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Abstract

We describe the structure of the graph induced by the union of min-

imal separators for any 2-tree. We give a formula for counting different

plane embeddings of a given biconnected partial 2-tree and an algorithm

constructing all such embeddings. We then solve the face independent

vertex cover problems on biconnected partial 2-trees.

1 Introduction

1.1 Motivation

Partial 2-trees constitute a nontrivial class of planar graphs that in-

cludes outerplanar graphs. Since they inherit the definitional prop-

erty of maximal such graphs, the 2-trees, which states that every

minimal separator consists of end vertices of an edge, they admit

efficient algorithms solving many inherently hard problems on gen-

eral graphs ([7, 1]). We consider the problem of enumerating plane
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embeddings of planar graphs, restricted to partial 2-trees. (The

problem for outerplanar graphs has been solved in [10].) Solution of

the problem is facilitated by the fact that the union of minimal sep-

arators of any 2-tree has a very distinct structure. This fact implies

a one-to-one correspondence between the frames of partial 2-trees

(outerplanar subgraphs pivotal for plane embedding) and the frames

of the imbedding 2-trees. This intermediate result complements the

study of interior graphs of maximal outerplanar graphs in [4].

We consider also the notion of restricted coverings of faces of a

plane graph by vertices. This notion has been introduced in [8] and

investigated in [10]. We solve the problem of finding such a covering

for biconnected partial 2-trees.

1.2 Definitions

We will deal with simple, loopless combinatorial graphs. An edge is

incident with its end vertices which are mutually adjacent. A simple

path between two vertices u and v is a sequence of edges such that

each of their end vertices (other than u or v) is incident with exactly

two neighboring edges. If u = v, we have a simple cycle. A graph

is connected if there is a path between any two of its vertices. In a

connected graph, a subset S of vertices is a separator if its removal

disconnects the graph. A tree is a connected acyclic graph. A graph

G is outerplanar if there is an embedding of G in the plane such

that all vertices lie on the boundary of the infinite region of the

plane (the outer face). Thus, an outerplanar graph has no subgraph

homeomorphic to the complete bipartite graph K2,3. The set of

boundary cycles consists of the boundaries of the faces, regions of

the plane in a plane embedding. We identify a plane embedding of a

graph with the set of its boundary cycles. A subgraph of G induced

by a subset S of the vertices of G consists of S and all edges of G

with both end vertices in S.

A 2-tree is either the complete graph on 3 vertices (the triangle

K3) or a graph with n>3 vertices obtained from a 2-tree G on n−1

vertices by adding a new vertex adjacent exactly to both end vertices
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of an edge of G. (An alternative definition involves construction of a

2-tree by a sum of two smaller 2-trees that have an edge in common.)

A partial 2-tree is a subgraph of a 2-tree (it can be imbedded in a

2-tree) with the same set of vertices. For emphasis, we will call

2-trees full. Also, we will distinguish between an embedding of a

planar graph in the plane and an imbedding of a partial 2-tree in a

full 2-tree.

It is well known that a graph is a partial 2-tree iff it contains

no homeomorph of K4. Moreover, every minimal separator of a full

2-tree consists of the end vertices of an edge [6]. We will use the

following classification of edges in a full or partial 2-tree H. An edge

e = (a, b) is called exterior if {a, b} is not a separator of H, otherwise

it is called interior. An edge e = (a, b) is called strongly interior

if the graph H−{a, b} has more than two connected components

and weakly interior otherwise. A strongly interior edge e= (a, b) is

terminal iff all but at most one of the graphs Gi = H − ⊕
j 6=iCj

are outerplanar. (Here, Ci’s are the connected components of H −
{a, b}.)

Lemma 1 Every non-outerplanar 2-tree H has a terminal strongly

interior edge.

Proof: If a 2-tree H is not outerplanar, it has a strongly interior

edge since it contains a homeomorph of K2,3. Assume that there

is no terminal such edge. Then, there is a strongly interior edge e

that separates H into at least two non-outerplanar components: C,

that has the maximum size over all strongly interior edges and the

corresponding components, andD. The latter has a strongly interior

edge f separating H into connected components, one of which is

non-outerplanar and properly includes C, thus contradicting the

definition of C as maximum size. (This argument should give an

intuition about the name of the terminal strongly interior edge.)
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2 Interior graphs of 2-trees

Hedetniemi et al. ([4]) defined the interior graph of a maximal out-

erplanar graph (mop, for short) as the union of its interior edges.

They have completely characterized the interior graphs of mops and

showed that such a graph is a connected union of mops and cater-

pillars. We will obtain a similar result for partial 2-trees.

Lemma 2 Any tree is the interior graph of some 2-tree.

Proof: (by induction on the number of vertices.) By inspection,

the lemma is true for n = 2 and n = 3 vertices. For n ≥ 3, consider

a tree T with n + 1 vertices. Unless T = K1,n (‘a star’) we can

split T into smaller trees T1 and T2 by removing an edge e, so that

|Ti|+1 ≤ n (i = 1, 2). By the inductive hypothesis, each of the trees

Ti augmented by e is the interior graph of a 2-tree Gi (i = 1, 2). A

2-tree G obtained from G1 and G2 by identifying the copies of e in

each of them has T as its interior graph. K1,n is the interior graph

of the 2-tree with a universal vertex and n + 2 remaining vertices

inducing a path (“a wheel without an external edge”).

Theorem 1 A connected partial 2-tree H is the interior graph of

some 2-tree if and only if it has no induced cycles of length greater

than 3.

Proof: (sufficiency) Any such H has biconnected components that

are either edges or 2-trees. A 2-tree Hi is the interior graph of a

2-tree Gi obtained from Hi by adding a triangle (a vertex adjacent

to both end vertices of an edge) to each exterior edge. To every

edge Hi, add add two triangles. Given an articulation point v of H,

choose from each component Hi of H−v an original edge ei incident

to v and connect the other end vertices of these edges by a path.

Perform this operation for all articulation points of the augmented

graph whose biconnected components have as the interior graphs

the corresponding biconnected components of H.This results in a

2-tree that has H as its interior graph.
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(necessity) Removing all vertices of degree 2 from a partial 2-tree

results in a partial 2-tree and does not introduce any induced cycles.

The necessity result of [4] that the interior graph of a mop is a

connected union of mops and caterpillars is an immediate corollary

of Theorem 1 (since caterpillars are the only acyclic interior graphs

of mops). However, the outerplanarity constitutes a nontrivial hin-

der for sufficiency of this condition.

3 Planar embeddings of partial 2-trees

A frame in a 2-tree H is a maximal (with respect to subgraph inclu-

sion) outerplanar subgraph of H that does not contain any strongly

interior edge as an interior edge. Any frame is also a mop. Strongly

interior edges of a 2-tree partition it into frames (if one allows mul-

tiple copies of those edges).

We will first prove that a partial 2-tree has the same plane em-

beddings (modulo embeddings of its frames) as any full 2-tree that

imbedds it. Since the frames are outerplanar and the plane embed-

dings problem for outerplanar graphs has been solved ([10]), solving

the problem for full 2-trees will imply the solution for partial 2-trees.

3.1 Imbeddings of partial 2-trees

Lemma 3 A biconnected partial 2-tree G contains all exterior edges

of any full 2-tree imbedding H with the same set of vertices.

Proof: Removal of an exterior edge from a 2-tree introduces an

articulation point. If there were an imbedding H of G missing an

exterior edge, it would be separable and so would be any partial

graph of H. This contradicts biconnectivity of G.

Strongly interior edges of a 2-tree H partition H into maximal

outerplanar components (frames) in the following sense: In every

non-outerplanar 2-tree, there is a terminal strongly interior edge, say
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e = (a, b). Add the outerplanar graphs Gi (connected components

Ci of H−{a, b} augmented by {a, b} and the adjacent edges) to the

set of frames and remove the corresponding components Ci to obtain

a 2-tree H ′. Repeat the operation until only one edge remains.

Lemma 4 Any 2-tree imbedding H of a biconnected partial 2-tree

G contains the same set of strongly interior edges.

Proof: The lemma follows from the uniqueness of the set of ex-

terior edges: If (a, b) is a strongly interior edge in an imbedding

H of G, then the removal of {a, b} disconnects G into more than

two components. Since H − {a, b} consists of at least three con-

nected components, G contains three disjoint paths between x and

y. Moreover, there is no 2-tree imbedding of G in which any two

of the three paths would be connected outside a, b, since this would

implythe existence of a subgraph homeomorphic to K4. Thus, {a, b}
is a separator in any 2-tree imbedding of G and the lemma holds by

the characteristic property of 2-trees.

3.2 Representation of plane embeddings of full 2-trees

We will now define a unique graph representing a full 2-tree G.

This associated graph D(G) is the intersection graph of triangles of

G over the set of edges. Thus, the set of nodes of D(G) is the set

of triangles (maximal cliques) of G, and the set of edges of D(G)

represents the set of edges of G that are in at least two triangles.

An example can be found in Fig. 3.2.

Figure 1: G and its associated graph D(G)

It can be easily verified that each node v of D(G) is in at most

three maximal cliques. Furthermore, there are at least two nodes

that belong to exactly one maximal clique. We will call such nodes

(and the corresponding triangles of G) pendant. Furthermore, there

is at least one maximal clique in D(G) with at most one non-pendant

node. We will call such a clique pendant, as well.
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We will now give an algorithm constructing a tree that represents

a planar embedding of G.

Select a pendant node r from a pendant clique C as the root

of D(G). To represent a plane embedding of G, traverse D(G) in

a breadth-first fashion starting at r. This traversal determines a

breadth-first tree Tr of G (Fig. 3.2b). When arriving at any node

v of Tr during the traversal (crossing, in G, an edge of the triangle

v), partition the children of v into two subsets In(v) and Out(v),

depending on whether the corresponding triangles are inside or out-

side the triangle v in the particular drawing of the plane embedding

of G. These nodes belong to at most two maximal cliques that

also contain v. (The two cliques correspond to the other two edges

of the triangle v of G.) Subdivide further the nodes in In(v) (re-

spectively Out(v)) into In1(v) and In2(v) (respectively Out1(v) and

Out2(v)) depending on to which maximal clique they belong. Order

nodes in each of the four sets In1(v), In2(v), Out1(v), Out2(v) ac-

cording to the relationship of the inclusion in the plane between the

corresponding triangles of G. Each order defines a path in D(G).

Tr together with the root r and ordered subdivisions In1(v), In2(v),

Out1(v), Out2(v) for every node v in D(G) will be called an in-graph

of D(G) rooted at r (Fig. 3.2c). It will be denoted by
→
Dr.

Figure 2: D(G), its breadth-first tree Tr and its in-graph
→
Dr

When drawing in-graphs as in Fig.3.2c, we will use open (respec-

tively bold) circles to indicate nodes in Out-subsets (respectively In-

subsets). The order in the subsets will be indicated by directed solid

branches. The remaining branches will be undirected and dashed.

Lemma 5 Every in-graph
→
Dr defines a plane embedding of G.

Proof. The embedding associated with
→
Dr is obtained in the fol-

lowing manner (Fig. 3.2):

• Draw a triangle r.
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• Traverse the nodes of Tr in any ‘parent first’ order. When ar-

riving at a node v (could be r), draw in the nested fashion tri-

angles corresponding to In1(v) and In2(v) (respectively Out1(v)

and Out2(v)) inside (respectively outside) the triangle v. The

ordering of triangles is given by the directed paths (first node

corresponding to the outermost triangle). It is always possible

to place triangles without violating the planarity of the already

embedded subgraph.

Figure 3:
→
Dr and the corresponding embedding.

We will now investigate the existence of planar embeddings of a

given 2-tree with a specified pendant triangle as the root face.

For a given embedding of a 2-tree G and a pendant triangle r of

G that is a face in this embedding, there are exactly two in-graphs

rooted in r representing that embedding. One of these represents

a drawing of G with r being the exterior face (‘the outermost tri-

angle’). The other one will be called standard and represents the

standard drawing of G, in which the rest of the graph is on the

outside of r (and thus the set In(r) in the in-graph
→
Dr is empty).

In any given plane embedding of a 2-tree G, there is a pendant

triangle that is in the set of boundary cycles.

Observation 1 For a given 2-tree G and a pendant clique C of

D(G), any plane embedding of G has one or two pendant triangles

of C as faces

Moreover, the in-graphs rooted at all pendant triangles of C include

all possible plane embeddings of G.

Lemma 6 Given a full 2-tree G and a pendant clique C of D(G).

Every plane embedding of G can be represented by an in-graph
→
Dr,

where r is a pendant triangle of C.

Proof. Let us fix a pendant clique C of D(G). For every plane

embedding of G, there is a pendant triangle r of C that is a face in
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the embedding. An in-graph
→
Dr can be constructed in the obvious

manner that reverses the procedure used in the proof of Lemma 5

and assumes that G is drawn in the standard way with the given

set of faces.

For a maximal set S of pendant triangles of a pendant clique

in D(G), any two embeddings corresponding to standard in-graphs

rooted at different pendant triangles of S are different unless both

triangles are simultaneously faces in the embeddings. This property

of embeddings can be translated into a property of in-graphs by

defining a bijection φ among in-graphs.

Let r and s be pendant triangles of a pendant clique of D(G),

both faces in the given embedding of G. We define φ(
→
Dr) as

→
Ds

such that if Out′(r) = 〈s, T1, . . . , Ti〉, then Out′′(s) = 〈r, T̄i, . . . , T̄1〉,
where for each node T in Out(r) of

→
Dr, the corresponding node T̄

in Out(s) of
→
Ds has reversed the roles of In and Out: In′′(T̄ ) =

Out′(T ) and Out′′(T̄ ) = In′(T ) (′ and ′′ denote functions in
→
Dr and

→
Ds, respectively).

Lemma 7 If
→
Dr and

→
Ds are two different standard in-graphs rooted

at r and s, respectively, then they generate different sets of faces

unless
→
Dr= φ(

→
Ds) (or

→
Ds= φ(

→
Dr)).

Proof: It can be verified by inspection, that if
→
Dr= φ(

→
Ds) then

the set of faces in the respective embeddings are identical, since the

mapping corresponds to a cyclic shift of the components ofG−{a, b},
where (a, b) is the edge common for all triangles of C.

For the implication in the other direction, let us assume that two

different embeddings of G are represented by standard in-graphs.

Without loss of generality, we may assume that they are rooted at

pendant triangles of the same pendant clique C of D(G). The as-

sumption of the in-graphs being in the standard form insures that

two different in-graphs with the same pendant triangle as the root

represent two different embeddings. There are two cases, one when

the embeddings differ in the embedding of the non-triangular com-
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ponent of G− C, and the other, when the difference is in the faces

involving the triangles of C. The former case can be treated by

induction. In the latter, the mapping φ captures the only situation

when the boundary cycles are identical.

3.3 Counting planar embeddings

For a planar graph G, let π(G) be the number of plane embeddings

on the sphere (i.e., embeddings with different sets of boundary cy-

cles). Let π′(G) be the number of plane embeddings of G when the

outer face containing a specified edge is distinguished. (It is easy to

see that this number is independent of the particular edge chosen.

When the graph G has at least 2 faces, then π′(G) = 2π(G) since

every edge is in exactly two faces.)

Lemma 8 Let e = (a, b) be an interior edge of a 2-tree H with l

components Ci of H − {a, b}. Let Hi = H −⊕
j 6=iCj. Then

π(H) =
1

2
l!

∏
1≤i≤l

π′(Hi)

Proof: We will use the idea of permuting the components Hi to

produce all embeddings of H while avoiding duplication by omitting

embeddings related in a manner similar to the mapping φ of the

preceding subsection. The proof will follow by induction on l:

(i) l = 2. Assume that H is drawn with a vertical edge e sepa-

rating C1 ‘on the left of e’ from C2 ‘on the right’ and consider given

embeddings of H1 and H2. The same embedding of H can be found

among plane drawings of H with C1 and C2 on one side of e. On the

other hand, every embedding of H1 and H2 with the distinguished

‘outer side’ of e contributes multiplicatively a new set of boundary

cycles. Thus, π(H) = π′(H1) · π′(H2) = 1
2
l!
∏
π′(Hi).

(ii) l > 2. Let x be an end vertex of e. For each Hi, choose an

arbitrary edge ei incident with x. An embedding of H is uniquely

given by the position of el in the ordering of ei around x and the

given embeddings of the Hi’s (1 ≤ i < l) fixing the ‘outer side’ of

e. Assuming π(H − Cl) = 1
2
(l − 1)!

∏
1≤i<l π

′(Hi), each embedding
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of Hl contributes multiplicatively to the number of different sets

of boundary cycles and the above observation proves the desired

formula, since there are l possible positions for el.

Note that the outerplanar case (solved in [10] as 2f−2, where

f > 1 is the number of interior faces of the graph) is a simple

corollary of Lemma 8, since every separating edge of an outerplanar

graph gives l = 2 and the absence of such an edge gives the base

case of π(H) = 1. Since all mops of a given size have the same

number of interior faces, the number of plane embeddings of a mop

is completely determined by its size.

Lemma 9 Given a biconnected partial 2-tree G, the number of em-

beddings on the sphere is the same for every 2-tree H imbedding

G.

Proof: By Lemma 3, any two 2-tree imbeddings of G differ at

most on some subset of weakly interior edges. Yet, the sizes of the

corresponding frames are identical. Since the frames of a 2-tree are

maximal outerplanar, it follows by Lemma 8 that the number of

planar embeddings of H is determined by the size of frames of H

interacting through strongly interior edges of H. These are identical

for all imbeddings of G.

From these lemmas follows immediately a formula counting the

number of planar embeddings for a partial 2-tree with minimal sep-

arators that induce edges.

Theorem 2 Let {a, b} be a separator of a biconnected partial 2-tree

G with l components Ci of G−{a, b}. Let Gi = G−⊕
j 6=iCj. Then

(i) If (a, b) is an edge of G, then π(G) = 1
2
l!
∏

1≤i≤l π
′(Gi).

(ii) Otherwise,

π(G) =
1

2
(l − 1)!

∏
1≤i≤l

π′(Gi)

Proof: (i) Since it is almost identical with the proof of Lemma

8, we omit it.
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(ii) Let {a, b} be a minimal separator of G without the corre-

sponding edge (as we assume that the number of connected com-

ponents of G − {a, b} is at least 3, (a, b) is an edge in any 2-tree

imbedding H of G). We notice that in this case, the l ≥ 3 com-

ponents can be “permuted” in 1
2
(l − 1)! ways. (The following does

not cover the case of l = 2. But then one can either find a strong

separator in the above sense or G is outerplanar.) Each subgraph Gi

of G will be defined as G −⊕
j 6=iCj augmented by the edge (a, b).

(In the previous case of the separator inducing an edge, the edge

e = (a, b) acts as an extra component.)

4 Independent covers

Let G = 〈V,E〉 be a biconnected planar graph embedded in the

plane. A subset S of vertices is called a face-independent vertex

cover (or FIVC, for short) of the faces (boundary cycles) of G if every

face of G has exactly one vertex in S. A set W of faces of a graph

H is called a vertex-independent face cover (or VIFC, for short) if

every vertex of H is in exactly one face of W . A VIFC in H is simply

a 2-factor of H which consists of facial cycles. In the geometric dual

G∗ of G, a FIVC of G corresponds to a set of faces of G∗ which is

a VIFC of the vertices of G∗. The problem of finding FIVC and

VIFC are NP-complete in general, see [3, 2]. When restricted to

outerplanar graphs, these problems are polynomially solvable, see

[8].

4.1 Perfect FIVCs for Full 2-Trees

In this section, we describe a linear time algorithm that, given a 2-

tree G, finds a plane embedding of G that admits a FIVC, or decides

that no such embedding exists. In fact, the algorithm can be easily

modified to yield a minimum cardinality such a cover, if it exists.

The algorithm follows a similar approach as that of [9]. Namely,

it processes in a bottom-up manner a breadth-first search spanning

tree structure of the associated graph D(G). To construct such a
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tree, we will use a standard embedding of G by fixing a pendant

triangle r of an arbitrary pendant clique C of D(G).

We will consider several cases of possible standard embeddings of

G, depending on the number of pendant triangles in C and its parity

(whether the number is even or odd). Let (a, b) be the edge of G

common for all triangles of C and, for 1 ≤ i ≤ l, let xi be the third

vertex of such a triangle. Let Gi be the components of G − {a, b}
augmented by (a, b) and the adjacent edges (a, xi), (b, xi). Let G1

denote r. If there is a non-triangular component, we denote it Gl.

We will denote by Ga
l its component separated from x1 by {a, xl}

and by Gb
l the component separated from x1 by {b, xl}. The other

triangles of C are subscripted according to the eventual relative

position of the third vertex in an embedding that admits a FIVC

(cf. Figure xx). In each case of the analysis below, the assumed

position of Gl with respect to the vertices xi (and, specifically, xl−1)

included in a FIVC of G will imply existence of a covering of Gl that

possibly does not cover a face that includes the edge (a, b). (We will

call such coverings partial.)

0. All components Gi are triangles. The obvious FIVC consists of

one of the vertices a or b.

Otherwise, there is a non-triangular component Gl.

1. There is a FIVC of G that includes a or b.

1. If there is a FIVC that includes a, it implies the existence

of a FIVS of Ga
l that includes a and of a partial covering of

Gb
l that does not cover exactly one face that includes the

edge (a, b).

2. If there is a FIVC that includes b, it implies the existence

of a FIVC of Gb
l that includes b and of a partial covering of

Ga
l that does not cover exactly one face that includes the

edge (a, b).

If none of the vertices a or b are in the FIVC, any FIVC of G must

include the third vertex, x1, of the root triangle and, circularily

13



following, every other vertex xi (1 < i < l). We will consider

the two parity cases of l.

2. There is an even number of triangles Gi. Depending on the

embedding of Gl we have:

1. If Gl is embedded (a, b) and xl−1, then there must exist a

FIVC of Gl.

2. If Gl is embedded elsewhere, then there must be a partial

covering of Gl that does not cover either of its faces that

include the edge (a, b).

3. There is an odd number of triangles Gi.

Whatever is the position of Gl’s embedding relative to the other

triangles, it can be embedded so that its exterior face is covered

by an xi. The existence of a FIVC of G implies the existence of

a partial covering of Gl omitting exactly one face that includes

the edge (a, b).

The above analysis shows a need for a definition of several types

of (partial) FIVCs of plane embeddings of a 2-tree. These are the

following families of FIVCs:

A(G) that include a.

B(G) that include b.

C(G) that do not include either a or b.

Partial covers of the following families do not include either a or b:

X(G) cover all but one face that includes the edge (a, b).

N(G) cover all but the faces that include the edge (a, b).

The case analysis provides an informal proof for the following

theorem, that justifies a procedure for finding an embedding of G

that admits a FIVC; in fact, a minimum cardinality such a cover.

This procedure will follow in a bottom-up manner a breadth-first

search spanning tree structure of the associated graph D(G).
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Theorem 3 Let G be a given a 2-tree and r be a pendant triangle

of a pendant clique C of G with l triangles. The family of FIVCs

of G is A(G) ∪B(G) ∪ C(G) where, if C contains a non-triangular

component Gl, the families of FIVCs can be found by solving the

following recurrence relation:

A(G) = {α ∪ β : α ∈ A(Ga
l ) ∧ β ∈ N(Gb

l )}
B(G) = {α ∪ β : α ∈ N(Ga

l ) ∧ β ∈ B(Gb
l )}

C(G) = { α ∪ β :

α = {x2i−1 : 1 ≤ i ≤ l−1
2
} ∧ odd(l) ∧ β ∈ C(Gl)∨

α = {xl−1} ∧ {x2i−1 : 1 ≤ i ≤ l+1
2
} ∧ odd(l) ∧ β ∈ N(Gl)∨

α = {x2i−1 : 1 ≤ i ≤ l
2
} ∧ even(l) ∧ β ∈ X(Gl)}

X(G) = {α ∪ β : α ∈ A(Ga
l ) ∧ β ∈ X(Gb

l )}
N(G) = {α ∪ β : α ∈ A(Ga

l ) ∧ β ∈ X(Gb
l )}

with the following initial conditions for a triangle G = (a, b, c):

A(G) = {a}
B(G) = {b}
C(G) = {c}
X(G) = undefined

N(G) = ∅

Any node for which the above six covers have been determined is

said to be labeled. Hence, all leaf nodes of
→
Dr are initially the only

labeled nodes. Assume that an unlabeled node v is chosen such

that all its sons in
→
Dr are labeled. What is I(v)? Clearly, if both

In1(v) = ∅ and In2(v) = ∅, then I(v) is undefined; it is impossible

to cover the face corresponding to v. Suppose that the face corre-

sponding to v is covered by a vertex from a triangle corresponding

to a node from In1(v). When looking for I(v), we can then assume

that Out1(v) = ∅ and In2(v) = ∅. If this is not the case, we can con-

sider the embedding with ¯In1
v =In1(v)∪Out1(v), ¯Out1

v = ∅, ¯In2
v = ∅,

¯Out2
v = Out2(v) ∪ In2(v). Any I(v) for the original embedding will

also be a face-independent vertex cover for the new embedding with

all but the exterior face and vice versa. We can in the following

assume that either In2(v) = Out1(v) = ∅ or In1(v) = Out2(v) = ∅.
Suppose that In1(v) = Out2(v) = ∅. Let Out1(v) = {x1, x2, . . . , xk}
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and In2(v) = {y1, y2, ..., yl}. Assume that this ordering actually ad-
mits I(v). Thus, Gx1

p in this embedding must be covered by either
I(x1) or B(x1). If Gx1

p is covered by I(x1), then Gx2
p must be cov-

ered by either In(x2) or B(x2). If Gx1
p is covered by B(x1), then

Gx2
p must be covered by either F (x2) or E(x2). If Gx2

p is covered
by F (x2), then Gx3

p must be covered by either F (x3) or E(x3). If
Gx2

p is covered by E(x2), then Gx3
p must be covered by either I(x3)

or B(x3). Note that Gxk
p must be covered by either I(xk) or E(xk).

Hence, the covering sequence of x1, x2, ..., xk must be formed as a
path in the following tree:

/----> I(x_3) :::::

/-----> I(x_2)

/ \----> B(x_3) :::::

I(x_1)

\ /----> F(x_3) :::::

\-----> B(x_2)

\----> E(x_3) :::::

/----> F(x_3) :::::

/-----> F(x_2)

/ \----> E(x_3) :::::

B(x_1)

\ /----> I(x_3) :::::

\-----> E(x_2)

\----> B(x_3) :::::

which ends in either I(xk) or E(xk).

Suppose that I(xi), 2 ≤ i ≤ k, is preceeded by something else

than I(xi−1) (i.e. it is preceeded by E(xi−1)). But then we can

place I(xi) in front without affecting I(v). Hence, we can assume

that I(xi) occurs only in the beginning of the covering sequence.

By turning I(xi) inside-out, we obtain a face-independent ver-

tex cover of all but the face corresponding to xi. Hence, |I(xi)| ≥
|F (xi)|. By turning F (xi) inside-out, we obtain a face-independent

vertex cover of all but the exterior face. Hence, |I(xi)| ≤ |F (xi)|.
In conclusion, |I(xi)| = |F (xi)|. Consequently, we can assume that

no xi, 1 ≤ i ≤ k is covered by F (xi). If it was, we could place xi in
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front and cover it by I(xi).
In view of the above discussion, the covering sequence of

x1, x2, ..., xk is a path in:

/----> I(x_3) :::::

/-----> I(x_2)

/ \----> B(x_3) :::::

I(x_1)

\

\-----> B(x_2)

\----> E(x_3) :::::

B(x_1)

\

\-----> E(x_2)

\----> B(x_3) :::::

which ends in either I(xk) or E(xk).

Given these restrictions, how can we determine I(v). Suppose

first that k is even. Consider a complete network with x1, x2, ..., xk
as its vertices. Associate the cost

min{|I(xi)|+ |I(xj)|, |B(xi)|+ |E(xj)|, |E(xi)|+ |B(xj)|}

with every edge (xi, xj) of this network. We only need to solve the

minimum cost perfect matching problem to find I(v).

If k is odd, we have to take each xi, 1 ≤ i ≤ k in turn, assume it is

covered by I(xi), and find how to cover other subgraphs by solving

the minimum cost perfect matching problem on the complete graph

with k − 1 vertices.
Let us now look how to cover the embedding on the other side.

Gy1
p must be covered by either F (y1) or E(y1).+ ....

/----> F(y_3) :::::

/-----> F(y_2)

/ \----> E(y_3) :::::

17



F(y_1)

\ /----> I(y_3) :::::

\-----> E(y_2)

\----> B(y_3) :::::

/----> I(y_3) :::::

/-----> I(y_2)

/ \----> B(y_3) :::::

E(y_1)

\ /----> F(y_3) :::::

\-----> B(y_2)

\----> E(y_3) :::::

which ends in either I(xk) or E(xk).
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