T TAU 2.19 Quick Reference

What is TAU?

The TAU Performance System® is a portable profiling and tracing toolkit for performance
analysis of parallel programs written in Fortran, C, C++, Java, Python. It comprises 3 main
units: Instrumentation, Measurement, and Analysis.

Instrumentation

Instrumentation of user codes is performed via the tau_compiler wrapper script system. We
provide wrapper scripts for C, C++, and Fortran. Instrumentation is performed via either
source code modification or compiler-based instrumentation.

For example:

Original command: TAU instrumentation command:
mpicc -c foo.c tau_cc.sh -c foo.c

mpicxx -c Foo.cpp tau_cxx.sh -c foo.cpp
mpif90 -c foo.TFA0 tau_f90.sh -c foo.f90

The tau_compiler system is configurable via the TAU_OPTIONS environment variable.
Common options:

-optVerbose Enable verbose output (default: on)
-optKeepFiles Do not remove intermediate files
-optShared Use shared library of TAU
-optComplnst Use compiler-based instrumentation
-optPDTINnst Use PDT-based instrumentation

-optTauSelectFile="/path/to/select.tau” Specify selective instrumentation file

To choose a TAU installation configuration, set the TAU_MAKEF I LE environment variable to
the chosen “stub makefile”.

http://tau.uoregon.edu 1 Contact: tau-bugs@cs.uoregon.edu

T TAU 2.19 Quick Reference

Selective Instrumentation and Throttling

To reduce overhead and increase accuracy, it is recommended that some routines not be
instrumented, those that are short running routines and are called many times. A good rule of
thumb is to exclude those routines that have less than 10 microseconds per call inclusive time,
and are called more than 100,000 times. By default, the TAU measurement system will
throttle these routines at runtime. A throttled routine will still have hooks into the
measurement system, but those hooks will be disabled, reducing, but not eliminating the
overhead. To specify a selective instrumentation file, create a text file and use the following
guide to fill it in.

e Wildcards for routine names are specified with the # mark (because * symbols show up
in routine signatures.) The # mark is unfortunately the comment character as well, so to
specify a leading wildcard, place the entry in quotes.

e Wildcards for file names are specified with * symbols.

e Exclude routines and files by specifying blocks as follows:

BEGIN_EXCLUDE_LIST

int foo(int)

void Sequencer: :threadRun(Sequencer *)
“HHSH

END_EXCLUDE_LIST

BEGIN_FILE EXCLUDE_LIST
Too.190

bar_*.c
END_FILE_EXCLUDE_LIST

e If a selective instrumentation file contains only include sections, then all routines/files
are excluded unless specified in the include list. The include versions of these sections
are BEGIN_INCLUDE_LIST and BEGIN_FILE_INCLUDE_LIST.

e Selective instrumentation files can be created automatically from ParaProf from the File-
>Create Selective Instrumentation File menu item. A command line utility, tau_reduce
also performs a similar task.

http://tau.uoregon.edu 2 Contact: tau-bugs@cs.uoregon.edu

T TAU 2.19 Quick Reference

Measurement

Once an application has been built with TAU, its performance can be measured using the TAU
runtime library. The measurement library can be configured at runtime through the use of
environment variables. The most important variables are given below:

TAU_VERBOSE Enabled verbose output

TAU_METRICS* Select metrics to measure (Default: WALLCLOCK)

TAU_PROFILE Enable profile output (Default: on)

TAU_TRACE Enable trace output

TAU_CALLPATH Enable callpath profiling

TAU_CALLPATH_DEPTH Set callpath depth (Default: 2)

TAU_COMPENSATE Attempt to compensate for profiling overhead in profiles
TAU_TRACK_MESSAGE Track MPIl message statistics (profiling), messages lines (tracing)
TAU_COMM_MATRIX Generate MPl communication matrix data

TAU_THROTTLE Throttle lightweight routines (Default: on)

TAU_THROTTLE_PERCALL Throttling per call threshold, in microseconds (Default: 10)
TAU_THROTTLE_NUMCALLS Throttling number of calls threshold (Default: 100000)
TAU_SYNCHRONIZE_CLOCKS For tracing, synchronize clocks between nodes (Default: on)

When the application completes execution, a profile or trace (if configured) will be generated
for each node. They are named profile.<nid>.0.<tid>, or tautrace.<nid>.0.<tid>. Large sets of

profiles can be packed into a single, compressed file using:
% paraprof --pack file.ppk

* TAU_METRICS specifies a colon-separate list of metrics. Every installation of TAU includes
TIME (using unix gettimeofday). On Linux and CrayCNL systems, we provide the high
resolution LINUXTIMERS metric, on BGL/BGP systems we provide BGLTIMERS and BGPTIMERS.
If TAU has been built with PAPI (-papi=/path/to/papi), then all of the PAPI counters (given via
PAPI’s papi_avail command) will be available, in addition we provide PAPI_TIME and
PAPI_VIRTUAL_TIME metrics to access the PAPI provided wallclock and virtual time metrics.

An example TAU_METRICS setting might be given with the following command.
% export TAU _METRICS="LINUXTIMERS:PAPI1_FP_OPS”

http://tau.uoregon.edu 3 Contact: tau-bugs@cs.uoregon.edu

7‘-' TAU 2.19 Quick Reference

Analysis

To view profiles and traces, we provide the profile analyzers, pprof and ParaProf, and the
trace visualize, jumpshot. To use pprof and paraprof, simply execute them inside the directory
containing the profiles. For example, to see profiles on the command line, execute:

% pprof

NODE O;CONTEXT O;THREAD O:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name
msec total msec usec/call
100.0 24 590 1 1 590963 main
95.9 26 566 1 2 566911 multiply
47.3 279 279 1 0 279280 multiply-opt
441 260 260 1 0 260860 multiply-regular
ParaProf

To use launch ParaProf, execute paraprof from the command line where the profiles are
located. Launching ParaProf will bring up the manager window and a window displaying the
profile data as shown below.

TAU: ParaProf: wrf16.ppk [=][m][=]

File Options Windows PyScript Help

Metric: Time
Walue: Exclusive

SLAC E— — 11— |10
LT B T ———— — [[B o o B S W SRR |
(LCRON S — [i I O S W A
ICCPEE— e EEEEESERCE R
(UL T ——— B iSRRI
nede s T e el e (o] [[l D T G R —
nede 4 T el e el [(ool [oolol (el T LT T DR —
nede 5 T e P e [(o] [ol Dl T (] [T TR —
[LLCR T — s e RS R CRRR iR
nede 7 e e el e [[Foofl Tl Tl 1T TR CRERT—
ILCR g E— e e EEE e s ERRecn T
nede s B e e e Lo (ool T [ofol Dol Tl TG0 (AR —
node 10 T e ey e oo (ool [(el el [1T O —
node 11 B e Py e (o] | foll bl [l (1T TR (T —
nedelz B el] e ol [(lel Tl [(G T —
node 13 T — e e [l [(ol (e T (T G T —
L T ————— — I I o I S W SRR]
node 15 e oy P ([oo] [Tofl bl T T TR T —

http://tau.uoregon.edu 4 Contact: tau-bugs@cs.uoregon.edu

\ TAU 2.19 Quick Reference

Jumpshot

To use Argonne’s Jumpshot (bundled with TAU), first merge and convert TAU traces to slog2
format:

% tau_treemerge.pl
% tau2slog2 tau.trc tau.edf -o tau.slog2
% jumpshot tau.slog2

Launching Jumpshot will bring up the main display window showing the entire trace, zoom in
to see more detail.

ImeLIne : tau. slogz <Identity Map, EIEHE
Lowest [Max. Depth/4|Zoom Level Glabal Min TimeView Init TimeZoom Focus TimeView Final TimeGlobal Max TimeTime Per Pixel Row
0/0 " 5 0.00 0.00140575420.0014919858 ||0.0015762174 ||0.003914 10000003248 Qi‘ Rom Coum
Cumulativebxc...| w TimeLines - ;| 5.0
= D)
[sloc-2 [i
Gho !
D 1 = 3
2
b 2
D 3 N
=l i 1
1 4 o Bl [
|. | 24l L] [»]: | |
@ LinelD = =| Fit All Roy
i | | | | | | | | §
| 14 0.00142 n.noi44 0.00146 0.0014% 0.0015 0.00152 0.00154 0.00156 QI{‘T?
[v | : Time (seconds) | =[] »
L

http://tau.uoregon.edu 5 Contact: tau-bugs@cs.uoregon.edu

