
GROW! October 2013! 1!

GROW: Graph classes, Optimization, 
and Width parameters 

Andrzej Proskurowski 
(with a little help from my friends) 
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Overview 

  Ancient history 

  Why GROW? 
  Parsing structure of graphs 
  Width parameters of graphs 
  Algorithms: Dynamic Programming 

  Concise description of graph classes: Obstructions 
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(Ancient) History 

A series of meetings on the subject resulted in 
Special Issues of Discrete Applied Mathematics: 

  1988 meeting in Eugene DAM 54(2-3): Efficient Algorithms 
and Partial k-trees, Arnborg, Hedetniemi, Proskurowski, Eds. 

  2001 meeting in Barcelona DAM 145(2): Structural 
decompositions, width parameters and graph labelings, 
Kratochvil, Proskurowski, Serra, Eds. 

  2005 meeting in Prague DAM 157(12), Second Workshop on 
Graph Classes, Optimization, and Width Parameters, 
Kratochvil, Proskurowski, Serra, Eds. 
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Past GROW meetings 

  2007 3rd GROW in Eugene: DAM 158(7), Third Workshop on 
Graph Classes, Optimization, and Width Parameters, 
Heggernes, Kratochvil, Proskurowski, Eds. 

  2009 4th GROW in Bergen: DAM 160(6) Heggernes, 
Kratochvil, Proskurowski, Eds. 

  2011 5th GROW in Daejon (in press) 

  2013 6th GROW in Santorini  
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Participants in Santorini 
GROW’13 
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Planned conferences:  
 

  2015 7th GROW in Banff 

  2017 8th GROW in Montpellier 

  … 
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 Parsing structure of graphs 

  Structure of graphs: 
  Graph grammars 
  Hierarchical graphs 
  2-structures 
  Modular decomposition 

  Parsing of graphs (construction - recognition) 
  Series-parallel graphs 
  Complement-reducible graphs aka. Cographs 
  ABC-graphs 
  Partial k-trees 
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An example  

  Series-parallel (sp-)graphs: 
  Start with an edge 
  Assume an sp-graph 
  Combine it with another sp-graph 

– In series!

– Or parallel !
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Width Parameters of Graphs 

  Tree- (path-) Decompositions  

  Treewidth: partial k-trees 
  Pathwidth: partial k-paths 

  Branchwidth,  

  Cliquewidth 

  Rankwidth 
  Linear rankwidth 
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(Cubic) Tree Decomposition TD 

  A cubic tree (internal nodes of degree 3) with 
leaf nodes labeled by elements of the graph 

  Each tree branch partitions the graph 
elements into two blocks defined by the sets 
of disconnected leaves; evaluate the width 
function on this partition 

  Maximum valuation (over all branches) 
determines the width of the decomposition 

  The width of the graph is a minimum width 
over all decompositions. 
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Rankwidth 

  Leaves of the TD tree are labeled by vertices 
of the graph 

  Width of a branch is the rank of the adjacency 
matrix of the partition 

1!
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(linear width) 

  tree of TD has linear structure: a caterpillar 
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(example of width) 
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Obstructions: 
Concise Description of Graph Classes  

  Classes closed under embedding operation 
  Induced subgraph 
  Topological 
  Minor 

  Minimal graphs outside the class of interest 
  Examples of (minor) obstructions 

  Planar graphs: {K5, K3,3} 
  Treewidth 3 graphs: {K5, 2W4, M8, P10} 
  Linear rankwidth 1: {C5, N, Q} 
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Embeddings: Guest into Host 

  Mapping of elements of G into elements of H 
  Embeddings of a graph G in H 

  Topological: edges of G into internal 
vertex-disjoint paths of H 

  Minor: vertices of G into connected subsets 
of vertices of H 

  Vertex minor: vertices of G into vertices of 
H, modulo local equivalence 
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Obstructions to Linear Rankwidth 1 

  (half) cube graph Q 

  net graph N 

  cycle C5 
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Vertex Minors 

  Vertex minor: vertices of G into vertices of H, 
modulo local equivalence 

  Local equivalence, G~G*v, where *v denotes 
  Local complementation at vertex v of G: 

complementing adjacencies of the 
neighborhood of v in G. 
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Local complementation 

  Locally equivalent graphs 



GROW! October 2013! 19!

Graphs locally equivalent to N 
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Graphs locally equivalent to Q 
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(Optimization) 
Algorithms  

  Recursive structure of solutions: 
 Optimal solution is a function of optimal solutions 

to smaller (sub-) problems 
  Dynamic Programming 

 A bottom-up traversal of the tree of sub-problems 
 Representative solutions to be used recursively 

  Tree Decomposition guides DP algorithm 
  The width of the input graph determines size of 

sub-problem solutions that need to be kept 
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Stages of complexity 

Everybody knows that NP-completeness most 
probably implies exponential complexity 
(some say that it stands for “not polynomial”, 
a subtle joke) 

A recent hierarchy of complexity classes is     
W-hierarchy which includes “fixed parameter 
tractable” (FPT) problems on the lowest level 
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Fixed Parameter Tractability 

In general, the time complexity of an algorithm 
acting on input with length n and a parameter 
(say, treewidth) k is O(f(n,k)) 

For a fixed k, this may be polynomial (in n) even 
though k may be in the exponent, ng(k) 

Of course, we would prefer k not in the 
exponent, as in f(n,k)=h(k)nc 

While h(k) is often hyper-exponential, width-
based algorithms are often linear (c=1) 



GROW! October 2013! 24!

That’s all folks! 


