
Smart digital contracts:
Contract analysis and some open problems

Fritz Henglein

Email: henglein@diku.dk, henglein@deondigital.com

OPLSS 2019, 2019-06-27

Recall
Agents: Persons, companies, robots, devices that sign events and their evidence.

Events: Significant real-world events that update the state of the (business)
world.

Resources: Physical (goods, services) and digital (money, rights) resources,
represented by free vector space over resource types.

Ownership states: Map of which owner owns which (compound) resource, represented
by coproduct of resource space indexed by agents.

Resource transfers: Changes to ownership states that sum to 0.

Resource manager: System that maintains ownership states subject to credit limit
policy (admissible ownership states), admitting only updates by resource
transfers.

Contract: Set of happy paths (acceptable event sequences).

Contract specification: A syntactic object denoting a contract.

Contract specification language: Language for contract specifications.

Contract (life-cycle) management: Program that receives a contract specification and
then processes a stream of events in accordance with the semantics of
the contract specification.

2

Today

Contract analysis

Some exercises and open problems

3

Contract properties

Definition

A contract property is a predicate (Boolean function) P on contract
specifications.
It is extensional if C[[C1]] = C[[C2]] =⇒ (P(C1)⇔ P(C2)).
It is universal if P(C)⇔ ∀s ∈ C[[C]].P ′(s) for some predicate P ′ on event
sequences.

4

Contract verification and contract analysis

Contract verification: Given C and P, decide whether P(C) holds. If
possible, provide a proof of ` P(C), respectively ` ¬P(C).

Contract analysis: Given C and P, compute a ”good” witness W
such that P(W)(c) holds.

5

Contract analysis: First events

Definition

First(c) = {e ∈ E | ∃s ∈ E ∗. es ∈ c}

Analysis problem: Given contract specification C compute a (useful
representation of) set F such that First(C[[C]]) ⊆ F .

Exercise: How would you do this for CSL contract specifications?

6

Contract analysis: Fair consideration

Definition

Let transfer effect function eff be given.
Given valuation function Price : X → R, the value of a sequence of events
s ∈ E ∗ is

Value(s) = Price∗(eff(s)) ∈
∑
A

R.

A contract c is ε-fair under Price if

∀s ∈ c , a ∈ A. |Value(s)(a)| ≤ ε.

A contract specification C is ε-fair under Price if C[[C]] is so.

7

Contract analysis: Fair consideration

Why important?

An ε-fair contract, where Price reflects market prices, guarantees that
no happy path leads to a state where an agent has paid or received
significantly more than any other in terms of the market value of
exchanged goods, services and money.

Combined with transactional (escrowed) contract execution, this
guarantees that neither happy paths nor unhappy paths lead to
disproportionate benefits/losses for any agent.

Cannot be a built-in property of contracts since it depends on Price,
which reflects context-dependent assumptions (market prices) about
unit values of resource types.

8

Linear resources and linear logic

Linear logic is called a resource logic: Assumptions are “used up” by
applications of modus ponens

Transfers guarantee that no resources are lost or duplicated; they are
treated “linearly”.

Intuitively, there is a connection between these “linearities”. What is it?

Can sequents be interpreted as transfers and linear logic inference
rules as (particular) linear maps on transfers?

Linear logic has no scalar multiplication. Can linear logic be extended
to admit meaningful “counting” operations; e.g. add k · P instead of
!P. For k ∈ Z,Q,R,C, any field K?

9

Linear logic: Structural rules

Exchange
` Γ,B,A,∆

` Γ,A,B,∆
Init

` A,A⊥

Cut
` Γ,A A⊥,∆

` Γ,∆

10

Linear logic: Multiplicative rules

Tensor
` Γ,A ` ∆,B

` Γ,∆,A⊗ B
TensorUnit

` 1
Par
` Γ,A,B

` Γ,A` B
ParUnit
` Γ

` Γ,⊥

11

Linear logic: Additive rules

With
` Γ,A ` Γ,B

` Γ,A & B
Plus1
` Γ,A

` Γ,A⊕ B
Plus2
` Γ,B

` Γ,A⊕ B
Top

` Γ,>

12

Wrap-up

13

Smart contracts

Ethereum-style smart contracts:
I Current standard understanding of term “smart contract”.
I Contract specification, contract management and resource

management combined and expressed in single-threaded program
expressed in general-purpose programming language (EVM).

I Implementation as decentralized replicated state machine, where each
replica stores full state.

I Distributed consensus on total event order of all events across all
contracts is required and computed.

14

Smart digital contracts: Concepts

Contract: A set of event sequences (“happy paths”).

Contract specification: Syntactic object that denotes a contract
(reified contract).

CSL: Compositional contract specification language with multiple
induction principles and supporting equational reasoning.

Contract manager: System/service (“generic smart contract”) that
manages a set of contracts passed to it for management.

Resource: Finite map from arbitrary resource types to number of
units of each type.

Resource manager: System that manages ownership of resources by
agents, admits only resource transfers.

Resource transfer: Ownership changes that guarantee that no
resources are duplicated or lost.

15

Smart digital contracts: Separation of concerns
Separation of contract and contract manager:

I Separation of concerns: reified contracts (“digital contracts”) and their
flexible, intelligent management (“smart”).

I Change contracts and contract managers independent of each other.
I Analyze contracts (written in DSL with mathematical semantics

supporting compositional, equational reasoning and having multiple,
useful induction principles) independent of their managers (written in
any arbitrarily expressive and complex general-purpose languages).

I Transparently port running contracts among contract managers.

Separation of resource managers and contract managers: Facilitates
I privacy and scalability of contract management (each contract

managed independently; synchronize only through resource managers;
consensus on total event order neither required nor computed);

I transactional use on multiple resource managers, both decentralized
(blockchain/distributed ledger) and centralized (server-based,
cloud-hosted) systems;

I scalable, distributed resource managers by additive (de)composition.

16

Finis

Thank you!

Fritz Henglein
henglein@diku.dk

henglein@deondigital.com

17

