
Smart digital contracts:
Algebraic foundations for resource

accounting

Fritz Henglein

Email: henglein@diku.dk, henglein@deondigital.com

OPLSS 2019, 2019-06-26



Recall

Agents: Persons, companies, robots, devices that sign events and
their evidence

Events: Significant real-world events that update the state of the
(business) world

Business events: Transmission of information and other
events whose resource effect is idempotent (e.g. queries)
Resource events: Producing (transforming) and
transferring resources, which have a resource effect
(who owns or possesses what)

Resources: Physical (goods, services) or digital (money, rights) resources
that cannot/must not be freely copied and discarded

Contract: A classifier of event sequences into “happy” paths (correct
contract executions) and “breaches” (incorrect contract
executions).

2



Today

Algebraic model of resources, with user-definable resource types
(“multi-currency”)

Resource ownership via coproducts

Resource transfers via kernels

Operations and properties: vector space operations and basic linear
algebra

3



Vector spaces

Definition

Field: (K ,+,−, 0, ·, /, 1), commutative ring with multiplication and
division

Vector space over K : (V ,+,−, 0, ·), usual properties

Dimension of vector space: Cardinality of smallest subset of V that
spans all of V

Example

The reals R are a field and simultaneously a vector space of dimension 1
over itself.

4



Vector space constructions
Let Vx be vector spaces.∏

x∈X Vx (product): Functions f from x : X to Vx∐
x∈X Vx (coproduct): Functions f from x : X to Vx with finite support

Supp(f ) = {x | f (x) 6= 0}; that is, finite maps with default
return value 0.

V →1 W (linear map space): Functions (linear maps) f from V to W
such that f (v1 + v2) = f (v1) + f (v2) and f (k · v) = k · f (v).

U ⊆ V (subspace): Subset U of V that is closed under 0,+,−, ·
If Vx = V for all x ∈ X , write∏

X

V =
∏
x∈X

V∐
X

V =
∐
x∈X

V

5



Vector space constructions: Examples

Let X be a set.

V1 ⊕ V2 (direct sum):
∐

x∈{1,2} Vi (= V1 × V2)

FreeK (X ) (free vector space):
∐

X K∑
: (
∐

X V )→1 V (sum, addition):∑
({x1 : v1, . . . , xn : vn}) = v1 + . . . + vn

p∗ : FreeK (X )→1 K (valuation under price p : X → K ): Unique
extension of p to FreeK (X ).

ker f ⊆ V (kernel of f : V →W ): {x ∈ V | f (x) = 0}.
im f ⊆W (image of f : V →W ): {f (x) | x ∈ V }.

6



Vector space constructions: Examples of examples

(5, 8) ∈ R⊕ R = R2

5 · X1 + 8 · X2 = {X1 : 5,X2 : 8} ∈
∐
{X1,X2}R∑

{X1 : 5,X2 : 8} = 5 + 8 = 13

p∗({X1 : 5,X2 : 8}) = 4 · 5 + 3 · 8 = 44
for p(X1) = 4, p(X2) = 3.

ker p∗ = {{X1 : x1,X2 : x2} | 4 · x1 + 3 · x2 = 0}.
im p∗ = R.

7



Agents and resources

Agents A: A set. A = {Alice,Bob,Charlie, . . .}.
Resource types X : A set. X = {USD, iPhone, . . .}.
Resources R: A vector space. R =

∐
X R

Ownership states O: A vector space. O =
∐

A R
Transfers T : Subspace of O. T =

∑
X R = ker(

∑
:
∐

A R →1 R)

Example

A simple resource: 50 ·USD

A compound resource: 50 ·USD+ 2 · iPhone
A missing resource is also a resource: −50 ·USD

An ownership state: {Alice : 50 ·USD,Bob : 1 · iPhone+ 10 ·USD}
A simple (2-party) transfer: {Alice : −30 ·USD,Bob : 30 ·USD}
A compound (multi-party) transfer:
{Alice : −30 ·USD,Bob : 20 ·USD,Charlie : 10 ·USD}

8



Resource manager
Credit limit policy: Predicate (Boolean function), classifying
ownership states into valid and invalid ones

I Usually : PA0,c(o) = o(a) ≥ c(a) for all a ∈ A0 where A0 ⊆ A.

Resource manager: Object (service) with
I Internal state o: An ownership state satisfying credit limit policy P.
I Method ApplyTransfer:

Receive transfer t.
If P(o + t), update internal state to o + t and return “success”;
otherwise, return “failure”.

Example

Credit limit policy: No credit (no negative amounts of any resource type)
Initial ownership: o1 = {Alice : 50 ·USD,Bob : 1 · iPhone+ 10 ·USD}
First transfer: t1 = {Alice : −30 ·USD,Bob : 30 ·USD}
Second transfer: t2 = {Alice : 1 · iPhone,Bob : −1 · iPhone}
Combined transfer: {Alice : 1 · iPhone− 30 ·USD,Bob : −(1 · iPhone− 30 ·USD)}
Final ownership: o2 = {Alice : 1 · iPhone+ 20 ·USD,Bob : 40 ·USD}

9



Ownership state as balance plus transfer
Theorem

Let f : V →1 W . Then:

V ∼= im f ⊕ ker f

dimV = dim(im f ) + dim(ker f ).

Corollary

O =
∐
A

R ∼= R ⊕
∑
A

R = R ⊕ T

Intuitively: Ownership state ∼= a resource balance owned by one particular
agent b ∈ A and some transfer; for example:

o = {Bank : 60 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}
= {Bank : 130 ·USD}+
{Bank : −70 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}

10



Resource manager properties

A multiset M = {t1, . . . , tn} of transfers can be applied by a resource
manager in any order: any two orders that succeed result in the same
ownership state. Some orders may fail, however, due to the resource
manager’s credit limit policy.

If there is some successful order of applying M satisfying P, then
applying the single “netted” transfer t =

∑
M =

∑n
i=1 ti is valid,

too. The converse is not true.

The internal ownership state can be stored as a pair, a balance and a
transfer.

The balance component in a resource manager is invariant. Only the
transfer component is updated by ApplyTransfer.

11



Zero-balance resource managers

Balance of a resource manager can be kept in another resource
manager.

Zero-balance resource manager: internal state of resource manager
consists of a transfer only; resource balance component is implicitly 0.

12



Zero-balance resource managers: Example
Two resource managers:

o1 = {Bank1 : 60 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}
= {Bank1 : 130 ·USD}+
{Bank1 : −70 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}

o2 = {Bank2 : 10 ·USD,Alice : 100 ·USD,Bob : 200 ·USD}
= {Bank2 : 310 ·USD}+
{Bank1 : −300 ·USD,Alice : 100 ·USD,Bob : 200 ·USD}

Replace by three resource managers mainting transfers only:

t1 = {Bank1 : −70 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}
t2 = {Bank1 : −300 ·USD,Alice : 100 ·USD,Bob : 200 ·USD}
t0 = {Bank0 : −440 ·USD,Bank1 : 130 ·USD,Bank2 : 310 ·USD}

where Bank0 is another agent, corresponding to the central bank in the
banking system or the equity account in a company’s chart of accounts.
Note: {Bank0 : −

∑
(o1 + o2)}+ o1 + o2 = t0 + t1 + t2 is a transfer.

13



Double-entry bookkeeping

Fundamental principle of double-entry bookkeeping:

All (scalar) account (∼= agent) balances sum to 0.

Every transaction consists of multiple (“double”) account entries that
sum to 0.

“Equity” plays role of resource balance when decomposing ownership state
into resource balance and transfer satisfying

Assets − Liabilities − Equity = 0

14



Resource accounting
Resource accounting: Double-entry bookkeeping, generalized to admit

arbitrary resources, not just scalars, with

expressive algebra (vector space) of transfers that are not composed
from possibly incorrect adding/subtracting to/from account balances,
but from a base of simple transfers; and

arbitrary report functions on internal state,
I often linear maps on internal ownership states or on sequences of

transfers T ∗, and then
I easily incrementalized to maintain report function results online

(dynamically) as new transfers arrive.

A resource manager (implemented whichever way) provides digital resource
management for arbitrary (including user-defined) resource types.

Updating by transfers only guarantees resource preservation: No
managed resource is duplicated or lost.

Credit limit enforcement by checking of credit limit policy.
15



Distributed resource managers by additive decomposition (partitioning)

Idea: Implement distributed resource manager r by a P2P network of
resource managers r1, . . . , rn such that r .o = r1.o + . . . rn.o.

The ri may be distributed themselves. Advantages:
I Some transfers can be performed locally: If ri can validate and effect a

transfer t, then no communication with other resource managers is
necessary.1

I In general, decompose transfer t into t = t1 + . . . + tn and
transactionally execute all ti to ri . No communication with ri is
required if ti = 0.

1Assume credit limit policy of r is conjunction of credit limit policies r1, . . . , rn.
16



Distributed resource managers: Example
Let r consist of resource managers r1, r2 with current ownership states

o1 = {Bank1 : 60 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}
= {Bank1 : 130 ·USD}+
{Bank1 : −70 ·USD,Alice : 30 ·USD,Bob : 40 ·USD}

o2 = {Bank2 : 10 ·USD,Alice : 100 ·USD,Bob : 200 ·USD}
= {Bank2 : 310 ·USD}+
{Bank1 : −300 ·USD,Alice : 100 ·USD,Bob : 200 ·USD}

and zero-credit policy (only nonnegative balances allowed).

Transfer {Alice : −80 ·USD,Bob : 80 ·USD} can be performed by r2
without communication with r1.

Transfer {Alice : −120 ·USD,Bob : 120 ·USD} cannot be performed
by either r1 or r2, but it can be decomposed into t1 + t2 where
t1 = {Alice : −20 ·USD,Bob : 20 ·USD} and
t2 = {Alice : −100 ·USD,Bob : 100 ·USD} and then performed by
transactionally executing t1 on r1 and t2 on r2.

17



Distributed resource managers: Transactionality

Nodes in a distributed resource manager need to support atomic execution
of distributed transactions, e.g. for 2-phase commit:

Precommit transfer t: Like ApplyTransfer, but with guarantee that, if
validated, subsequent execution of −t will succeed. For simple
transfers: deducts resource from sender, but does not make it
available yet to receiver.

Commit transfer t: Apply previously precomitted t (remove
requirement that −t must be applicable later on). For simple
transfer: releases resource to receiver.

Abort transfer t: Apply −t to previously precommitted t. For simple
transfer: return resource to sender.

18



Distributed resource managers: Discussion

Many freely combinable “dimensions” of decomposition possible:
I By resource type (e.g. land registry managing houses; national banking

system (with individual banks as “peers”) managing USD accounts;
the Bitcoin network for managing Bitcoin accounts (UTxOs), etc.

I By agents (e.g. residents divided into countries of residence)
I By statically or dynamically splitting off resource managers from

existing resource managers for privacy and/or load balancing purposes
(e.g. state channels, sharding).

Resource managers should have API for participating in distributed
transactions.

Algebraic resource model as semantic basis for large design space for
distributed resource managers.

19



Summary

Algebra of transfers: infinite-dimensional vector space.
I The power of negative: Additive inverses important.

Separation of resource preservation (unrestricted algebra) and credit
limit policies (restrictions).

Additive decomposition of transfers: partitioning of resource
managers for distributed implementation.

20


