compilers

! ! !



Linking Types
• Allow programmers to reason in almost their own source 

language, even when building multi-language software

• Allow compilers to be fully abstract (and vertically 
compositional), yet support multi-language linking

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too 

[Patterson-Ahmed SNAPL’17]



Final Thoughts on Correct Compilation
• CompCert started a renaissance in compiler verification

- major advances in mechanized proof 

• Next challenge:  Compositional Compiler Correctness

- that applies to world of multi-language software

- but source-independent linking and vertical 
compositionality are at odds

- generic CCC theorem sheds light on current/future results



Secure Compilation

References & Future Directions

Formal Approaches to Secure Compilation: 
A Survey of Fully Abstract Compilation

[Patrignani--Ahmed-Clarke, ACM Computing Surveys 2019]



Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Given:  
No       can 
distinguish  

Show:  
Given arbitrary       ,
it cannot distinguish

Need to be able to 
“back-translate”       
to an equivalent 

CT

CT

CS

e1, e2

CS
e1, e2

e1 e2



Challenge: Back-translation
1. If target is not more expressive than source, use the same 

language: back-translation can be avoided in lieu of 
wrappers between     and

• Closure conversion: System F with recursive types 
[Ahmed-Blume ICFP’08]

• f* (STLC with refs, exceptions) to js* (encoding of 
JavaScript in f*) [Fournet et al. POPL’13]

τ τ+
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2. If target is more expressive than source

(a) Both terminating:  use back-translation by partial 
evaluation 

• Equivalence-preserving CPS from STLC to System F 
[Ahmed-Blume ICFP’11]

• Noninterference for Free (DCC to F   )               
[Bowman-Ahmed ICFP’15]

(b) Both nonterminating: use ??                                   
back-trans by partial evaluation is not well-founded!

ω



Challenge: Back-translation
2. If target is more expressive than source

(a) Both terminating:  use back-translation by partial 
evaluation 

• Equivalence-preserving CPS from STLC to System F 
[Ahmed-Blume ICFP’11]

• Noninterference for Free (DCC to F   )               
[Bowman-Ahmed ICFP’15]

(b) Both nonterminating: use ??                                   
back-trans by partial evaluation is not well-founded!

ω

Observation:  if source lang. has recursive types,           
can write interpreter for target lang. in source lang.



Fully Abstract Closure Conversion
Source: STLC +    types

Target: System F +    types +    types + exceptions

First full abstraction result where target has exceptions but 
source does not.  

Earlier work, due to lack of sufficiently powerful back-
translation techniques, added target features to source.

Proof technique: Universal Embedding
• Untyped embedding of target in source

• Mediate between strongly typed source and untyped       
back-translation

∃
µ

µ

[New et al. ICFP’16]



Dynamic Secure Compilation

e1 e2

e1 e2



Dynamic Secure Compilation

1.  Cryptographically enforced: concurrent, distributed langs.

• Join calculus to Sjoin with crypto primitives, preserves and 
reflect weak bisimulation [Abadi et al. S&P’99, POPL'00, I&C'02]

• Pi-calculus to Spi-calculus [Bugliesi and Giunti, POPL'07]

• F# with session types to F# with crypto primitives [Corin et 
al., J. Comp. Security'08]

• Distributed WHILE lang. with security levels to WHILE 
with crypto and distributed threads [Fournet et al, CCS'09]

• TINYLINKS distributed language to F7 (ML w. refinement 
types), preserves data and control integrity[Baltopoulos and 
Gordon, TLDI'09]



Dynamic Secure Compilation

2.  Dynamic Checks / Runtime Monitoring

• STLC with recursion to untyped lambda-calc, proved fully 
abstract using approximate back-translation. Types erased 
and replaced w. dynamic checks. [Devriese et al. POPL’16] 

• f* (STLC with refs, exceptions) to js* (encoding of 
JavaScript in f*). Defensive wrappers perform dynamic 
type checks on untyped js* [Fournet et al. POPL’13]

• Lambda-calc to VHDL digital circuits, run-time monitors 
check that external code respects expected 
communication protocol [Ghica and Al-Zobaidi ICE'12]



Dynamic Secure Compilation

3.  Memory Protection Techniques

(a)  Address space layout randomization (ASLR)    

• STLC w. abstract memory, to target with concrete 
memory; show probabilistic full abstraction for large 
memory [Abadi-Plotkin TISSEC'12]

• Added dynamic alloc, h.o. refs, call/cc, testing hash of 
reference, to target with probref to reverse hash 
[Jagadeesan et al. CSF'11]



Dynamic Secure Compilation

3.  Memory Protection Techniques

(b)  Protected Module Architectures (PMAs) (e.g., Intel SGX) 
protected memory with code and data sections, and 
unprotected memory

• Secure compilation of an OO language (with dynamic 
allocation, exceptions, inner classes) to PMA; proved fully 
abstract using trace semantics.  Objects allocated in 
secure memory partition [Patrignani et al. TOPLAS'15]



Dynamic Secure Compilation

3.  Memory Protection Techniques

(c)  PUMP Machine  architecture tracks meta-data, registers 
and memory locations have tags, checked during execution

• Secure compartmentalizing compiler with mutually 
distrustful compartments that can be compromised by 
attacker.  OO lang to RISC with micro policies     
[Juglaret et al. 2015]



Dynamic Secure Compilation

4.  Capability Machines

• C to CHERI-like capability machine: give calling convention 
that enforces well-bracketed control-flow and 
encapsulation of stack frames using local capabilities 
(subsequent work: linear capabilities); proved using logical 
relation [Skorstengaard et al. ESOP'18, POPL'19]



Secure Compilation: 
Open Problems



Secure Compilation: 
Open Problems

1.  Need languages / DSLs that allow programmers to easily 
express security intent.  

• Compilers need to know programmer intent so they can 
preserve that intent (e.g., FaCT, a DSL for constant-time 
programming [Cauligi et al. SecDev'17] 

2.   Performant secure compilers

• Static enforcement avoids performance overhead, could 
run on stock hardware; need richly typed compiler IRs

• Dynamic enforcement when code from static/dynamic and 
safe/unsafe languages interoperates (e.g., h/w support)

• Better integration of static and dynamic enforcement... 
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3.  Preserve (weaker) security properties than contextual equiv.  

• Full abstraction may preserve too many incidental/
unimportant equivalences and has high overhead for 
dynamic enforcement

4.   Security against side-channel attacks

• Requires reasoning about side channels in source language, 
which is cumbersome.  Can DSLs help? 

• Correctness-Security Gap in Compiler Optimizations [D'Silva et 
al. LangSec'15].  Make compilers aware of programmers' 
security intent to take into account for optimizations.



Secure Compilation: 
Open Problems

5.  Cryptographically enforced secure compilation

• e.g., Obliv-C ensures memory-trace obliviousness using 
garbled circuits, but no formal proof that it is secure

6.  Concurrency (beyond message-passing, targeting untyped 
multi-threaded assembly)

7.  Easier proof techniques and reusable proof frameworks 
(trace-based techniques, back-translation, logical relations, 
bisimulation)



Final Thoughts

It's an exciting time to be working on secure compilation!

 

•   Numerous advances in the last decade, in PL/formal 
methods and systems/security.

•   For performant secure compilers, will need to integrate 
static and dynamic enforcement techniques, and provide 
programmers with better languages for communicating 
their security intent to compilers.




