GROW: Graph classes, Optimization, and Width parameters

Andrzej Proskurowski (with a little help from my friends)

Overview

- Ancient history
- Why GROW?
 - Parsing structure of graphs
 - Width parameters of graphs
 - a Algorithms: Dynamic Programming
- Concise description of graph classes: Obstructions

(Ancient) History

A series of meetings on the subject resulted in Special Issues of *Discrete Applied Mathematics:*

- 1988 meeting in Eugene DAM 54(2-3): Efficient Algorithms and Partial k-trees, Arnborg, Hedetniemi, Proskurowski, Eds.
- 2001 meeting in Barcelona DAM 145(2): Structural decompositions, width parameters and graph labelings, Kratochvil, Proskurowski, Serra, Eds.
- 2005 meeting in Prague DAM 157(12), Second Workshop on Graph Classes, Optimization, and Width Parameters, Kratochvil, Proskurowski, Serra, Eds.

Past GROW meetings

- 2007 3rd GROW in Eugene: DAM 158(7), Third Workshop on Graph Classes, Optimization, and Width Parameters, Heggernes, Kratochvil, Proskurowski, Eds.
- 2009 4th GROW in Bergen: *DAM 160(6)* Heggernes, Kratochvil, Proskurowski, Eds.
- □ 2011 5th GROW in Daejon (in press)
- □ 2013 6th GROW in Santorini

Participants in Santorini GROW'13

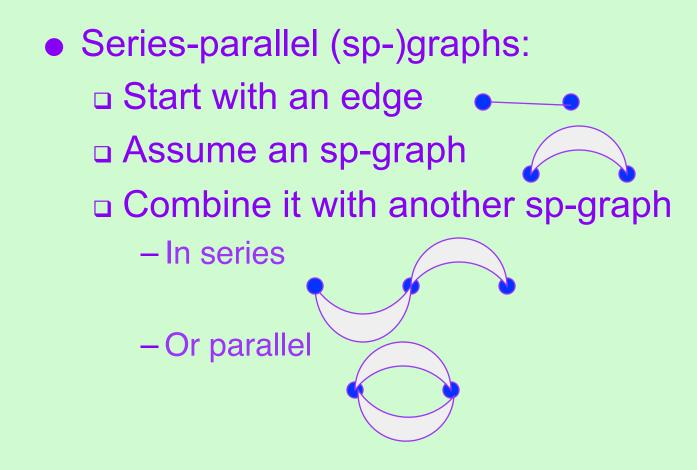
Planned conferences:

- □ 2015 7th GROW in Banff
- □ 2017 8th GROW in Montpellier
- **u** ...

Parsing structure of graphs

- Structure of graphs:
 - Graph grammars
 - Hierarchical graphs
 - 2-structures
 - Modular decomposition
- Parsing of graphs (construction recognition)
 - Series-parallel graphs
 - Complement-reducible graphs aka. Cographs
 - ABC-graphs
 - Partial k-trees

An example



Width Parameters of Graphs

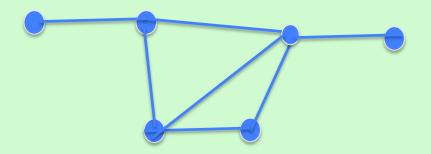
- Tree- (path-) Decompositions
 - Treewidth: partial k-trees
 - Pathwidth: partial k-paths
 - Branchwidth,
 - Cliquewidth
 - RankwidthLinear rankwidth

(Cubic) Tree Decomposition TD

- A cubic tree (internal nodes of degree 3) with leaf nodes labeled by elements of the graph
- Each tree branch partitions the graph elements into two blocks defined by the sets of disconnected leaves; evaluate the width function on this partition
- Maximum valuation (over all branches) determines the width of the decomposition
- The width of the graph is a minimum width over all decompositions.

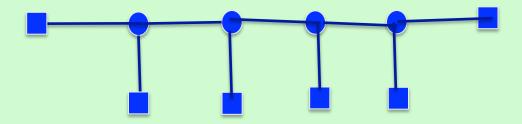
Rankwidth

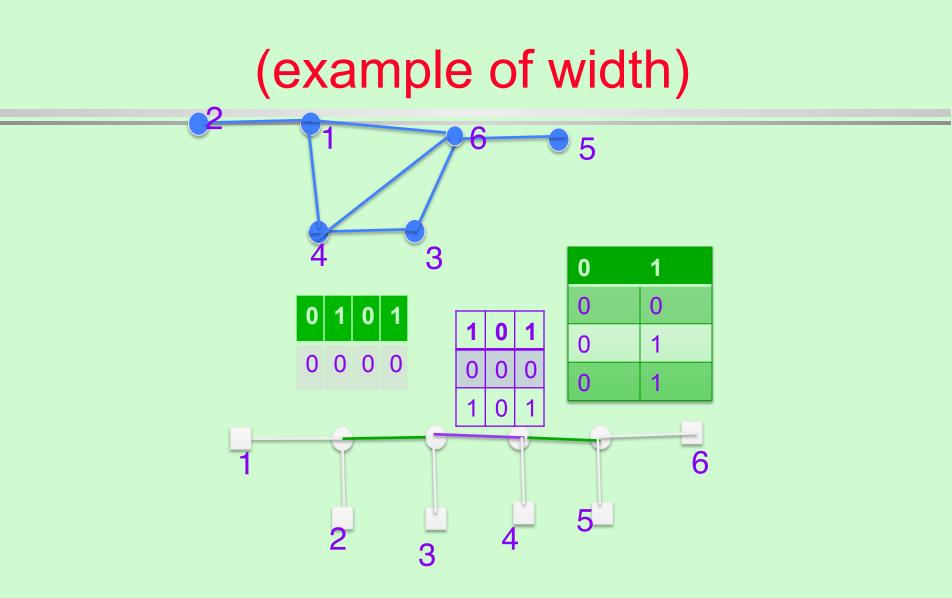
- Leaves of the TD tree are labeled by vertices of the graph
- Width of a branch is the rank of the adjacency matrix of the partition



(linear width)

• tree of TD has linear structure: a caterpillar





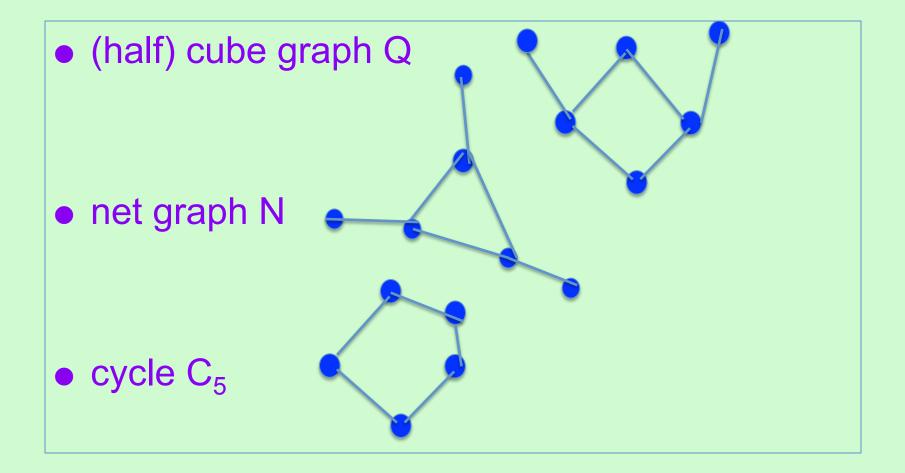
Obstructions: Concise Description of Graph Classes

- Classes closed under embedding operation
 Induced subgraph
 Topological
 - □ Minor
- Minimal graphs outside the class of interest
- Examples of (minor) obstructions
 - □ Planar graphs: {K₅, K_{3,3}}
 - \Box Treewidth 3 graphs: {K₅, 2W₄, M₈, P₁₀}
 - Linear rankwidth 1: {C₅, N, Q}
 October 2013

Embeddings: Guest into Host

- Mapping of elements of G into elements of H
- Embeddings of a graph G in H
 - Topological: edges of G into internal vertex-disjoint paths of H
 - In Minor: vertices of G into connected subsets of vertices of H
 - Vertex minor: vertices of G into vertices of H, modulo local equivalence

Obstructions to Linear Rankwidth 1

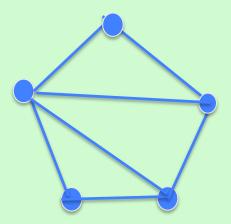


Vertex Minors

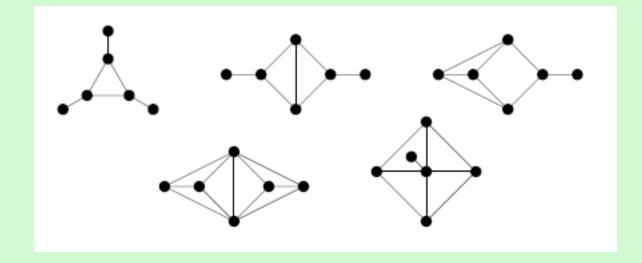
- Vertex minor: vertices of G into vertices of H, modulo local equivalence
- Local equivalence, G~G_{*}v, where _{*}v denotes
 Local complementation at vertex v of G: complementing adjacencies of the neighborhood of v in G.

Local complementation

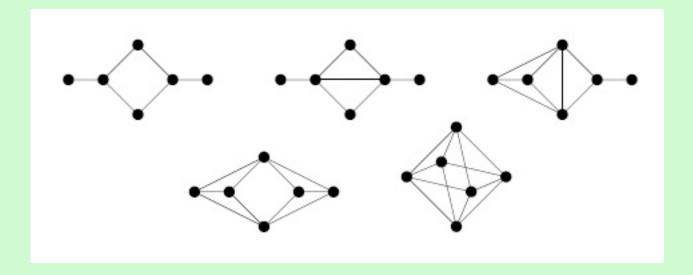
Locally equivalent graphs



Graphs locally equivalent to N



Graphs locally equivalent to Q



(Optimization) Algorithms

- Recursive structure of solutions:
 - Optimal solution is a function of optimal solutions to smaller (sub-) problems
- Dynamic Programming
 - □ A bottom-up traversal of the tree of sub-problems
 - Representative solutions to be used recursively
- Tree Decomposition guides DP algorithm
 - The width of the input graph determines size of sub-problem solutions that need to be kept

Stages of complexity

Everybody knows that NP-completeness most probably implies exponential complexity (some say that it stands for "not polynomial", a subtle joke)

A recent hierarchy of complexity classes is W-hierarchy which includes "fixed parameter tractable" (FPT) problems on the lowest level

Fixed Parameter Tractability

- In general, the time complexity of an algorithm acting on input with length *n* and a parameter (say, treewidth) *k* is O(*f*(*n*,*k*))
- For a fixed *k*, this may be polynomial (in *n*) even though *k* may be in the exponent, *n*^{*g*(*k*)}
- Of course, we would prefer *k* not in the exponent, as in *f*(*n*,*k*)=*h*(*k*)*n*^{*c*}
- While *h*(*k*) is often hyper-exponential, widthbased algorithms are often linear (*c*=1)

That's all folks!

October 2013