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Overview

• Tue, 9:00-10:15:    Distributed ledger technology and `smart contracts’
• Wed, 14:00-15:15: Algebraic foundations for resource management
• Thu, 9:00-10:15:    Compositional contracts and `smart’ contract management
• Thu, 2:00-3:15:      Contract analysis (and other topics)
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Why blockchain?
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Why blockchain?
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Blockchain/distributed ledger system 

• organizational and technical decentralization;
• tamper-proof recording of digitally signed (real-

world) events and their evidence; 
• digital resource management:
• digital storage, transfer, transportation, transformation of 

money, goods and services

It provides
• consistent, nonrepudiable information across all principals 

(suppliers, partners, customers, regulators, etc.)
• guarantees against forging and double spending
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Organizational and technical decentralization

• Technical decentralization: A distributed peer-to-peer 
system

• Organizational decentralization: No single or select
group of organizations controls/has privileged rights to 
system
• Nonpermissioned (”blockchain”): open and self-authenticating, 

anybody can host a node, be a user and have multiple/many
anonymous identities

• Permissioned: nodes and users are authenticated and identified; 
may be private, but cannot have multiple identities

• Governance policy for regulating membership, 
functionality, conflict resolution, etc.
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Intermezzo: Extended REA accounting model
• Resource (= asset): Money, licenses, physical objects (e.g. trucks),...
• Information: Data, invoices,...
• Agent: Person, company, institution, autonomous device,...
• Contract: Specification of obligations, permissions and prohibitions
• Event:
• Atomic event: 
• A transfers R to B 
• A transforms R to R’
• A informs B of I
• ...

• Complex event: Set of events that satisfies a given (sub)contract
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Tamper-proof recording of events and their evidence
• Event recording: Events are stored (eventually, probabilistically) consistently; 

that is, every node in the distributed system gives the same answer when
queried about them

• Tamper-proof: Stored events cannot subsequently be altered or deleted
• Evidence
• for atomic events: 
• signature (by sending agent), plus 
• supporting evidence of event actually having happened, e.g. receipt signature, 3d party validation (”payment has 

been performed” [*], ”parcel has been delivered”), DNA samples (”this is the same timber as received”), GPS-/time-
tagged pictures (”the parcel delivered in your driveway”), IoT device messages (”parcel has been scanned at this
time and location”), etc

• for complex events: 
• (mathematical) proof that a particular set of events constitutes a correct execution (by all involved parties) of a 

particular, mathematically well-specified contract.
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Blockchain/DL systems as digital twins

time

Alternative state 1

Alternative state 2
e'

Contract

Physical evidence frameworkPhysical world

History in Blockchain

e

now

Physical assets
and

physical events

Illustration by Boris Düdder

Tamper-proof



Digital resource management

• System keeps track of ownership and location of resources
• Guarantees that digitally represented resources can only be transferred

and transported, never erroneously or maliciously duplicated
• Can be decomposed into
• resource preservation 
• credit limit enforcement 
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Resource preservation and credit limit enforcement

• Resource preservation: Transfers keep the sum of all resources invariant:
• A transfers 50 ETH to B: The sum of all ETH is the same.  Atomically, after event, A has 

50 ETH less; B has 50 ETH more.
• We allow negative numbers to be transferred and as account balances!

• Credit limit enforcement: A transfer is only valid (and effected) if the 
credit limits of each agent are respected.  For above transfer of 50 ETH:
• If A owns 60 ETH and has credit limit 0: Valid.  (A owns 10 ETH after transfer.)
• If A owns 30 ETH and has credit limit 0: Invalid. (No transfer. A still owns 30 ETH.)
• If A owns 30 ETH and has credit limit 20: Valid. (A ”owns” -20 ETH after transfer.)

• No-double-spend guarantee = all agents have credit limit 0.
• UTxO = account where complete balance must be transferred.
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Why adaptive credit limits instead of just zero credit limit?

• Full-reserve monetary system: One agent (the central bank) has no credit
limit, all others have credit limit 0.

• Fractional-reserve monetary system: A designated set of agents (”banks”) 
have a dynamic non-0 credit limit, all others have credit limit 0.
• Banks’ dynamic credit limits depend on other assets they own, including expected

future repayments as part of the contracts (loans, etc.) they have made.

• Demand-driven production of physical assets: A car manufacturer has no
credit limit (they produce cars on demand), all others have credit limit 0.
• A car transfer by a car manufacturer need not be validated (``do they even own it?’’); 

they can produce a new one.
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Commutativity theorem, part 1

• Theorem: If every agent has an infinite credit limit, then all resource
transfers are valid and can be executed in arbitrary order. (Each order
results in the same state of ownership.)

• Corollary: Contract execution involving k agents with infinite credit limit 
requires only consensus by the k agents (on the particular execution); no
event needs to be validated by a 3d party. Usually k=2. 

• Loosely: The Internet with TLS for authentication, reliable message
delivery, and hashpointers for tamper-proof recording of authenticated
message exchanges is a permissioned blockchain/DL system if there are
no credit limits.
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Commutative theorem, part 2
• If some agents have finite credit limits, outside validation of their

resource transfers is required. 
• Point-to-point communication between the k agents only is insufficient.
• Some information about resource transfers must be ”leaked” to other nodes for 

validation.
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Total event ordering
• Total event ordering: Distributed consensus by all non-Byzantine (= correctly

executing) nodes on a particular total order (= sequence) of events arriving at 
any one non-Byzantine node
• Very hard problem (impossibility results, tricky algorithms, lower bounds on 

rounds/complexity, need for randomization, synchronous communication etc.)

• Total event ordering is sufficient for resource transfer validation:
• agree on total order of events, including resource transfers;
• validate a transfer if, in that order, all agents’ credit limits are satisfied (= no double-spend).  

• Total event ordering is not necessary for resource transfer validation:
• Most resource transfers commute with each other:  

transfer(A,B,R); transfer(C,D,Q) = transfer(C,D,Q); transfer(A,B,R) if {A,B} ∩ {C,D} = ∅
• Total event ordering is the main bottleneck in large distributed systems, 

especially asynchronous ones; nonetheless it is used in most blockchain/DL 
systems (Bitcoin, Ethereum, Fabric, etc.).
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Contract-oriented business architecture with intermediaries 
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Standard blockchain architecture (without digital contracts)
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• Private front-end program 
(wallet management, 
trading strategy, etc)

• Public smart contracts 
(programs tied to 
particular blockchain 
system)

• Public information
(may be ‘off chain’, e.g. in 
IPFS)

• Public resource manager 
(single blockchain system)

If decentralized: 
Blockchain/DL system

Distributed application 
(“dapp”)
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T h e  p r i c e  o f  e x p r e s s i v e n e s s :
u n p r e d i c t a b i l i t y

• Smart contract: any program, written in Turing-complete, 
feature-rich programming language (Solidity, Kotlin, Go, …)
• + : Expressive, familiar
• - :  Very undecidable properties (*), even with full access to 

the source code

• Smart contracts without support for reasoning for qualitative 
and quantitative safety are dangerous
• Move money, not just bits
• Invite honeypotting

(*) Undecidable and statically hard and/or cumbersome to analyze 



E x a m p l e :  E t h e r e u m  V u l n e r a b i l i t i e s

• Transaction-order dependence: Messages may have different effect depending on their 
order of arrival 

• Who controls the process scheduler (= message sequencer)?  Some miner: Front-running

• Time-stamp dependence: Smart contracts may have different executions depending on the 
time stamp on a transaction block

•Who controls the time stamping of transaction blocks? Some miner: Clock manipulation

• Exception handling, gas management fragility: Subtle differences in exception semantics, 
limited run-time stack 

• Provoking out-of-stack and gas exhaustion exceptions: Any user

• Programming language complexities: 

• Exception handling subtleties (send vs. call)

•Reentrancy vulnerability (DAO hack)

• Implicit method forwarding (multi-sig exploit)

L U U ,  C H U ,  O L I C K E L ,  S A X E N A ,  H O B O R ,  M A K I N G  S M A R T  C O N T R A C T S  S M A R T E R  ( 2 0 1 6 )



Example: Reentrancy vulnerability

L U U ,  C H U ,  O L I C K E L ,  S A X E N A ,  H O B O R ,  M A K I N G  S M A R T  C O N T R A C T S  S M A R T E R  ( 2 0 1 6 )



Contract-oriented IT architecture with digital contracts and 
contract managers (generic smart contracts)
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• ...
• Confidential contract 

managers: 
• Smart contracts for 

escrow, trade finance, 
public funding, etc.

• Secure cryptographic 
exchanges and auction 
systems

• Contract execution 
monitoring (encompassing 
procure-to-pay)



Contract-oriented IT architecture with digital contracts and 
contract managers (generic smart contracts)
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• ...
• Confidential contract 

managers: 
• Intelligent contract 

management (monitoring, 
arbitration, escrow, 
collateral management, 
etc.)

• Transactional resource 
management of multiple
resource managers

multiple resource managers



Consequences

• Separation of contract life cycle management from contracts
• Contracts portable (CSL), quantitatively analyzable, domain-oriented (`zero 

programming’)
• Contract life cycle managers generic (any contract), in any implementation 

language (Kotlin, Go, Java, Haskell,...), instrumentable, changeable (adding escrow, 
collateral management, etc., without changing contracts)

• Separation of resource management from contract management
• Increased scalability 1: Event log per contract, no/few dependencies across contracts
• Increased scalability 2: Aggressive partitioning of agents and resources (sharding, 

channels, etc.)
• Increased privacy (contract and contract execution not disclosed to resource 

manager)

• Precise, mathematical semantics
• Mathematical guarantees, formal verification, static analysis (no hacks possible)
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Observations

• Popular blockchain and DL systems employ replicated state machine 
architecture (unstructured P2P system): High redundancy, high message 
traffic

• Total event order consensus: Distributed consensus on a specific total 
order of transactions is sufficient, but not necessary for resource transfer 
validation
• Many possibilities of distribution/parallelization by partitioning, increasingly 

recognized (sharding, state channels)

• Hash pointer graphs have multiple uses.
• For tamper-proof, confidential recording of events making up execution of specific

contract.  (Note: Not confidential, but public, in Ethereum and similar blockchain 
systems)

• For tamper-proof, public recording of total order of validated resource transfers.
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Open problems

• Fully exploit resource transfer commutativity

• Current blockchain/DL systems solve an unnecessarily hard problem: distributed
consensus on total order of all events across all contracts.

• Exploit that (certain) subsets of transfers can be validated and effected independent of 
each other.

• Ideas for specialized distributed consensus protocols for scalability:

• Hierarchical clearing and settlement, as in banking systems with real-time gross
settlement via central bank (hierarchical ”sharding” by partititioning of agent accounts)

• Time- and resource-sensitive validation (bigger transfers require more time for 
validation)

• Insurance (appyling transaction fees to cover losses due to overdrafts detected too late)

• ... 
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Plan X
• Programmable platform for distributed storage and applications
• Data model: Raw data (bits), immutable location-independent references 

(value references), mutable references (pointers), and sequences/stream 
of such
• Key aspect: Value references, guaranteed immutable and location independent

• Architectural components:
• XMLStore: Programmable, compositional save/load-architecture for storing and 

retrieving immutable and mutable data
• MergeLang: User-definable updating of mutable data, based on 3-way merging 
• Distributed applications: XMLStore with exec-interface for executing code stored as 

structured data in XMLStore
• Distributed garbage collection, deduplication, etc: Systems components for memory 

deallocation, optimization, etc.

• Conceived of in 2001 at ITU.  Projects in 2001-2004 at DIKU and ITU. 
• 20 B.S. and M.S. projects, multiple faculty, ~1 GB of code and test data
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XMLStore components 
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Example: Structured P2P store by composing XMLStore components
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Resource ownership consensus by 3-way merging

• Maintain account balance in replicated updatable reference
• Formulate updating as applying an update function to balance 
• Merge multipe updates into joint update function during replica 

synchronization
• Observation: Almost all resource updates commute -> update joining is 

(almost) commutative
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To be continued...
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